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Abstract 

This study uses Synthetic Aperture R adar (S AR) vessel detections and Automatic Identification System (AIS) to predict trawl fishing 

intensity and distribution of fishing activity in areas where public AIS data are not available. By processing SAR data, considering spatial 
and temporal autocorrelation, and building a General Additive Model, a statistical relationship between SAR vessel detections and AIS 

fishing activity was established. The study provides spatially explicit estimates of trawler fishing activity, compared with official fleet 
records published by the General Fisheries Commission of the Mediterranean, revealing the distribution and intensity of trawl fishing 

activity not previously publicly tracked. Fishing grounds in the Strait of Sicily along the coast of Tunisia and North of Egypt showed an 

intensity of trawl fishing activity similar to the Adriatic Sea. This area is historically known to be subject to the highest trawling pressure 
in the Mediterranean, and also as one of the most heavily trawled regions in the world. The study shows that the integration of remote 
sensing data, such as SAR, offers a promising avenue to overcome data gaps and improve fisheries management in the Mediterranean 

where only a portion of the fishing fleet is publicly tracked. 
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Introduction 

In the Mediterranean Sea, marine fisheries play a pivotal role 
in food and social security, providing sustenance for thou- 
sands of people and supporting the livelihoods of numer- 
ous coastal communities (FAO 2023a ). However, overfishing 
poses a threat in the region, and even though the fishing pres- 
sure and exploitation rate have decreased in the last decade,
58% of assessed commercial stocks are still overfished, and 

average fishing mortality remains two times higher than sus- 
tainable levels (FAO 2023b ). This trend appears to be largely 
related to the lack of monitoring and poor management of 
fishing fleets (Colloca et al. 2017 , Vielmini et al. 2017 , Hilborn 

et al. 2020 , Fiorentino and Vitale 2021 ). Monitoring of fish- 
ing activities is fundamental to ensure compliance with man- 
agement measures such as catch and effort regulations, sea- 
sonal and spatial-temporal closures, and the prevention of il- 
legal, unreported, and unregulated (IUU) fishing (Flewwelling 
1994 ). Also, current fisheries management relies on reported 

effort and catch (the so-called fishery-dependent information),
which are the main source of information for estimating fish- 
ing mortality. But tracking fishing mortality means also as- 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
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reuse, distribution, and reproduction in any medium, provided the original work 
essing where and when fishing activity occurs. This is why,
ver the last few decades, vessel tracking data from devices
uch as the Vessel Monitoring System (VMS) and the Auto-
atic Identification System (AIS) have been widely used in 

sheries science (Russo et al. 2019 , White et al. 2020 , Armel-
oni et al. 2021 ), and the competent authorities have progres-
ively expanded the requirements for vessels to carry these 
racking devices (REGULATION EU 2023/ 2842 ). For exam- 
le, in the European Union (EU), data from vessel tracking
ystems are the main sources of information (together with 

ogbooks) for the Fisheries Dependent Information (FDI) data 
all ( https:// stecf.jrc.ec.europa.eu/ dd/ fdi ). 

Indeed, the use of AIS and VMS has revolutionized our abil-
ty to monitor and map fishing activity at sea (Kroodsma et
l. 2018 ) and, in the last decade, studies focusing on the ap-
lication of AIS or VMS in fisheries management have dou-
led (Orofino et al. 2023 ). Despite the increasing use of VMS
nd AIS technologies in fisheries science and in the maritime
ndustry, some marine fisheries remain publicly unmonitored 

ue to technological constraints, and evasion tactics employed 

y fishers (Park et al. 2020 ,Kroodsma et al. 2022 , Welch et al.
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022 , Orofino et al. 2023 , Paolo et al. 2024 ). Furthermore,
racking technologies such as VMS and AIS are not imple-
ented or enforced in all countries, and local legislations do
ot agree on the minimum vessel size and type of activities re-
uired to broadcast through AIS or VMS (Orofino et al. 2023 ,
aolo et al. 2024 ). 
Recent work has shown that roughly three-quarters of in-

ustrial fishing vessels worldwide are not tracked by AIS
Paolo et al. 2024 ), and only a limited number of countries
hare publicly the VMS which is often kept confidential by
overnment agencies (Orofino et al. 2023 ). In the Mediter-
anean, for instance, between Italy and Tunisia in the Strait
f Sicily > 60% of fishing vessels appear not to be broad-
asting AIS data (Paolo et al. 2024 ). If the distribution and
he level of fishing activity are not properly considered, as-
essments of pressure on biological resources could be dis-
orted, and management measures adopted may be ineffective
r inappropriate (Zeller et al. 2018 , Costello et al. 2020 ). In
he long term, this unaccounted fishing activity undermines
he overall United Nations’ (UN) Sustainable Development
oals, as well as the GFCM 2030 strategy and the Com-
on Fisheries Policy (CFP), at the Mediterranean and Eu-

opean level, respectively, to efficiently use marine resources
nd secure food supply (Zeller et al. 2018 , Costello et al.
020 ). 
The Mediterranean Sea is a complex region for fisheries
anagement: 22 coastal states plus the European Union, all
ith very different social, economic, and political organiza-

ions, border the waters of the Mediterranean (Cardinale et
l. 2017 ). This scenario inevitably creates challenges for the
anagement of shared resources when information on fish-

ng activities at sea is collected with different levels of ac-
uracy and is not always publicly available (Vasilakopoulos
t al. 2014 , Paolo et al. 2024 ). Fisheries management in the

editerranean Sea, for non-tuna and non-tuna-like species, is
mplemented under the umbrella of the UN Food and Agricul-
ure Organization (FAO) through the General Fisheries Com-
ission for the Mediterranean and the Black Sea (GFCM),
hich has acted as a Regional Fisheries Management or-
anization (RFMO) since 1949 (Vielmini et al. 2017 ). Al-
hough many countries around the Mediterranean Sea have
dopted GFCM international regulations and standards re-
ated to VMS and AIS (GFCM/44/2021/8, GFCM/43/2019/3,
nd GFCM/33/2009/7), the specific implementation and en-
orcement of these regulations vary among countries (FAO
023b ). For example, the European Union Member States
ave regulations requiring the use of VMS and AIS for fishing
essels as part of the CFP (Taconet et al. 2019 ). In contrast,
egulations in Mediterranean countries outside of the EU are
ery different: the use of AIS only partially covers the fishing
eets (Taconet et al. 2019 ). This study reports the first analy-
is of the level of fishing activity for the whole Mediterranean
ea using remotely observed radar data. 

Remote sensing data (RSD) are earth observations collected
y spaceborne and airborne sensors used in a wide range of
pplications (Chi et al. 2016 ), and represent a promising ap-
roach to improving information on fishing vessel activity
Galdelli et al. 2021 , Paolo et al. 2024 ). More specifically, the
etection of maritime objects such as vessels and offshore in-
rastructure in satellite images can be used as a powerful map-
ing tool without requiring vessels to broadcast their posi-
ion and activity through public or private tracking systems
Paolo et al. 2024 ). This promising technology can aid the
apping of vessel activity regardless of the legislation of dif-
erent countries and data-sharing policies (Paolo et al. 2024 ).
SD is limited, however, by technical and operational factors,

uch as varying acquisition frequency and spatial coverage,
nd the extensive computational resources required to process
he data (Santamaria et al. 2017 , Paolo et al. 2024 ). Among
he different RSD, Synthetic Aperture Radar (SAR) imagery
as become more accessible and is an effective technology for
cean mapping (Santamaria et al. 2017 , Paolo et al. 2024 ).
AR can penetrate cloud cover and is not affected by light
nd extreme weather events like some other satellite sensors
nd has been used in a wide range of earth observation ap-
lications such as monitoring sea ice, deforestation, disaster
valuation and maritime surveillance (Santamaria et al. 2017 ,
aolo et al. 2024 ). SAR generates images by emitting pulses of
adar signals and recording the fraction of the signals bounc-
ng off the targets on the ground and reflected back to the
atellite (known as backscatter) (Santamaria et al. 2017 , Paolo
t al. 2024 ). Multiple radar acquisitions of the same location
n the ground are then integrated to form an image (Santa-
aria et al. 2017 , Paolo et al. 2024 ). Objects across a land-

cape, for example, vessels across the sea, can be differenti-
ted in the backscatter image because they return signals that
ave different characteristics (Santamaria et al. 2017 , Paolo
t al. 2024 ). The geometry, roughness and electrical proper-
ies of the target will influence the strength and polarization
f the returned pulse (Santamaria et al. 2017 , Paolo et al.
024 ). Global Fishing Watch (GFW) has processed over one
etabyte of SAR images obtained from the European Space
gency (ESA) Sentinel-1 mission (Paolo et al. 2024 ). Paolo et
l. (2024) developed a method to detect vessels at least 15
 in length using an algorithm that isolates signals signifi-

antly stronger than the background ocean in the SAR images.
he detections were then matched to vessels broadcasting AIS
hen the images were taken, resulting in a global dataset of
essel detections matched and unmatched to AIS (Kroodsma
t al. 2022 , Paolo et al. 2024 ). Paolo et al. (2024) also used
 neural network model to classify the detections into likely
shing and non-fishing vessels based on the environmental
nd physical characteristics where each detection is located
Paolo et al. 2024 ). SAR vessel detections, however, cannot tell
hether a fishing vessel is fishing, i.e. with the net or hooks in

he water. Machine-learning approaches can be used to clas-
ify AIS and VMS activity into fishing and non-fishing (Russo
t al. 2014 , Kroodsma et al. 2018 ). SAR imagery, on the other
and, will only image the same location approximately every
–6 days (for the Mediterranean), and therefore cannot deter-
ine a vessel’s activity (fishing vs. not-fishing) at the time of
etection. As a result, SAR vessel detections provide a mea-
ure of fishing vessel presence, but not directly the level of
shing activity. This study sought to determine the extent to
hich SAR vessel presence could be used as a proxy for fishing

ctivity using fishing hours from AIS data as a reference in a
odeling approach. The term fishing activity is used over fish-

ng effort as the latter is a measure of both time spent search-
ng for fish and the amount of fishing gear used for a unit of
ime (FAO 2024 ). Considering the novelty of this study and
he very early state of the art with respect to the use of SAR
ata, it is outside of the scope of this study to quantify fishing
ffort by gear (e.g. number of hooks, swept area, number of
ets, etc.) used by a vessel (FAO 2024 ), so the term fishing ac-
ivity is used in this manuscript to quantify the total amount
f time spent fishing (fishing hours) per area. 
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Table 1. Main statistics for the two data sources used in this study: the AIS and SAR Global Fishing Watch datasets. 

Statistics AIS SAR 

Temporal range January 2017–December 2021 
Source Global Fishing Watch (Kroodsma et al. 

2018 ) 
Global Fishing Watch (Paolo et al. 2024 ) 

Number of positions or detections ∼239 × 10 6 ∼9.7 × 10 6 

Aggregated spatial resolution used in the 
analysis 

0.2 decimal degrees ( ∼22 square Km) 

Aggregated temporal resolution used in 
the analysis 

Monthly 

Temporal resolution 2 to 10 seconds 2 to 6 days for all Mediterranean Sea and 
constant throughout the year 

Filters Only fishing vessels as recorded in Global 
Fishing Watch data 

Only detections of fishing vessels as recorded in 
Global Fishing Watch data 

In the table the temporal range, source, number of positions and detections, the spatial and temporal resolution, and the filters applied to these datasets are 
presented. 
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This study investigates the relationship between vessel pres- 
ence derived from SAR and fishing activity using a state-of- 
the-art approach based on AIS data. The dataset of fishing 
vessel detections from Sentinel-1 SAR satellite imagery is com- 
pared with the fishing footprint provided by GFW AIS data,
assuming that the latter provides a suitable reference for the 
activity of large fishing vessels. First, a significant statistical 
relationship between the fishing hours (from AIS data) and 

fishing vessel presence (from SAR data) was established using 
as a training dataset the areas where AIS provided reliable es- 
timates of fishing activity. Then the application of this model 
was extended to the entire Mediterranean Sea to obtain esti- 
mates of fishing activity for the whole Mediterranean basin 

from SAR data. 

Materials and methods 

Data sources 

SAR and AIS for the years 2017–2021 were the two main 

datasets used in this study ( Table 1 ). These two systems have a 
different sampling rate. AIS is a device installed onboard ves- 
sels which pings a position on average every minute, whereas 
SAR is a radar satellite that generates an image of the same 
location in the Mediterranean Sea on average between every 
2 and 6 days (Santamaria et al. 2017 , Kroodsma et al. 2018 ).
This results in a significantly different number of observations 
between the two systems, with AIS providing consecutive po- 
sitions (tracks) for a single vessel over the course of a day,
while SAR provides only one detection ( Table 1 ). 

Automatic identification system 

GFW processes raw AIS messages, sourced by Spire and Or- 
bcomm providers, according to the methods in Kroodsma et 
al. (2018) . AIS messages are then analyzed with two differ- 
ent convolutional neural networks (CNNs) to predict fishing 
operations. The first CNN classifies the vessel type and pre- 
dicts vessel characteristics such as length, tonnage and engine 
power, and the second classifies every AIS position as either 
fishing or non-fishing (Kroodsma et al. 2018 ). This study used 

position-level fishing/non-fishing estimates from AIS, along 
with total fishing hours, aggregated by Maritime Mobile Ser- 
vice Identity (MMSI), and gear type (estimated using a Global 
Fishing Watch CNN, Kroodsma et al. 2018 ). 
ynthetic aperture radar 
FW applies an automated algorithm to Sentinel-1 SAR im- 
ges sourced from the European Space Agency (ESA) to de-
ect vessels using a Constant False Alarm Rate algorithm 

Kroodsma et al. 2022 , Paolo et al. 2024 ). SAR detections are
hen filtered with a CNN model to identify false positives and
lso infer vessel length and matched to AIS using probabil-
ty maps of estimated vessel locations at different time inter-
als based on speed, type, and trajectory. This matching pro-
edure identifies SAR detections not associated with vessels 
roadcasting AIS positions (Kroodsma et al. 2022 , Paolo et al.
024 ). For those detections that did not match to AIS, a sec-
nd CNN model classified detections as either fishing or non-
shing vessels based on the environmental and physical char- 
cteristics of their location. Model parameters included ves- 
el density, average vessel length, bathymetry, hours of non—
shing vessel presence (from AIS), average surface tempera- 
ure (average from 2017 to 2021) and chlorophyll (average 
rom 2017 to 2021) calculated across all SAR footprints at
ifferent spatial resolutions. 
V essel’ s detection using Sentinel-1 was shown to be highly

ffective, capturing the majority of vessels that are at least 20
 in length (Paolo et al. 2024 ). The individual fishing vessel
etections (i.e. the point data) from this dataset are normal-
zed by satellite overpasses, meaning that the number of detec-
ions in a 10th degree cell is divided by the number of satellite
verpasses in that same grid cell for each month and year from
017 to 2021 ( Table 1 ). This normalization corresponds to an
stimate of the average number of vessels seen at each month
n each cell. The estimate of the number of vessels per month,
ear and cell is the input to the Space Time Index approach
escribed in the next section. A more detailed description of
he SAR dataset can be found in Paolo et al. (2024) . 

re-processing 

he AIS and SAR matching identifies vessels broadcasting or 
ot broadcasting AIS. The AIS data are filtered by vessels that
ere matched to SAR at least once. 
Then, the fishing hours of these vessels are summed across

ur grid for each year and for each month from 2017 to 2021.
his procedure is done to ensure that in the AIS data we only
eep vessels that can be detected by SAR. 
The vessel classes reported in the AIS dataset were assessed

or all the matched SAR fishing vessel detections. This was
one to get a better idea of what the SAR can capture. 
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Figure 1. Conceptual representation of the spatial (panel a)—temporal (panel b) autocorrelation index applied to SAR detections. 
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The AIS positions and the SAR detections are filtered to be
t least three nautical miles from shore to limit the possible
oise associated with vessel traffic and pleasure crafts, near
orts or the coast which can occur in both the AIS and SAR
ata. 
Both SAR normalized fishing vessel detections and AIS fish-

ng hours were then aggregated using 0.2 decimal degrees
around 22 km) square grid across the whole Mediterranean.
n addition, two further variables were quantified for each grid
ell. Namely: 

� The depth (in m) was estimated for the centroids of each
cell of our grid using the marmap package (Pante and
Simon—Bouhet (2013) in R (R core team 2021 ) with a
resolution of 10 minutes. The marmap package uses the
ETOPO1 database hosted by the US National Ocean and
Atmospheric Administration (NOAA). 

� The distance from shore (in km) was calculated for the
centroid of each cell of our grid using the st_distance
function from the sf package (Pebesma and Bivand 2023 )
to a 10 m resolution shapefile of the coastlines of the
Mediterranean Sea. 

patial-temporal autocorrelation 

deally, the number of SAR fishing vessel detections in a
ell/time grid could be used to obtain an estimate of the fish-
ng activity. But each cell is not an isolated entity, being an
lement connected to its adjacent cells and placed within a
arger spatio-temporal context (Russo et al. 2013 ). Thus, the
umber of SAR detections in each cell, as well as the number
f fishing hours, are influenced by the neighboring cells. In
ecent years, studies have shown that adding a temporal com-
onent to spatial—autocorrelation is fundamental to identify
atterns that are dominant across space (Russo et al. 2013 ,
ang and Lam 2020 ). Wang and Lam (2020) have proposed

n extension of the Getis Ord index to account for local—
pace—time—autocorrelation (LSTA) (Wang and Lam 2020 ).
aving T observations, the spatio-temporal autocorrelation

ndex, called G 

∗, is defined as: 

G 

∗
i ( V ST ) = 

� j v i j x j 

� j x j 

Where V ST is the space–time connectivity matrix whose ele-
ents v ij represent the spatio-temporal index between the cells

 and j of the grid, x j is the number of SAR detection in a cell
 Fig. 1 ). 
The space–time connectivity matrix V ST can be obtained as:

V ST = W T ⊗ W S ⊗ W T ⊗ I s 

here ⊗ is the Kronecker’s product, I s is a T x T identity ma-
rix, W S is a spatial weight matrix which considers as “neigh-
ors” all cells which are within a distance range and W T rep-
esents the T x T time series connectivity matrix. All the off-
iagonal elements of this matrix contain the value 1, and all
ther elements contain the value 0. 
G 

∗ was computed for each cell of the grid, using the total
umber of monthly SAR data detection, over the 60 months
n the period considered (January 2017–December 2021). G 

∗

as then used as a “static” variable, similar to depth and dis-
ance from the coast, in the following modeling steps. 

fficial fishing capacity 

ata for all vessels longer than 15 m were downloaded
rom the GFCM Fleet Register ( https:// www.fao.org/ gfcm/
ata/ fleet/ register/ en/ ). Vessels that showed “NO” under the
eld of Operation Status were removed. The total number of
essels longer than 15 m for each GSA, as well as the percent-
ge of vessels registered in each GSA out of the total num-
er of vessels registered in the whole Mediterranean Sea, were
alculated for comparison with the percentage of predicted
ctivity. 

tatistical modeling 

he statistical relationship between the monthly amount of
shing activity from AIS data (in hours fishing) and the
onthly number of SAR detection (in addition to other
redictors) was modeled using generalized additive mod-
ls (GAM). Starting from the set of predictors (i.e. SAR,
 

∗, Depth, and Distance from the coast), the potential ex-
stence of collinearity between the predictors of the GAM
odels was analyzed using the vif.gam function of the
ackage mgcv.helper ( https:// rdrr.io/ github/ samclifford/ mgcv.
elper/ man/ vif.gam.html ). Then, a model selection procedure
as applied to identify the best GAM model. This process

nvolved systematically evaluating different model structures
o identify the one that best captures the underlying patterns
n the data, performing a 10-fold cross validation. In the it-
ration, the dataset was split into a subset of the data for
esting, while the remaining data were used as a training set,
cross the 10-folds, ensuring that each data point was used
or both training and testing, but in different iterations of
he cross-validation process. GAMs was fitted using the gam
unction from the mgcv package with a quasipoisson family

https://www.fao.org/gfcm/data/fleet/register/en/
https://rdrr.io/github/samclifford/mgcv.helper/man/vif.gam.html
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Figure 2. (a) Map of the percentage of SAR detections that were not matched to AIS. (b) The cells used in the GAM model as training and testing 
datasets. 
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and a square root link function (Wood 2011 ), and setting the 
basis dimension to 4 to represent the smooth term (R Core 
Team 2021 ). Each model was used to predict on the test data 
and the mean squared error (MSE) between observed and 

predicted values was calculated. MSE values of each model 
were aggregated and the model with the lowest MSE was 
chosen. 

Considering that the AIS data is restricted to areas where 
vessels broadcast AIS, and that our approach uses AIS data 
as a proxy for fishing activity, the SAR dataset used to fit our 
model was restricted to those cells with at least one AIS po- 
sition. Cells in which the ratio of SAR detections unmatched 

with AIS to SAR detections matched with AIS was < 90% were 
used in the modeling as these cells represented areas where 
vessels broadcast AIS ( Fig. 2 ). 
This threshold was chosen because it appeared as a good
ompromise between keeping cells with good coverage and 

ot losing too many observations. This evaluation was done 
hrough a visual inspection of the location of the cells as well
s by looking at the frequency of percentages intervals across
ll cells. These cells were almost exclusively in the northern
editerranean Sea ( Fig. 2 ). 
The best GAM model was then used to predict the

otential distribution of the fishing activity in the whole 
editerranean basin. To calculate a proxy for the uncer- 

ainty, a 95% confidence interval was obtained for each 

rediction. Confidence intervals were also shown for the 
AM smooth parameters with the representation of the 
AM smoothed effects of the predictors (Marra and Woods 
012 ). 
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Figure 3. (a) AIS fishing activity from Global Fishing Watch AIS data from 2017 to 2021 aggregated by fishing hours in 0.1 decimal degrees cells. (b) SAR 

fishing vessel presence from Global Fishing Watch SAR data from 2017 to 2021 aggregated by number of fishing vessel detections in 0.1 decimal 
degrees cells. The light blue shaded area represents the areas with depths greater than 10 0 0 m (Pante and Simon-Bouhet 2013 ). 
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A detailed temporal reconstruction was considered too am-
itious for this initial analysis so an overall estimate of fishing
ctivity from 2017 to 2021 was produced. 

esults 

he inconsistent use and regulation of AIS results in some ar-
as of the Mediterranean, particularly in the south, not being
ublicly tracked, thus the total amount and distribution of
shing activity in these areas is essentially unknown ( Fig. 3 a).
n the other hand, fishing vessels detected in the SAR show a

imilar level of presence in the Northern and Southern portion
f the Mediterranean Sea ( Fig. 3 b). 
The AIS and SAR matching for the whole Mediter-

anean showed that 90% of the fishing vessels matched to
AR detections were trawlers ( Fig. 4 ). The remaining 10%
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Figure 4. Percentage of fishing vessels by gear type observed in the SAR dataset for vessels using Automated Identification System (AIS). Bar labels 
represent the total number of vessels observed for each gear type. 

Table 2. Performance indicator values obtained for models with different explanatory variables for an objective model selection process 

Model Variables included Mean MSE 

1 Number of SAR detections 46 646 728 
2 G 

∗ Index 62 954 415 
3 Number of SAR detections, G 

∗ Index 45 513 309 
4 Depth (m) 78 213 096 
5 Number of SAR detections, Depth (m) 44 967 461 
6 G 

∗ Index, Depth (m) 57 319 049 
7 Number of SAR detections, G 

∗ Index, Depth (m) 44 284 811 
8 Distance to coastline (m) 90 988 005 
9 Number of SAR detections, Distance to coastline (m) 45 565 774 
10 G 

∗ Index, Distance to coastline (m) 60 387 950 
11 Number of SAR detections, G 

∗ Index, Distance to coastline (m) 44 720 946 
12 Depth (m), Distance to coastline (m) 75 300 146 
13 Number of SAR detections, Depth (m), Distance to coastline (m) 44 320 012 
14 G 

∗ Index, Depth (m), Distance to coastline (m) 56 478 927 
15 Number of SAR detections, G 

∗ Index, Depth (m), Distance to coastline (m) 43 760 426 ∗
∗lowest MSE value and selected model 

Table 3. Main statistics for the GAM model fitted. 

Approximate significance of smooth terms 

Smoothers P -value edf Ref.df F 

Number of SAR detections < 2e-16 ∗∗∗ 2.898 2.991 686.49 
G 

∗ Index < 2e-16 ∗∗∗ 2.805 2.973 19.58 
Depth (m) < 2e-16 ∗∗∗ 2.901 2.993 25.039 
Distance to coastline (m) < 2e-16 ∗∗∗ 2.173 2.563 20.565 
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comprised drifting longlines, purse seiners and vessels for 
which the GFW algorithm was unable to infer a gear type 
(“Fishing—Unknown class” in Fig. 4 ). Consequently, the re- 
sults presented in this study primarily represent trawl fishing 
activity. 

The analysis of the variance inflation factor (VIF) identi- 
fied no collinearity between the predictors. In all the cases, the 
values of the VIF were smaller than 1, which is considered a 
robust threshold (Sheather, 2009). 

Following the model selection process ( Table 2 ), the the 
number of fishing hours from AIS were regressed over the 
number of SAR detections, the G 

∗ Index, the depth and the 
distance to coastline in the GAM model. 

The adjusted R 

2 between predicted and observed values 
was 0.58, and this model captured 75% of the variance in 

the data (variance explained). Additional model statistics are 
provided in Table 3 . 
The highly significant smooth terms for SAR, depth, Gj, and
istance_to_coastline suggest that these variables play a cru- 
ial role in explaining the variability in the response variable.
articularly for the SAR term (SAR fishing vessel detection) 
he F -statistic is large, and the P -value is extremely low, sug-
esting that the smooth term is contributing significantly to 

he model. 
Comparisons between predicted trawl fishing activity on 

he basis of SAR and observed trawling activity based on AIS
 Fig. 5 a) indicated that the model effectively captured the re-
ationships between the predictors and the response variable 
cross the range of values considered. The distribution of the
esiduals ( Fig. 5 b) was unimodal, with mean close to zero
 −6.09) and an almost symmetrical shape with the left and
ight tails enclosed in the interval between −100 and 100. 

The smoothed effects of the predictors (Fig. 6 ) indicated
hat the number of SAR detections has a monotonic relation-
hip with the number of fishing hours estimated from the AIS
ata. This relationship tends to plateau at high SAR values.
he G 

∗ index, on the other hand, exhibited a non-monotonic 
elationship with the response variable. The effect of G 

∗ is
ighest around the 2.5 value of G 

∗ but decreases for low or
igh values. It is worth noting that most of the observations
ere in range 0–2 of G 

∗, a region in which this predictor shows
 close to linear and positive effect on the response variable.
he effect of depth was opposite to that described for G 

∗, with
he smoothed function having a minimum around 1500 m and
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Figure 5. (a) Scatterplot comparing predicted (SAR-based) and observed (AIS-based) values, in hours fishing, of the fishing activity, as fitted by the GAM 

model applied on the dataset of the cells belonging to cells where AIS data was present. (b) The corresponding distribution of the residuals. 
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 maximum near zero. Finally, the effect of distance from the
oast was decreasing, with a maximum at zero. 

The SAR-based prediction of trawling fishing hours re-
ealed the presence of fishing areas along a large stretch of
he North African coast, and especially along the coasts of
gypt, Tunisia, and Morocco ( Fig. 7 ). In addition, in some ar-
as such as the Central Mediterranean (GS A12, GS A13, and
S A14), the S AR-based estimates indicated values of fishing

ctivity much higher than those obtained from AIS. Along
he coast of EU countries, the spatial patterns depicted by
AR and AIS were very consistent. It should also be noted
hat predicted fishing activity in the GSAs along the coast of
unisia and in the Adriatic Sea is more diffuse compared to
hat in Southern Turkey (GSA 24) and Egypt (GSA 26) or
n the Western Mediterranean where fishing activity seems
o concentrate in fewer cells and remains closer to the coast.
his different pattern is partially linked to the presence of

arge continental shelves in the Strait of Sicily and Adri-
tic Sea, which allow trawling at great distances from the
oast. 

In areas where AIS coverage is good, such as the Northern
driatic (GSA 17), Northern Spain and South of Sicily (GSA
6) the SAR-based estimates appear to underestimate AIS fish-
ng hours ( Fig. 8 ). The Aegean Sea is an exception to this as
AR-based estimates appear to be higher than those observed
n the AIS data ( Fig. 8 ). On the other hand, in areas outside
f EU countries AIS appears to underestimate fishing hours,
articularly in GSAs along the North African coast such as
outh Levant Egypt (GSA 26), Algeria (GSA 4) and the Gulf
f Gabes (GSA 14). 
When the distributions of the differences, in terms of the

umber of hours per cell, were examined (with a focus on
SAs along the North African coast—Fig. 9 a), a systematic
nderestimation by AIS emerged, on the order of ∼3000–
000 hours/year/cell (median value among GSAs), with the
ole exception of GSA 21 where the differences are an or-
er of magnitude smaller ( ∼100 to 200 hours/year/cell).
inally, the differences between SAR-based and AIS esti-
ates of trawl fishing activity, when examined with re-

pect to the different bathymetric layers, showed a mono-
onic decreasing trend with respect to depth, with AIS un-
erestimating fishing activity especially in shallower areas
 Fig. 9 b). 

Considering the Eastern Mediterranean, our model predicts
hat the Aegean Sea (GSA 22) accounts for 11% of the total
redicted fishing activity in the Mediterranean basin, while
outh Levant (GSA 26), the region north of Egypt, represents
% of the total predicted fishing activity in the region, and
orth Levant (GSA 24) to the southeast of Turkey represented
% of the total fishing activity( Fig. 10 a). 
In the Central Mediterranean the GSAs bordering Tunisia,

he Gulf of Gabes GSA 14 and the Gulf of Hammamet
SA 13, and Northern Tunisia GSA 12 make up 19% of

he total fishing activity ( Fig. 10 a). In GSA 16 and GSA 15,
shing activity is 4% and 2% of the total fishing activity
espectively. 
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Figure 6. Representation of the GAM smoothed effects of the predictor. 

Figure 7. Maps of the predicted trawl fishing activity as hours fishing for the whole Mediterranean Sea resulting from the GAM model. The light blue 
polygon represents the areas with depths > 10 0 0 m. 
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Figure 8. Bar plot of the predicted (SAR-based) and observed (AIS-based) fishing activity, as hours fishing (left y -axis). The number of hours of fishing 
represented in Log 10 scale. 
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In the Adriatic Sea, the Northern Adriatic GSA 17 con-
ained 14% of predicted activity and the Southern Adriatic
SA 18 had 5% ( Fig. 10 a). 
Compared to these areas, the Western Mediterranean

howed lower values of predicted activity. In this region the
redicted fishing activity is concentrated in the coastal areas
f Italy in GSA 9 and 10 (North and South Tyrrhenian Sea)
nd the coastal areas of Spain GSA 6 (Northern Spain) each
f which make up around 3%–6% of the total fishing activity
 Fig. 10 a). 

Overall, the GSAs mentioned above represent > 70% of the
otal predicted fishing activity of the whole Mediterranean
asin according to our model. 
While the model was remarkably consistent with the num-

er of GFCM authorized vessels, there were a few differences
etween the fishing capacity reported in the GFCM registry
nd what we observe in our model prediction ( Fig. 10 a). Some
ifferences to note are in the GSA 22 Aegean Sea, GSA 17
orthern Adriatic and the GSA 14 Gulf of Gabes where per-

entages of vessels recorded are much lower than of the activ-
ty predicted. On the other hand, the GSAs 26 of South Lev-
nt Sea (Egypt), 4 Algeria, and 21 Southern Ionian Sea (Libya)
how a much higher percentage of vessels authorized than of
redicted activity. 
The regions available for trawl activity (depths < 1000 m),

re not equal across different GSAs. Fishing hours per square
ilometer in each GSA were calculated by dividing the pre-
icted fishing hours by the total shelf and shelf break area
cells with depth less than 1000 meters) ( Fig. 10 b). This ex-
resses trawl intensity in each GSAs relative to potentially
rawlable areas ( Fig. 10 b). The areas subject to the highest
shing intensity in the Central Mediterranean were located
long the coast of Tunisia, the Gulf of Hammamet (GSA 13),
he Gulf of Gabes (GSA 14), Northern Tunisia (GSA 12).
ach of these regions showed fishing hours per square kilome-

er comparable to the Northern Adriatic (GSA17) ( Fig. 10 b).
or the Eastern Mediterranean the South of Turkey (GSA
4) showed a particularly high intensity while in the West-
rn Mediterranean Algeria (GSA 4) and Northern Spain (GSA
) exhibited the highest fishing hours per square kilometer
n the region, though lower than the GSAs mentioned above
 Fig. 10 b). 

The uncertainties in our predictions varied between ±5% to
20% of the predicted fishing activity in the different GSAs.
reas with remarkably higher uncertainties were the GSA 26
outh Levant Sea (Egypt) with ±16% uncertainty on its pre-
icted fishing activity, GSA 21 Southern Ionian Sea (Libya)
ith ±14% and GSA 24 North Levant (South of Turkey) with
12%. Areas with the highest level of predicted fishing activ-

ty such as Northern Adriatic, Aegean Sea, the Gulf of Gabes
nd the Gulf of Hammamet showed were all between ±5%
nd ±6% uncertainty for their predicted activity. 

iscussion and conclusions 

his study reports the existence of a statistical relationship be-
ween the information provided by the SAR and the activity
f fishing fleets obtained from AIS. By appropriately process-
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Figure 9. B o x plots sho wing the differences betw een predicted and observ ed fishing activity (in fishing hours—log-scale) (a) f or the GSAs along the 
North African coast with poor AIS co v erage and (b) by depth in meters. 
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Figure 10. (a) Comparison between percentage of total recorded vessels > 15 m in length recorded in GFCM Fleet Register ( n = 8369) ( x -axis) and the 
percentage of total predicted fishing activity recorded in the General A dditiv e Model (GAM) by GSAs ( y -axis). (b) Ranking of GSAs by predicted fishing 
hours/square kilometer and respective confidence intervals of the predictions for areas < 10 0 0 m. 
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ng the SAR data and considering the overall topography of
he system (through depth and distance from the coast but
lso the spatio-temporal autocorrelation inherent in each spa-
ial unit), our approach provides the first estimation of inten-
ity and distribution of trawl fishing activity across the whole

editerranean Sea. The uncertainty in our predictions were
lways < 20% of the predicted values and do not appear to
ave a remarkable effect on our rankings of different areas by

ntensity of fishing activity. However, while we assessed uncer-
ainties in the predictions of our model, it must be acknowl-
dged that there is also uncertainty present in the classification
f the AIS and the SAR data which are difficult to quantify in
his study as they come from different models. Our estimates,
owever, represent the most comprehensive quantification of
shing intensity and distribution of fishing activity at the basin
cale for the Mediterranean Sea. More work will be needed to
alidate our results and to include additional sources of un-
ertainty. 
Given that Sentinel-1 generally detects vessels that are
onger than 15 m (Paolo et al. 2024 ), and that 90% of the
AR detections matched to AIS were identified as trawlers [the
esults presented in this study reflect the activities of bottom
tter trawling (OTB) predominantly]. This is explained by the
act that in the Mediterranean these trawlers spend more time
t sea than other vessels classes, accounting for > 70% of AIS
ecorded fishing activity (Merino et al. 2019 ) and thus more
ikely to be active at the time of a SAR satellite overpass. 

In this study, we provide spatial estimates of fishing activity
ndicating areas where trawl vessels fishing activity is likely
o occur for the whole Mediterranean Sea. The GFCM offi-
ial vessel numbers by GSA were correlated with our model
AR-based estimates of fishing activity. While there are some
ifferences between our fishing activity estimates and official
FCM registry vessel counts, the overall ranking of GSAs us-

ng these metrics is remarkably consistent. There are a number
f potential explanations for any discrepancies. These differ-
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ences suggest that fishing activity may vary because of differ- 
ences in country-specific regulations (e.g. restrictions on fish- 
ing days), where countries with stricter regulations may show 

less activity for the same number of registered vessels. There 
could also be differences in activity related to fishing vessel 
size, which could explain why some GSAs show higher pre- 
dicted activity than recorded capacity. Larger vessels may en- 
gage in multi-day fishing trips and therefore in areas with 

fewer, larger registered vessels, like the Northern Adriatic,
may have exhibited greater activity than a region with more 
smaller registered vessels. Discrepancies might also arise if 
vessels recorded in one GSAs fish in other GSAs, or if the 
GFCM fleet register is outdated or includes inactive vessels.
It is also possible that there is overcapacity in the fishing fleet 
in some areas, which could explain the lower activity in GSA 

24 (North of Egypt) relative to the large number of vessels 
on the GFCM fleet register. Future work will include better 
characterizing and disentangling these sources of uncertainty.

Our results show a large discrepancy with what is inferred 

from publicly available AIS data, particularly in shelf areas 
adjacent to non—EU countries (e.g. Tunisia, Egypt, Algeria) 
where AIS is not mandatory. If we consider only GSA 13 

(Gulf of Hammamet), 14 (Gulf of Gabes), 6 (Algeria), and 26 

(Egypt), where almost no AIS data is available, around 30% of 
predicted fishing activity in the Mediterranean is not captured 

by AIS. This discrepancy could be due to vessels that do not 
have an AIS device on board or vessels that have an AIS device 
but turn it off. Our study finds that the fishing grounds along 
Egypt (GSA 26) and Tunisia (GSA 14, 13, and 12) have shown 

a level of fishing activity similar to the whole Adriatic Sea in 

terms of overall activity but also for pressure by square kilo- 
meter, particularly for the GSAs along Tunisia. Pitcher et al.
(2022) have highlighted the Adriatic Sea as the most trawled 

area at a global scale. Thus, according to our results, the GSAs 
along the coast of Tunisia might also be some of the most 
trawled areas at a global scale. 

Historically, the areas off the Tunisian coast have been ex- 
ploited by demersal fisheries, including deep water rose shrimp 

( Parapenaeus longirostris , Lucas 1847), European hake ( Mer- 
luccius merluccius , Linnaeus 1758), and red mullets ( Mullus 
surmuletus , Linnaeus 1758 and M. barbatus , Linnaeus 1758),
where the wider continental shelf creates suitable conditions 
to conduct trawling operations (Jarboui et al. 2022 ). To date,
studies on the distribution and status of these biological re- 
sources have only included fishing activity data from EU coun- 
tries, where vessel tracking data, such as AIS or VMS, is avail- 
able. Consequently, the true level of fishing activity and pres- 
sure on the biological resource may be underestimated and bi- 
ased because vessels from non-EU countries operate in these 
waters, sharing the same fishery resources. Our results also 

showed a discrepancy between observed (AIS) and predicted 

(SAR) fishing activity in shallower areas. This could be be- 
cause smaller trawl vessels operate in shallower areas and are 
not equipped with an AIS device or that the SAR overpredicts 
fishing activity in areas closer to the coast (potentially because 
of higher vessel presence). The model has also predicted pos- 
sible trawl fishing activity at depths greater than 1000 meters.
These records could be the results of transit noise in the SAR 

data, or spatial approximation, as our cells are 22 square kilo- 
meters and aggregated depths could be inaccurate in regions 
with steep depth gradients. 

Some GSAs in the North African coast showed a smaller 
discrepancy between AIS and SAR estimates of fishing. No- 
ably GSA 21 Southern Ionian Sea (Libya) showed the smallest
iscrepancy. This could be the result of some fishing fleets, no-
ably the Italian fishing fleet that historically is active in these
aters (Russo et al. 2019 , Pulcinella et al. 2023 ). 
Our results reveal that fishing activities, not previously 

dentified using AIS or VMS, are underestimated in some fish-
ng grounds, particularly in South Levant (GSA 26) on the
oasts of Egypt but also in the Gulf of Gabes and Hammamet
GS A 14 and GS A 13). Notably, these areas are also exploited
y EU vessels (Russo et al. 2019 , Pulcinella et al. 2023 ). How-
ver, the discrepancies between SAR and AIS indicate that ves-
els that are not broadcasting AIS make an important con-
ribution to the overall fishing activity in these GSAs. Fu-
ure research should concentrate on collaborations with lo- 
al experts to consolidate our results and incorporate these 
ew datasets and approaches with existing datasets available 
o improve the reconstruction of fishing activity to support 
sheries management. Studies on southern coasts of Mediter- 
anean have highlighted the need for improved regulation of 
he fishing fleet (Halouani et al. 2016 , Khalfallah et al. 2023 ),
nd SAR information on the spatial extent and the level of
shing activities could support better management in areas 
here vessel tracking data is lacking, insufficient or difficult 

o access. 
The GFCM data collection reference framework, which is 

onducted to inform stock assessments and management of 
shery resources, aggregates official landings by GSAs, given 

y the countries, supplemented with official register estimates 
n fishing capacity (GFCM 2018 ). Russo et al. ( 2018 ) high-
ighted the shortcomings of this approach that might under- 
stimate the effects of fishing activities on the resources and
roposed alternative methodologies towards a spatial explicit 
orm of management. At the same time, the lack of effective
ontrol of fishing effort and fishing mortality by size has been
ighlighted by several experts as the main cause of overfish-
ng in the Mediterranean Sea (Colloca et al. 2017 , Vielmini
t al. 2017 , Fiorentino and Vitale 2021 ). Spatial estimates of
shing activity, essential for improving exploitation patterns 
nd reducing discard in trawl fisheries, do not exist for a large
ortion of the Mediterranean, and where they do exist, they
ay not give a complete picture of the fleets operating in the

rea. Our modeling results make a first step toward identify-
ng location and intensity of fishing activities carried by trawl
essels in the Mediterranean seas. This information is essen- 
ial for the application of fishery management approaches that 
xplicitly consider the spatial and temporal distribution of re- 
ources and fishing activity to reduce the catch of undersized
sh (Russo et al. 2014 , 2019b), unwanted catch (Garcia-de-
inuesa et al. 2018 , Milisenda et al. 2021 ), and impact on
ulnerable Marine Ecosystems (VMEs) (De Juan and Lleonart 
010 , Ortega et al. 2023 ). 
Where information on fishing activity given by VMS and 

IS is limited, new technologies, such as the remote sensing
ata used in this study, can address data gaps, and support
sheries management. This seems important in a context such 

s the Mediterranean Sea, where fleets with large differences in
eet coverage with AIS and VMS systems operate. Since most
f the stock assessments in the Mediterranean are currently 
ased on the age structure of commercial catch and abundance

ndices from scientific surveys, better knowledge of fishing ac- 
ivity in space and time can help link fishing mortality by fleets
o their fishing effort, thereby improving the effectiveness of 
sheries management. Having spatially referenced estimates 
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f fishing activity for regions where little data is available,
an be a turning point for spatial based measures of fisheries
anagement. Greater collaboration between different actors

s needed in order to validate and use these new technologies
ffectively, thus permiting their fully and properly incorpora-
ion into the fisheries management of the Mediterranean Sea. 
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