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1. INTRODUCTION

This work is concerned with the behaviour of systems composed by several
asynchronous modules. In particular, systems whose modules communicate by means
of send and necelve primitives are considered and deadlock condi ns‘%that
may arise by using these message passing primitives, are analyzed%i;gr thls
purpose we introduce a formal model based on computation schemata [1].

First of allwe introduce sequential schemata and then we define cyclic sequential
schemata in order to model cyclic sequential processes. Systems composed by a
set of concurrent processes are modelled by means of parallel compination©f
cyclic sequential schemata.

On the ground of both processes structure and connections structure, systems
are classified in three types: 1) time and data independent systems; 2) data
dependent and time independent systems; 3) time and data dependent systems.

For the first two types of systems a set of properties are proved. In
particular, for the first type of systems we prove that: If a deadlock condition
arises in a particular computation, then the same deadlock condition will arise
in every computation. For the second type of systems a similar argument can be
proved, that is: If, given a set of input data, a deadlock condition arises in
a particular computation, then, with the same input data, the same deadlock

condition will arise in every computation.




2. COMPUTATION SCHEMATA: SOME DEFINITIONS

"A computation schema, or schema, represents the manner in which functional
elements and decision elements are interconnected, and their actions sequenced,

to define an algorithm" [1]. More precisely:

Definition 2.1: A écheMa is a triple S=(A,V,C), where: »
A is a set of actors, V is a set of variables, and C is a set of control sequences
(contrel set [2]).

The functional elements of a schema are called operators and the decision
elements are called deciders. The set of operators and the set of deciders are
denoted by O and D, respectively. These sets are disjoint. Both, operators and
deciders, are called actors. Then, actors are agents capable of either transforming
or testing values.

Each operator 0 evaluates some unspecified function é} of m input variables

‘and assigns values to n output variables:

£, : {m-tuples} > {n-tuples}
Operators having no input variables are allowed and are used to model constants.

A decider d tests some unspecified predicate py on m input variables
Py {m-tuples} - {true, false}

Deciders must at least have one input value.

A domain,ga, which is a finite subset of V, is associated to each,actor a.
Similarly, a &ange)Yg, which is also a finite subset of V, is associated to each
operator o .

A set I of variables (I& V) is called 4chema {input if its intersection with

the range of any operator is empty. Similarly, a set U of variables (USV) is

called schema output if its intersectiqn with the domain of amy actor is empty.
While variables of schemata may be denoted, generally, by siggle memory cells,

each input or output variable of a schema may be denoted by a queue

cells. Each concecutive read operation uses up a single cell of the input queue.
Similarly, for each writing a new cell is added to the output queue.

The interconnections between actors and variables may be represented by a




dota §Low graph . Figure 2.1 shows a data flow graph of a schema, where circles

represent actors and boxes represent variables [1].
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Actors, operators and deciders, will be considered . he units of computational
activity, as characterized by their external behaviour. Associated with an
operator o there are an Anitiation event o and a termination event 0. Associated
with each decider d, there are an initiation event d and either the true or the
false termination event, denoted by dT and dF respectively.

A control sequence of the schema is a string o=abc...q... of actor initiation
and termination events. The conthol et C represents all the allowed sequences
of events.

Note that if g¢=a belongs to a control sequence 0, then an occurrence of a
must be present in the prefix of 0 that preceeds ¢.

The sequences in which operators and deciders are permitted to act, may be
specified by a precedence graph [1]. Figure 2.2 shows a possible precedence
graph of the schema whose data flow graph is represented in Figure 2.1.

Let us introduce some definitions needed to develop our model.

Definition 2.2: Given a control sequence 0=ab...pg..., if m=ab...p is a prefix

of 0, after the occurrences of the events in m, the only 4easible event in o is
q.

If t(x) denotes the time of the occurrence of an event x, then the event ¢

is feasible in the time interval from t(p) to t(q).

Definition 2.3: A schema S is data independent if the set of deciders is empty,
otherwise S is data dependent.

A more detalied treatment about schemata is contained in [1,2]. In this paper
we will be concerned with the control aspects of computation schemata. In particular,
we want to emphasize that our results are concerned with conthol and sequencing
of a set of cooperating processes, and not with their specific functions. For
this purpose we refer to schemata as models of uninterpreted program modules.
In this context any control sequence of a schema represents a particular process
the program module may give rise to during execution while input/output.variables
of the schema represent the external world with which the process exchanges data.
To convert a schema into a specification of a particular program module it
is necessary to specify both the domains of the schema variables and a function

or predicate for each operator or decider.
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Definition 2.4: An Anferpretation of a schema S is

i)

ii)

iii)

for each variable veV, a value set F (V) ;
i : oo > F(V

for each operator o€ 0, a function fo F(Vxl)XF(VXQ)X xF(me) ( y1>x

v e = ee ={V oo :
xF ( yZ)X xF(Vyn?, where XO {Vxl’ ,me} and YO { y1° ’Vyn}’
for each decider deD e predicate P F(V__)xF(V. )%, .xF(V )'*{true,false}9

d x1 %2 ®m

where Xd={Vxl,...,me}.

Definition 2.5: Given an interpretation of a schema S, an nitial assignment

for S is a function z defined on V, such that z(v) e F(v) for each veV. To each

v the value z(v) is assigned before the computation begins.

Our attention will be focused now on sequential processes. Parallel processes

will be analized later as a combination of several processes which are themselves

strictly sequential.



3. SEQUENTIAL SCHEMATA

A sequential schema is a schema characterized by an unique locus of control

or, more precisely:

Definition 3.1: A sequential schema is a schema S=(A,V,C) where control sequences

of C satisfy the following properties:

i) for each 0eC, after the occurrence of a, the feasible event is 3(°) and
viceversa an event a is feasible only after the occurrence of a;

1i) the feasible event after an occurrence of an event a is the same for all
occurrences of a in all control sequences;

iii) all the control sequences of C begin with the same event.

The first part of this definition states that concurrent executions of two
Or more actors are not allowed; while the second one and the third one exclude
"fork" and "join" actors for non trivial schemata.

Note that if a sequential schema is data independent then there is only one
possible control sequence o in C.

While Figure 3.1(a) shows the control graph of a data dependent sequential
schema, Figure 3.1(b) shows the control graph of a data independent sequential

schema.

Definition 3.2: A finife sequential schema is a sequential schema in which the

set of actors is finite.

While the control sequences of this type of schemata allow to model the
behaviour of sequential processes, a new type of schema must be introduced to

handle cyclic sequential processes.

Definition 3.3: Given a finite sequential schema S=(4,V,C), let us define a

cyelic sequential schema sS=(A%,v%,c%), where AS=A, V®=V and 0c%ccC iff cc=0102

+0+0, ... with 0, €C for any integer i>0. S is called the generating schema

(o)

Note that if the actor is a decider d, then a may be dT in some sequences
and dF in others.
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The control graph of a cyclic schema S is shown in Figure 3.2. This schema

was generated by the schema whose control graph is represented in Figure 3.1(a).
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If a cyclic sequential schema S€ is data independent then there is only one

possible control sequence ¢° in c®:0%000...0... where o is the unique control

sequence of S.

...11_..




4. PARALLEL COMPOSITION OF CYCLIC SEQUENTIAL SCHEMATA

In a parallel schema a mechanism capable of describing concurrent, asynchronous
activity is needed: This mechanism consists of allowing several initiations
before a termination occurs, and of keeping track of such initiations.

Our attention will be focused now on schemata whose control sequences model
sets of concurrent processes. They can be conceived as a combination of several
processes which are themselves strictly sequential.

In this section we introduce the directed paralfel composition of cyclic
sequential schemata to model the behaviour, and to point out special properties,
of systems composed of several independent modules. Modules are connected by a :
message buffer mechanism. A single module becomes, during execution, a cyclic
sequential process.

In order to point out some properties related to concurrency, let us introduce:
1) A special type of variable, called mailbox;
i1) Two new types of actors, send and recelve.

Definition 4.1: A mailbox is a pair (C,N) where C, called counfer, is a memory

cell that can assume only integer value between zero and n, and where N is a

queue of n memory cells.

The integer n represents the capacity of the mailbox. Note that this capacity
may be infinite. The integer w, the actual value of the counter, is referred

to as the 4fafe Jf the mailbox.

Definition 4.2: Send and neceive are actors such that:

i) the domain of any actors 4end (receive) is a set XS={x,m} (Xr={m}) where
the variables x and m are a memory cell and a mailbox respectively. The range
of any actor send [necelfve) is a set YS={m} (Yr={x,m}) where the mailbox
m is the same in both the domain and the range;

11) associated with each actor 4end (freceive) there are an initiation event s
(%) and a termination event s (;

11i) given a schema S$=(A,V,C), for each control sequence 0=ab...pgq... € C where
g=s (g=r) is the termination event of an actor send (necedve), ¢ is feasible
in 0 only after the occurrence of all theevents ab...p and if the state of

the mailbox m is such that w<n (w>o). When E.(E) occurs, the state of m is

....12...



modified as follows:

wi=w+l (wi=w=1).

The behaviour of an actor send is shown in the block diagram of Figure 4.1,

s the value of the

counter Less than

NOT the capacity o the
mailbox mi

YES

tm\/atue of % is
&sen ed toa cell
hel Omgung o the
array N'o the mail -
box .

the value o{ e 15
increase

Figure 4.1
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A similar diagram can be made for the actor 4eceive. Note that send and feceive

are the only actors that are allowed to modify the state of a mailbox.

Definition 4.3: The Afafe of a schema is the set of states of all the mailboxes

of the schema.

Given an initial state and a control sequence we obtain a sequence of states
of the schema. From now on the initial state is assumed to be such that for
each mailbox w=0,

To define the parallel composition of n schemata 81,82,...,8n we introduce

sets of mailboxes M.
1s]

and to the domain of actors hecelve of Sj' Mailbox mi . EM, ; is at the same
$

3
time an oufput mailbox of $;, and an input mailbox of Sj; m is said to link

belonging to the range of actors 4end of the schema Si

directly Si to Sj'
Mi . and M, ; are disjoint sets, possibly empty. If Mi =M, i=®, then Si and

s ] Js ) s
Sj are not directly connected.

Definition 4.4: & Dinected Parnallol Compasition (DPC) of n cyclic sequential

schemata 51,82,. QySn is a schema Sp=(Ap,Vp9Cp) where:
n
i) AP= U A, and for any pair (S.,S.) of component schemata A, N A,=0;
j=1 1 i*73 i 73
n
1i) VQZ,UV V., and for any pair (S.,S.) of component schemata V.N V.=M. .U M. .3
i=1 3 1] 1 J 1] Jst
ili) Any P e cP can be generated as follows: given an n-tuple Gpee0, where
UiEzCi (i=1,...,n), for each prefix m=abc...p of Gp, n'=mq is a prefix of

oP if ¢ is the feasible event of a 9, after the occurrence of the events
of g, in T. Moreover, we asswﬁe that all the events that become feasible
infinitely many times in some O, must occur in oP. As a final step in the
construction of Cp, we erase all the above defined sequences of type

<@...b... where a and b are 4end or recedlve actors operating on the

same mailbox, and no occurrence of a exists between a and b.

..14._



The last constraint is introduced in order to assure the indivisibilicy

of send and recelve [3].

P

Any control sequence 0° of SP can be obtained by "merging" control

sequences, one for every component schema. However, it is necessary to
observe the constraints among events imposed by point iii) of Definition &4.4.
Let M, , = {x}

For example, let sP be the DPC of the schemata S, and S 1
¥
n_ = 1,

1 2’
and M2,1 = {y} be mailboxes that connect S1 and 825 such that n = .
Given the control sequences

where ros ry, S0 sy denote the actors secedive and send related to the

mailboxes x and y respectively, then

o'P= 32 4 ad b b S s T T T T ...

is not a control sequence for sP since the event gxis not feasible after

the occurrence of the events in the prefix m'= a d adbb Sy, 8y Ty Iy Tyo

Similarly,

o"P = 3 4 ad bbs r r s ...

is not a control sequence for sP since the indivisibility constraint of
send is violated.

From now on, given a oP of a DPC Sp, for each component schema Sig we
will denote by Oi the control sequence of Si that concurs to generate oP.

A pPC SP can be represented by a comnection graph G.

Definition 4.5: Given a DPC SP of n cyclic sequential schemata Sl SZ“°°Sm”
the connection graph is a bipartite graph whose nodes are component schemata

and mailboxes. The arcs of the connection graph represent links among

schemata through mailboxes.

_15..



Figure 4.2 shows the connection graph of a DPC of the schemata 81,82,83,84,55.

Figure 4.2

_16...



We introduce now some definitioms on connection graphs.

Definitions 4.6: A path in the connection graph G of a DPC SP is a sequence of

schemata Sl,-..,Sk linked through k=1 mailboxes:

Mp,2°M2 320 oM g

In Figure 4.2, S S. is a path.

1°5328,:5;5

Definition 4.7: A demipath in G is a sequence of schemata S.,...,S linked

k

1
through k-1 mailboxes:

. e, n
Mg My oWy 4 O W, L

In Figure 4.2, 82,81,83 is a semipath.

Definition 4.8: A semicycle is a semipath S

1""Ssk’ such that Skvcoincides with S

and the two mailboxes linking any triple of consecutive schemata are different.

1

While 82,81,83,84,82 is a2 semicycle, 81,83,51 is not a semicycle (Figure 4.2).

Definition 4.9: A mailbox is called one-fo-ome if it links only two schemata.

-Lo- ilb Figure 4.23.
For example, mlsz,m1’3m132,m4,5 are one—to-one mailboxes (Figure ),

Definition 4.10: Given a DPC SP of n cyclic sequential schemata S

10 ”’Sn’ for

each component schema Si and for each mailbox m belonging to this schema let

us denote by A (sigm) the function that gives the sef /\i 0 04 schemata connected
p
o s, through m.

If m is one-to-one mailbox, Ai n is composed by only one schema. For example,

in Figure 4.2, A(Sa,m3’4)=k(84,m2,4)={82,83},A(Sl,m1’3)=S3,

Definition 4.11: A DPC SP is well formed if:

i) any mailbox links at least two schemata;

ii)the connection graph G is connected.

The DPC whose conuection graph is shown in Figure 4.2 is well formed.
Note that in a well formed DPC Sp, for each component schema Si the set

Ai m=X(Si,m) is not empty, where m is a mailbox belonging to Sim
3




From now on, any DPC will be tacitly considered well formed.
In order to point out some properties related to the control and sequencing

of a set of cooperating processes, let us give the following definitions:

Definition 4.12: Given a control sequence 0P of a DPC SP, a deadlock occurs

in oP if at least one component schema §

and Op

and an event p kelonging to both o
P

k

exists such that no event that follows p in o° belongs to 0, . Here Ok

k
is said a deadlfocked control sequence. The first event ¢ that follows p in o

is called the blocking event of 0, related to o®.

Note that, for each deadlocked Ok’ the blocking event does not belong to oP:

It is an unfeasible termination of an actor 4send or 4ecelve related to a maibbox

mﬁ whose state 18 =g OF w=0 respectively. In such case, we will denote

briefly by Akg the set Ak X of schemata connected to Sk through nr, This mailbox
9

will be called the criilical mallbox of S .

k

Definition 4.13: Given a control sequence oP of a DPC Sp, for any blocking event

G, belonging to a deadlocked control sequence Gi’ if there is an event ¢’ belongir

P

to a control sequence Qf such that the occurrence of ¢' in oF makes feasible

¢, then ¢' is called an awaking event of q.

Obviously, if o 15 deadlocked in Op, then also Oj is deadlocked.

Definition 4.,14: A deadlock in a control sequence oP of a DPC SP is called a

paritiad deadfock if oP is infinite. Otherwise it is called a tofal deadfeck.

In the following sections, distinctions among different kinds of DPC's will be
pointed out in order to find relevant properties of systems under deadlock

conditions.

_.18...



5. DATA AND TIME INDEPENDENT SYSTEMS

Definition 5.1: A DPC SP of n cyclic sequential schemata § S is of Lype 1

10005y
if all the component schemata are data independent and all the mailboxes are

one—to-one.

Since they are data independent, any DPC sP of type 1 is such that all its

component schemata have only one control sequence. Furthermore, we can prove

that:

Lemma 5.1: Given a DPC SP of type 1, if a deadlock occurs in some Opytherxfor‘any
blocking event ¢, belonging to a deadlocked control sequence O, there exists
one component schema Sj= Aiwhose control sequence Oj contains the awaking

event of ¢,

Proof: Let us suppose that the critical mailbox m of Si is an output mailbox.
Then, the blocking event ¢ is an event E‘and the state of m is y=n . Since the
DPC SP is well formed, then there exists at least one component schema S% €A
As sP is of type 1, then Ai=Sj, By definition 4.10, the mailbox m links gi to
Sj’ then Sj containg at least one actor 7eceive related to m. Since there is
only one control sequence Uj of Sj9 it must contain an infinite number of events

I related to m. Let p denote the last event of g, in oP. Let us consider the

P

prefix of 0" whose last event is p: there exists, in the prefix, a finite number,

possibly zero, of events belonging to Oj. Let p' denote the last of these events.
The occurrence of the first event q'=r, successor of p' in Oj’ should modify
the state of the mailbox m fromw=n to w=n-1 and then it should make feasible

¢. Therefore ¢' is the awaking event of G. A similar argument can be developed

if the blocking event ¢ is an event r.
Q.E.D.

From Lemma 5.1 the following theorem arises:

Theorem 5.1: Given a of of a ppC §P of type 1, if the control sequence 0. of

the schema Si is deadlocked, then the control sequence Oj of the schema Sj#\i
is deadlocked.

In other words, a wilque control sequence can not exist in oFf.

.._19._



By Theorem 5.1, if Qi is deadlocked in‘op, then also Oj is deadlocked, where
L= L )=A 1 5 = = "T.
S} k(81> Al ., and then also 0, 1s deadlocked, where Sk X(Sj) X(K(Sl)) his
will be denoted, briefly, by:

2
sk = [\ (si)

Then, we can state the following Lemma:

Lemma 5.2: Given a control sequence of of a ppC SP of type 1, 1f a deadlock occurs

in Op, then, for each Si whose control sequence o is deadlocked, there is an

infinite semipath, composed by schemata whose control sequences are deadlocked:

O_
where A.=§. .
i T

Definition 5.2: Under the hypothesis of Lemma 5.2, the semipath Az, Ai’ A?s"
oy Afg.., is called the criitical semipath related to Si.

Now we give a necessary condition for the occurrence of a deadlock, both a partial
and a total deadlock, in a control sequence oP of a DPC of type 1. This condivion

is related to the connection topology of the component schemata.

Theorem 5.2: Given a control sequence of of a DPC SP of type 1, the existence
of a semicycle in the connection graph G of SP is a necessary condition for a
deadlock in o¥.

Proof: If a deadlock occurs in Op, then at least one component schema Si exists
such that the control sequence o, is deadlocked. Let us consider the critical

semipath related to Si:

Since the critical semipath is infinite and the number of component schemata

in the DPC is finite, an integer k>0 exists such that:
A = A, (h22)

Let us prove that:

_20...
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is a semicycle. Let us consider the pair of consecutive schemata in the critieal

semipath:

(wheret=lj~1]h, u=[j]h, j2 1 and let m and my be their critical mailboxes,
respectively. By definition 4.8 it is sufficient to prove that m #mb On the
contrary, if m —mb—m the same mailbox would be critical for both S and Sb
Since m is one-to- one, it should be an input mailbox for S (S ) and an output
mailbox for Sb (S ) respectively. Then, the state of m should be w=¢p and

w=n at the same time. This is a nonsense and then ma#mb°
Q.E.D.

From the proof of above theorem, the following corollary arises:

Cerollary 5.1: Given a DPC SP of type 1, each critical semipath contains at least

a semicycle.

If a schema has the control sequence deadlocked,in addition to the schemata -
of its critical semipath, other schemata have their cotitrol sequences deadlocked.

More precisely:

Lemma 5.4: Given a control sequence of of a DPC SP of type 1, if a deadlock

occurs in Op,

then, for any deadlocked controlsequenceﬁi, every schema Sj such
that a path exists in the connection graph G from Si to Sj has its control
sequence deadlocked.

Proof: Let

be a path from Si to Sj' Then, an output mailbox m of Si exists such that Ai§m=
=Spl. That is, Opl must contain an infinite number of events r related to m.

Let g be the last event of o, in o® and let w=x be the state of m after t(q).

Let p denote the last event of Gpl in of such that t(p)<t(qg). After the occurrences
of at most x+1 events r that follow p in OPI’ the state of m becomes w=o and

then Opl becomes deadlocked.

_21_



Since we can apply iteratively this argument to the other schemata of the

path yp to Sj’ the theorem is proved.
Q.E.D.

In particular, if all the mailboxes of SP have a finite capacity, then the

following theorem can be proved:

-

Theorem 5.3: Given a control sequence of of a pPc SP of type 1, where all the
mailboxes of SP have a finite capacity, if a deadlock occurs in Gp, then it is

a total deadlock.
Proof: Let Si be a schema whose control sequence Gi is deadlocked. First of all,

let us prove that any schema Sj such that there exists a path

S538 45+ +28q105;

has its control sequence deadlocked. An input mailbox m of Si exists such that

s m=sd1' Then, Gdl must contain an infinite number of events s related to m.
*
Let ¢ be the last event of Gi in of and w=yx be the state of m after t(g). Let

P denote the last event of © in of

di
of at most n-x+1 (by hypothesis a finite number) events s that follow p in ©

such .hat t(p)<t(g). After the occurrence

dl
the state of m becomes w=pn , then o becomes deadlocked.

P

Since we can apply iteratively thii argument to the other schemata of the
path up to Sj’ the above proposition is proved.

From this result and from Lemma 5.2 it follows that if Si has the control
sequence deadlocked then each Sh such that a semipath exists between Si and Sh’
has the control sequence oy deadlocked.

By hypothesis, at least a deadlocked control sequence O exists in SP: Since
the connection graph G is connected (that is, a semipath exists between Si and
each other component schema), if ¢ is the last event of Gi in Op, there exists

at most a finite number of events that follow ¢ in oP.
Q.E.D.

Let us state now, two important properties of any DPC sP of type 1:

Theorem 5.4: Given a DPC sP of type 1, if a partial deadlock exists in a particula

control sequence prs then, denoting by I={o } the set of

4179427+ 90450204
the deadlocked control sequences in oP* and by v? (i=1,2,...,k) the number of

events of Og; in 0P, for each o of SP:

- 22 -



* .
v, = vi (i=1,2,...,k)

where Vi is the number of events of Odi in oP,

Proof: Let us suppose that a o exists such that at least one O ; €L has a number

of events, in Op, vi>v§, and let us prove that this implies an zbsurdity‘
Denoting by ¢ the blocking event 941 related to Opx, ¢ must occur in 0. Let
us consider the first two schemata of the critical semipath starting from
Sdi:Sdi and de (where de=C§i). From Lemma 5.1, Odj contains the awaking event
q' of ¢. By definition 4.13, the occurrence of q¢' must preceed the occurrence
of ¢ in oF (i.e. t(¢')<t(q)). Then, denoting by p the blocking event of Gdj
related to Opx’ since in of t(p)<t(qg'), it follows:

t(p) < t{g) (5.1)

Similarly, if we consider Sdh=Adj=Aii’ then, denoting by £ the blocking event

P.
of Odh related to of:

() <t(p) < t(q) (5.2)

We can apply the same argument, iterlatively, to the subsequent schemata of the

critical semipath related to S Since this semipath contains a semicycle

di”’
(Corollary 5.1), then it will contain at least twice a certain schema Sdu:

S. ,...,S

Sai545°53n> du’ " Saque

Therefore, the argument that led to (5.1) and (5.2) gives the following

relationship in oP:

st (Z) < <e(2) <L < (D)< (p) <t (q) (5.3)

where & is the blocking event of 94y related to of. Since no event can preceed
itself, (5.3) contains an absurdity, and then the hypothesis that o .. has more

p Pk a

events in ¢° than in o is false. The same conclusion could be obtained by

. % . . . *® .
assuming that vi<vi, exchanging in the above demostration of with of,
Q.E.D.

Theorem 5.4 asserts that if a partial deadlock occurs in a particular control
sequence of a DPC SP of type 1, then the same partial deadlock occurs in all

the control sequences of SP. In the case of total deadlock, Theorem 5.4 implies

the following corollary:
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Corollary 5.2: Given a DPC SP of type 1, if a particular control sequence oP

is finite and is composed of v events, then every contrcl sequence oP is finite

and is composed by Vv events.

Theorem 5.4 and Corollary 5.2 assert that for a DPC of type 1, a deadlock
is independent of the particular control sequence. 1t only depends on both the
topology of the connections among component schemata and the structure of each
component schema. Modular systems modelled by DPC's of type 1 give rise, during
execution, to a family of cooperating asynchronous processes. For these types
of modular systems, a deadlock condition depends neither on the input data nor
on the relative speeds of the component processes. For this reason we call this

type of systems: Data and Lime independent systems.
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6. DATA DEPENDENT AND TIME INDEPENDENT SYSTEMS

Definition 6.1: A DPC SP of n cyclic sequential schemata is of fype 7 if all

the mailboxes in Sp are one-to-one.

Any DPC of type 1 is a particular caseof DPC's of type 2, where all the
component schemata are data independent. When deciders are present, it is no
longer true that for any cyclic sequential schema there is only one possible
control sequence. Therefore, for a DPC of type 2, if a deadlock occurs in some

control sequence oP

» 1t is not true that for a blocking event ¢ of a deadlocked
control sequence Gi there exists 3z Sj whose control sequence Oj contains the
awaking event of ¢. In particular, an unique deadlocked o, can exist in oF. Thus,
results similar to the ones stated by Lemma 5.1, Lemma 5.2, Theorem 5.1 and
Theorem 5.3 are no longer true for a DPC of type 2. For the same reason, also
Theorem 5.2 is false, in general. However we can prove that it is still true

only for total deadlocks.

Theorem 6.1: Given a control sequence oF of a DPC SP of type 2, a semicycle in
the connection graph G of sP is a necessary condition for a total deadlock in

P,

Proof: Let Sdl be a component schema of SP. By hypothesis, is deadlocked in

9491

oP. Let us congider § .=/ By hypothesis, 949 is also deadlocked. We can apply

az” a1’
iteratively this argument to SdZ’ and so on. In this way, we detect an infinite

semipath whose schemata have their control sequences deadlocked in oF:

0 2 i
Adi’Adl’Adl"“”’Adl’"°°

By applying the same proof of Theorem 5.2 it follows that the above semipath
contains a semicycle.
M Q.E.D.
Theorem 5.4 is a consequence of the characteristics of a DPC of type 1, that
is,all the mailboxes are one-to-one and for each compounent schema there is only
ome control sequence. Here, Theorem 5.4 is no longer true. However, an analogue
Theorem can be proved, if we choose a particular interpretation of actors send

and 7ecelve; namely, values are written by send in the cells of the mailbox vector
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N, one at a time, and they are read by #4ecelve exactly in the same order. In
other words the vector N is a FIFO queue. For any DPC of type 2, let us denote
by § the set of interpretations for which actors 4end and necelve have the above
specification.

We can prove that for any DPC of type 2, given an interpretation we{ and

an input assignment, there is only one possible control sequence for any componer

schema:

Lemma 6.1: Given a DPC SP of type 2, for each interpretation wel and for each
input assignment, each component schema Si has the same control sequence Oi in

all the control sequences ofVSp°

Proof: Let us suppose that two control sequences 0? and Og exist such that the
component schema Si has two different control sequences 9.4 and I in O? and

O? respectively. Let us proof that this implies an absurdity.

Since the schemata are sequential, by definition 3.1 (iii) Gi and qu have
L

1

the same prefix m=ab...p. That is, p is the last event after which G and o,

1 2
are different. By definition 3.1 (i), p is the initiation event d of a decider

d. This implies that, after the occurrence of the events of 7, the values of
some variables in the domain X{(d) are different in Oil X Since GE
§ have, by hypothesis, the same input assignment, it can be proved that Si must

and Oi and

o
contain at least one input mailbox m from which different sequences of values
are read in Oil and Oiz. Let X be the first event r belonging to Si that reads

P and Op

different values from m. It results, in 01 9

respectively:

tl(X) < tl(p)

£, (x) < t,(p)

Let us counsider now the schema S.=A. o Since the interpretation belongs to 9,
®

it follows that Ojl and sz exist, in GE and Ug respectively, such that different

sequences of values are written in m. Let y be the first event s belonging to
Sj that writes different values in m. It results, in OE and Og respectively:
< <
) <, G0 < e ()

t,(y) < £, (%) < t2<p>
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As well as Si’ also Sj must have at least one input mailbox m' from which different
sequences of values are read in gjl and sz. Let zknathefirsteventgﬁbelonglng

to Sj that reads different values from m'. It results, 1in Oi and Gg respectively:

£ (2) <t () < g (0 < (P 6.1
tz(z) < tz(y) < tz(X) < tz(p)

By applying iteratively the above argument tO Sj’ Aj o'’ and so on, we should
®

find two endless chains of inequalities with their rightmost sides coinciding

with (6.1):
< tl(Z) < t1<g) < tl(X) < tl(p)

< tZ(Z) < tz(g) < tZ(X) < tz(P)

This is an absurdity, because only a finite number of event can preceed Z in

any control sequence of sP (see Definition 4.4 (ii1i)).
Q.E.D.

Now an proposition analogous to Theorem 5.4 can be stated:

Theorem 6.2: Given a DPC of type 2, if, for each interpretation wefl and for

each input assignment, a partial deadlock exists in a particular control sequence

Opx’ then, denoting by Z={Gdl,...,c

..,Gdk} the set of the deadlocked compomnent
p&

di’’

control sequences in ¢®  and by vy (i=1,2,...,k) the number of events of Tas in
Oi, under the same interpretation and the same input assignment, for each o
of sP:

N v, (i=1,2,000,10)

where Vs is the number of events of Odi in of.

Proof: Let us suppose that a_op exists such that one OdiELZ has a number of

events, 1n GP, vi>vi and let us prove that this implies an absurdity.

Denoting by ¢ the blocking event of O4i related to pr, g must occur in o
Let us consider de=Ai‘ Its control sequence Odj’ that by Lemma 6.1 is the same
that occurs to form both o® and Gp*ycontains the awaking event of ¢. Denoting
by p the blocking event of Odj related to Opx, it may be shown, as in Theorem

5.4, that, in Gp,
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t(p) < t(q)

We can apply iteratively this argument to S and so on. In this way, we obtain

dj
an infinite semipath of schemata belonging to I. This semipath is analogous to

the critical semipath in Theorem 5.4. From now on, the proof can go on in a simila
way.

Q.E.D.

From Theorem 6.2 a proposition analogous to Corollary 5.2 can be stated:

Corollary 6.1: Given a DPC of type 2, if, for some input assignment, a particular

control sequence Gi is finite and composed by k events, then, for the same

interpretation and for the same input assignment, every control sequence of is

finite and composed by the same number k of events.

Theorem 6.2 enables us to say that in any modular system modelled by a DPC
of type 2 a total deadlock is independent of the relative speeds of the component
processes., However, a total deadlock depends on the input data. In other words,
if, for certain input data, a total deadlock occurs during a computation, then,
for the same input data, the same deadlock condition occurs in any computation.
For this reason we call this type of systems: Data Dependent and Time Independent
Systems.

We want to emphasize that the above results hold only for an interpretation
wefl, However, considering a mailbox as a FIFO queue is not a strong limitation.

A DPC of type 2 is a particular case of a DPC were all the mailboxes are one-
—to-one. If a DPC is not of type 2, Theorem 6.2 is no longer true. In other words,
for a modular system modelled by a general type of DPC a deadlock depends on
the input data and on the relative speeds of the component processes. We call

this type of systems Data and Time dependent.
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6. CONCLUSIONS

Deadlock conditions, that can arise in asynchronous systems, owing to
interproceSS’communication activity, are analyzed. Systems are classified in
three catagories, each of which has particular properties 2as far as deadlock
conditions are considered.

Systems modelled by DPC's of type 2 are particurarly interesting. In fact

they are sufficiently general. Furthermore, for any interpretation wef, they

belong to the class of Patil's B systems [4Lthat is they are fynctional systems.
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