
Innovative Methodology

SPIKY: a graphical user interface for monitoring spike train synchrony

Thomas Kreuz, Mario Mulansky, and Nebojsa Bozanic
Institute for Complex Systems, National Research Council, Sesto Fiorentino, Italy

Submitted 28 October 2014; accepted in final form 27 February 2015

Kreuz T, Mulansky M, Bozanic N. SPIKY: a graphical user interface
for monitoring spike train synchrony. J Neurophysiol 113: 3432–3445, 2015.
First published March 5, 2015; doi:10.1152/jn.00848.2014.—Techniques
for recording large-scale neuronal spiking activity are developing very
fast. This leads to an increasing demand for algorithms capable of
analyzing large amounts of experimental spike train data. One of the
most crucial and demanding tasks is the identification of similarity
patterns with a very high temporal resolution and across different
spatial scales. To address this task, in recent years three time-resolved
measures of spike train synchrony have been proposed, the ISI-
distance, the SPIKE-distance, and event synchronization. The Matlab
source codes for calculating and visualizing these measures have been
made publicly available. However, due to the many different possible
representations of the results the use of these codes is rather compli-
cated and their application requires some basic knowledge of Matlab.
Thus it became desirable to provide a more user-friendly and inter-
active interface. Here we address this need and present SPIKY, a
graphical user interface that facilitates the application of time-re-
solved measures of spike train synchrony to both simulated and real
data. SPIKY includes implementations of the ISI-distance, the
SPIKE-distance, and the SPIKE-synchronization (an improved and
simplified extension of event synchronization) that have been opti-
mized with respect to computation speed and memory demand. It also
comprises a spike train generator and an event detector that makes it
capable of analyzing continuous data. Finally, the SPIKY package
includes additional complementary programs aimed at the analysis of
large numbers of datasets and the estimation of significance levels.

clustering; data analysis; clustering; SPIKE-distance; synchronization

SPIKE TRAIN DISTANCES ARE measures of the degree of synchrony
between spike trains that yield low values for very similar and
high values for very dissimilar spike trains. They are applied in
two major scenarios: simultaneous and successive recordings.

The first scenario is the simultaneous recording of a neuronal
population, typically in a spatial multichannel setup. If differ-
ent neurons emit spikes at the same time, these spikes are truly
“synchronous” (Greek: “occurring at the same time”). Syn-
chronization between individual neurons has been proven to be
of high prevalence in many different neuronal circuits (Ties-
inga et al. 2008; Shlens et al. 2008). As of now, many open
questions remain regarding the spatial scale and the nature of
interactions (pairwise or higher order, see Nirenberg and Vic-
tor 2007) as well as their functional significance for neuronal
coding and information processing (Kumar et al. 2010).

In the second scenario the neuronal spiking response is
recorded in different time intervals. To allow a meaningful
comparison there has to be a temporal reference point that is
typically set by some kind of trigger (e.g., the onset of an
external stimulation). There are two prominent applications for

this successive trials scenario. Repeated presentation of the
same stimulus addresses the reliability of individual neurons
(Mainen and Sejnowski 1995), while different stimuli are used
to investigate neuronal coding and to find the features of the
response that provide the optimal discrimination (e.g., Victor
2005; for a more general introduction to neural coding cf.
Quian Quiroga and Panzeri 2013). These two applications are
related since for a good clustering performance one needs both
a pronounced discrimination between stimuli (high interstimu-
lus spike train distances) and a high reliability for the same
stimulus (low intrastimulus spike train distances).

Electrophysiology and other modern recording techniques
are developing fast. For both simultaneous population and
successive trial recordings they often provide more data than
available methods of spike train analysis can handle. There is
a lack of algorithms able to identify multiple spike train
patterns across different spatial scales and with a high temporal
resolution. This is noticeable in both scenarios. In epilepsy, the
analysis of the varying similarity patterns of simultaneously
recorded ensembles of neurons can lead to a better understand-
ing of the mechanisms of seizure generation, propagation, and
termination (Truccolo et al. 2011; Bower et al. 2012). Simi-
larly, the analysis of neuronal responses to successive presen-
tations of time-dependent stimuli will help to understand the
relevance of synchronous firing in neural coding (Miller and
Wilson 2008). Moreover, in population recordings it would be
even more advantageous to be able to monitor spike train
synchrony in real time. This would be a necessary condition for
a prospective epileptic seizure prediction algorithm (Mormann
et al. 2007), but it could also be very useful for the rapid online
decoding needed to control prosthetics (Hochberg et al. 2006;
Sanchez 2008).

In recent years, two such time-resolved measures have been
proposed: the ISI-distance (Kreuz et al. 2007) and the SPIKE-
distance (Kreuz et al. 2013); both rely on instantaneous esti-
mates of spike train dissimilarity, which makes it possible to
track changes in instantaneous clustering, i.e., time-localized
patterns of (dis)similarity among multiple spike trains. Addi-
tionally, both measures are parameter free and timescale inde-
pendent. Furthermore, the SPIKE-distance also comes in a
causal variant (Kreuz et al. 2013) that is defined such that the
instantaneous values of dissimilarity are derived from past
information only so that time-resolved spike train synchrony
can be estimated in real time. Both measures have already been
widely used in various contexts (e.g., for the most recent
measure, the SPIKE-distance: Papoutsi et al. 2013; DiPoppa
and Gutkin 2013; Sacré and Sepulchre 2014). Another time-
scale independent and time-resolved method is event synchro-
nization (Quian Quiroga et al. 2002), a sophisticated coinci-
dence detector that quantifies the level of synchrony from the
number of quasisimultaneous appearances of spikes. Origi-

Address for reprint requests and other correspondence: T. Kreuz, Institute
for Complex Systems, CNR, Via Madonna del Piano 10, 50119 Sesto Fioren-
tino, Italy (e-mail: thomas.kreuz@cnr.it).

J Neurophysiol 113: 3432–3445, 2015.
First published March 5, 2015; doi:10.1152/jn.00848.2014.

3432 0022-3077/15 Copyright © 2015 the American Physiological Society www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

mailto:thomas.kreuz@cnr.it

nally, it was proposed and used in a bivariate context only. In
this article it is adapted to the time-resolved SPIKY-framework
and extended to the multivariate case. Since this involves
substantial changes of the original event synchronization, to
avoid confusion we term the new, modified measure SPIKE-
synchronization.

With all of these measures spike trains can be analyzed on
different spatial and temporal scales, accordingly there are
several levels of information extraction (Kreuz 2012). In the
most detailed representation one instantaneous value is ob-
tained for each pair of spike trains. The most condensed
representation successive temporal and spatial averaging leads
to one single distance value that describes the overall level of
synchrony for a group of spike trains over a given time
interval. In between these two extremes are spatial averages
(dissimilarity profiles) and temporal averages (pairwise dissim-
ilarity matrices). This variety of representations makes a
straightforward implementation of the measures in one simple
program/function unfeasible. Other important goals are high
computational speed, efficient memory management, and ap-
plicability to large datasets. What is needed is an intuitive and
interactive tool for analyzing spike train data that is able to
overcome all of these challenges.

Here we address this need and present the graphical user
interface SPIKY. Given a set of real or simulated spike train
data (importable from many different formats), SPIKY calcu-
lates the measures of choice and allows the user to switch
between many different visualizations such as measure pro-
files, pairwise dissimilarity matrices, or hierarchical cluster
trees. SPIKY also includes the possibility of generating movies
that are very useful to track the varying patterns of (dis)simi-
larity. SPIKY has been optimized with respect to both compu-
tation speed (by using MEX-files, i.e. C-based Matlab ex-
ecutables) and memory demand (by taking advantage of the
piecewise linear nature of the dissimilarity profiles). Finally,
the SPIKY-package includes two complementary programs.
The first program SPIKY_loop is meant to be used for the
analysis of a large number of datasets. The second program
SPIKY_loop_surro is designed to evaluate the statistical sig-
nificance of the results obtained for the original dataset by
comparing them against the results of spike train surrogates
generated from that dataset.

The remainder of this article is organized as follows. In
MEASURES AND IMPLEMENTATION we present the different mea-
sures available in SPIKY and provide some details about their
implementation. These measures include the ISI-distance and
the SPIKE-distance as well as the latter’s real-time variant,
and, introduced here, its forward variant (The ISI- and the
SPIKE-Distance). For the SPIKE-distance we propose a cor-
rection of the edge-effect (spurious decrease to zero due to
auxiliary spikes). In SPIKE-Synchronization, we introduce
SPIKE-synchronization, the modified and extended variant of
event synchronization. Some improvements realized in the new
implementation of the measures are presented in Comparison
with Other Implementations. In that section we also compare
the performance of this new implementation with the one of
previously published source codes. In LEVELS OF INFORMATION

EXTRACTION, an overview of the different ways to extract
information is given.

SPIKY, our graphical user interface for monitoring spike
train synchrony, is presented in SPIKY. In Access to SPIKY and

How to Get Started, we explain how to get access to the GUI
and its documentation. Subsequently, in Structure and Work-
flow of SPIKY, we introduce the structure and the workflow of
SPIKY, in particular we show how to input spike train data,
how to change the layout of the figures and how to export
results. The two complementary programs SPIKY_loop and
SPIKY_loop_surro are introduced in GUI vs. Loop and Spike
Train Surrogates and Significance, respectively. Finally, in the
DISCUSSION, we summarize the methods and the program and
present an outlook on future developments.

MEASURES AND IMPLEMENTATION

SPIKY implements four time-resolved measures, one is
multivariate and three are bivariate. The multivariate measure,
included for comparison, is the standard peristimulus time
histogram (PSTH), which measures the overall firing rate. In
this section we give an overview over the three bivariate
measures; for more detailed illustrations please refer to the
original publications. The ISI-distance (Kreuz et al. 2007), the
SPIKE-distance (Kreuz et al. 2013), and the here newly pro-
posed SPIKE-synchronization (based on event synchroniza-
tion; Quian Quiroga et al. 2002) share several properties;
however, there are also a few conceptual differences between
the ISI- and the SPIKE-distance on the one hand and SPIKE-
synchronization on the other hand.

All three measures rely on instantaneous values that are
normalized between zero and one. The same holds true for the
respective temporal averages, the distance values DI and DS
and the SPIKE-synchronization SC. However, while the two
distances are measures of dissimilarity that yield the value zero
for identical spike trains, SPIKE-synchronization is a measure
of similarity with high values denoting similar spike trains.

While all three measures are time resolved, the ISI-distance
and the SPIKE-distance even have a continuous domain since
there exists a unique definition of an instantaneous value [I(t)
and S(t), respectively] for every single time instant. The result-
ing dissimilarity profiles are either piecewise constant (ISI-
distance) or piecewise linear (SPIKE-distance). SPIKE-syn-
chronization is time resolved as well; however, its domain is
discrete since instantaneous values C(tk) are only defined at the
times of the spikes. Incidentally, the same distinction holds true
regarding the range of values that can be obtained for the
measures: it is continuous for the two distances and discrete for
SPIKE-synchronization.

All three measures can also be applied to more than two
spike trains (spike train number N � 2). For the ISI- and the
SPIKE-distance this extension is simply the average over all
bivariate distances. Extending SPIKE-synchronization is even
more straightforward. Essentially, the same spike-based defi-
nition holds for both the bivariate and the multivariate case.

The ISI- and the SPIKE-Distance

The first step in the calculation of the ISI- and the SPIKE-
distance is to transform the sequences of discrete spike times
{ti

(1)}, i � 1, . . ., M1 and {tj
(2)}, j � 1, . . ., M2 (with Mn

denoting the number of spikes for spike train n with n � 1, 2)
into dissimilarity profiles I(t) and S(t), respectively. Averaging
over time yields the respective distance value.

The multivariate extension is obtained as the average over
all bivariate distances. Since this average over all pairs of spike

Innovative Methodology

3433SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

trains commutes with the average over time, it is possible to
achieve the same kind of time-resolved visualization as in the
bivariate case by first calculating the instantaneous average
Sa(t) (here for the SPIKE-distance) over all pairwise instanta-
neous values Smn(t),

Sa�t� �
2

N�N � 1� �
m�1

N�1

�
n�m�1

N

Smn�t� . (1)

The dissimilarity profiles of both measures are based on three
piecewise constant quantities (see Fig. 1A). These are the time
of the preceding spike

tp
�n��t� � max�ti

�n��ti
�n� � t� t1

�n� � t � tMn

�n� , (2)

the time of the following spike

tF
�n��t� � min(ti

�n�|ti
�n� � t) t1

�n� � t � tMn

�n� , (3)

as well as the interspike interval

xISI
(n)�t� � tF

�n��t� � tP
�n��t� . (4)

The ambiguity regarding the definition of the very first and the
very last interspike interval is resolved by placing for each

spike train auxiliary leading spikes at time t � 0 and auxiliary
trailing spikes at time t � T (but also see The SPIKE-distance).

The ISI-distance. The ISI-distance, proposed as a bivariate
measure in Kreuz et al. (2007) and extended to the multispike
train case in Kreuz et al. (2009), was the first spike train
distance directly defined as the temporal average of an instan-
taneous dissimilarity profile. This profile is calculated as the
absolute value of the instantaneous ratio between the interspike
intervals xISI

(1) and xISI
(2) (see Fig. 1A) according to:

I�t� �
�xISI

(1)�t� � xISI
(2)�t��

max�xISI
(1)�t�, xISI

(2)�t��
(5)

Since the ISI-values only change at the times of spikes, the
dissimilarity profile is piecewise constant (with discontinu-
ities at the spikes). The ISI-ratio equals zero for identical
interspike intervals in the two spike trains and approaches
one in intervals in which one spike train is much faster than
the other. The ISI-distance is defined as the temporal aver-
age of this absolute ISI-ratio:

DI �
1

T�0

T
dtI�t� . (6)

The SPIKE-distance. The SPIKE-distance (see Kreuz et al.
2011 for the original proposal, and Kreuz et al. 2013 and Kreuz
2012 for the definite version presented here) is the centerpiece
of SPIKY. In contrast to the ISI-distance, it considers the exact
timing of the spikes.

The dissimilarity profile is calculated in two steps: first for
each spike a spike time difference is calculated and then for
each time instant the relevant spike time differences are se-
lected, weighted, and normalized. Here “relevant” means local;
each time instant is surrounded by four corner spikes: the
preceding spike from the first spike train tP

(1), the following
spike from the first spike train tF

(1), the preceding spike from the
second spike train tP

(2), and, finally, the following spike from
the second spike train tF

(2). To each of these corner spikes one
assigns the distance to the nearest spike in the other spike train,
for example, for the previous spike of the first spike train:

�tP
(1)�t� � min

i
��tP

(1)�t� � ti
(2)�� (7)

and analogously for tF
(1), tP

(2), and tF
(2) (see Fig. 1B). Subse-

quently, for each spike train separately, a locally weighted aver-
age is employed such that the differences for the closer spike
dominate; for each spike train n � 1, 2 the weighting factors are
the intervals to the previous and to the following spikes:

xP
(n)�t� � t � tP

(n)�t� (8)

and

xF
(n)�t� � tF

(n)�t� � t . (9)

The local weighting for the spike time differences of the first
spike train reads:

S1�t� �
�tP

(1)�t�xF
(1)�t� � �tF

(1)�t�xP
(1)�t�

xISI
(1)�t�

, (10)

and analogously S2(t) is obtained for the second spike train.
Averaging over the two spike train contributions and normal-
izing by the mean interspike interval yields:

1

2

Spike
trains

t

t(1)
P

t(1)
F

t(2)
P

t(2)
F

x(1)
P x(1)

F

x(2)
P x(2)

F

Δ t
P
(1) Δ t

F
(1)

Δ t
P
(2) Δ t

F
(2)

B

1

2

Spike
trains

t

t(1)
P

t(1)
F

t(2)
P

t(2)
F

x(1)
ISI

x(2)
ISI

A

1

2

Spike
trains

Time [arbitrary unit]

C
t(1)
i

t(1)
i−1

t(1)
i+1

t(2)
j

t(2)
j−1

t(2)
j+1

t(1)
i

t(1)
i−1

t(1)
i+1

t(2)
j

t(2)
j−1

t(2)
j+1

τ
ij

τ
ij

J
ij

J1 =
ij
 = 0

Fig. 1. A: ISI-distance. Illustration of the local quantities used to define the
dissimilarity profile I(t) for an arbitrary time instant t. B: SPIKE-distance.
Illustration of the additional local quantities needed for the calculation of the
dissimilarity profile S(t). C: SPIKE-synchronization. Illustration of the adap-
tive coincidence detection (which was originally proposed for event synchro-
nization). While in the first half the middle spikes ti

(1) and tj
(2) are coincident,

the middle spikes in the second half are not.

Innovative Methodology

3434 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

S��t� �
S1�t� � S2�t�

2�xISI
(n)�t��n

. (11)

This quantity sums the spike time differences for each spike
train weighted according to the relative distance of the corner
spike from the time instant under investigation. This way
relative distances within each spike train are taken care of,
while relative distances between spike trains are not. To get
these ratios straight and to account for differences in firing rate,
in a last step the two contributions from the two spike trains are
locally weighted by their instantaneous interspike intervals.
This leads to the definition of the dissimilarity profile:

S�t� �
S1�t�xISI

(2)�t� � S2�t�xISI
(1)�t�

2�xISI
(n)�t��n

2 . (12)

Again, the overall distance value is defined as the temporal
average of the dissimilarity profile:

DS �
1

T�0

T
dtS�t� . (13)

Since the dissimilarity profile S(t) is obtained from a linear
interpolation of piecewise constant quantities, it is piecewise
linear (with potential discontinuities at the spikes). Both the
dissimilarity profile S(t) and the SPIKE-distance DS are
bounded in the interval [0, 1]. The distance value DS � 0 is
obtained for identical spike trains only.

Due to the finite recording time there is an ambiguity
regarding the definitions of the initial distance to the preceding
spike, the final distance to the following spike, as well as the
very first and the very last interspike intervals. In previous
implementations of the SPIKE-distance this ambiguity was
resolved by adding to each spike train an auxiliary leading
spike at time t � 0 and an auxiliary trailing spike at time t �
T. This led to spurious synchrony at the edges whereby con-
struction of the dissimilarity profile reached the zero value.
Here we partly correct this edge effect by incorporating all the
information that is available. We describe the correction only
for the beginning of the recording; an analogous procedure is
applied at the end of the recording.

We count the auxiliary spikes as normal spikes that can be
nearest neighbors to other spikes. However, instead of calcu-
lating their spike time distance (which is always zero) we use
the spike time difference of the first real spike. For the first
interspike interval we know that it is at least the distance to the
first spike t1 � t0 � t1, but it could be longer. Therefore, to take
the local firing rate into consideration we set

xISI�0� � max�t1, t2 � t1� . (14)

where we use the length of the first known interspike interval
t2 � t1 as a lower limit. In case t1 is smaller than t2 � t1 we get
at least a crude estimate of how much longer the first interspike
interval could have been.

Real-time SPIKE-distance. In contrast to the dissimilarity
profile S(t) of the regular SPIKE-distance, the dissimilarity
profile Sr(t) of the real-time SPIKE-distance can be calculated
online because it relies on past information only. From the
perspective of an online measure, the information provided by
the following spikes, both their position and the length of the
interspike interval, is not yet available. Like the profile of the

regular SPIKE-distance, this causal variant is also based on
local spike time differences but now only two corner spikes are
available, and the spikes of comparison are restricted to past
spikes, e.g., for the preceding spike of the first spike train:

�tP
�1��t� � min

i:ti�t
��tP

�1��t� � ti
�2��� . (15)

Since there are no following spikes available, there is no local
weighting. There is no interspike interval either, so the nor-
malization is achieved by dividing the average corner spike
difference by twice the average time interval to the preceding
spikes (Eq. 8). This yields a causal indicator of local spike train
dissimilarity:

Sr(t) �
�tP

�1��t� � �tP
�2��t�

4�xP
�n��t��n

. (16)

Forward SPIKE-distance. The dissimilarity profile Sf(t) of
the forward SPIKE-distance is “inverse” to the profile of the
real-time SPIKE-distance. Instead of relying on past informa-
tion only it relies on forward information only. It can be used
in triggered temporal averaging to evaluate the (causal) effect
of certain spikes or of specific stimuli features on future
spiking. Again, for each time instant there are just two corner
spikes and the potential nearest spikes in the other spike train
are future spikes only. Thus the spike time difference for the
following spike of the first spike train reads:

�tF
�1��t� � min

i:ti	t
��tF

�1��t� � ti
�2��� (17)

and accordingly for the following spike of the second spike
train. In analogy to Eq. 16, an indicator of local spike train
dissimilarity is obtained as follows:

Sf(t) �
�tF

�1��t� � �tF
�2��t�

4�xF
�n��t��n

. (18)

SPIKE-Synchronization

SPIKE-synchronization quantifies the degree of synchrony
from the relative number of quasisimultaneous appearances of
spikes. Since it builds on the same bivariate and adaptive
coincidence detection that was used for event synchronization
(Quian Quiroga et al. 2002; see also Kreuz et al. 2007),
SPIKE-synchronization is parameter and scale free as well.

Coincidence detection typically uses a coincidence window

ij

(1,2), which denotes the time lag below which two spikes from
two different spike trains, ti

(1) and tj
(2), are considered to be

coincident. For both event synchronization and SPIKE-syn-
chronization this coincidence window is adapted to the local
spike rates (see Fig. 1C):

ij
�1,2� � min�ti�1

(1) � ti
(1), ti

(1) � ti�1
(1) , tj�1

(1) � tj
(2), tj

(2) � tj�1
(2) 	 ⁄ 2.

(19)

The coincidence criterion can be quantified by means of a
coincidence indicator

Ci
�1� �
1 if minj(|ti

(1) � tj
(2)|) �
ij

(1,2)

0 otherwise
(20)

[and analogously for Cj
(2)] that assigns to each spike either a

one or a zero depending on whether it is part of a coincidence
or not. The minimum function in Eq. 20 takes already into

Innovative Methodology

3435SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

account that a spike can at most be coincident with one spike
(the nearest one) in the other spike train. This is a consequence
of the adaptive definition of
ij

(1,2) in Eq. 19 and the “�” in Eq.
20 (which has been changed from the “�” used in the original
definition of event synchronization). In case a spike is right in
the middle between two spikes from the other spike train there
is no ambiguity any more since there is no coincidence.

This way we have defined a coincidence indicator for each
individual spike of the two spike trains. To obtain one com-
bined similarity profile we pool the spikes of the two spike
trains as well as their coincidence indicators by introducing one
overall spike index k. In case there exist exact matches (pairs
of perfectly coincident spikes) k counts over both spikes. This
yields one unified set of coincidence indicators Ck in which
according to Eqs. 19 and 20 each coincidence leads to a pair of
consecutive ones.

From this discrete set of coincidence indicators Ck the
SPIKE-synchronization profile C(tk) is obtained via C(tk) �
C(k). Finally, SPIKE-synchronization is defined as the average
value of this profile

SC �
1

M �
k�1

M

C�tk� (21)

with M � M1 � M2 denoting the total number of spikes in the
pooled spike train. The interpretation is very intuitive: SC
quantifies the fraction of all spikes in the two spike trains that
are coincident. It is zero for spike trains without any coinci-
dences and reaches one if and only if the two spike trains
consist only of pairs of coincident spikes.

The extension to the case of more than two spike trains (N �
2) is straightforward. First, bivariate coincidence detection is
performed for each pair of spike trains (n, m). Generalizing Eq.
20 gives the coincidence indicators

Ci
�n,m� �
1 if minj(|ti

(n) � tj
(m)|) �
ij

(n,m)

0 otherwise
(22)

where
ij
(n,m) is defined as in Eq. 19, but for arbitrary spike trains

n and m. Subsequently, for each spike of every spike train a
normalized coincidence counter

Ci
�n� �

1

N � 1 �
m�n

Ci
�n,m� . (23)

is obtained by averaging over all N � 1 bivariate coincidence
indicators involving the spike train n.

As in the bivariate case, pooling leads to just one set of
normalized coincidence counters Ck each of which can obtain any
one out of this finite set of values: 0, 1/(N � 1), . . ., (N � 1)/
(N � 1) � 1. Again, the multivariate SPIKE-synchronization
profile C(tk) is obtained via C(tk) � C(k) and its average value
yields the multivariate SPIKE-synchronization

SC �
1

M �
k�1

M

C�tk� (24)

where M � �n
N Mn again denotes the overall number of spikes.

Note that Eq. 24 is completely analogous to Eq. 21. More-
over, setting n � 1, m � 2, and N � 2 in Eqs. 22 and 23
retrieves Eq. 20. Therefore, the bivariate equations are just a
special case of the more general multivariate formulation.

Accordingly, the interpretation of SPIKE synchronization as
the overall fraction of coincident spikes is general and holds for
both bivariate and multivariate datasets. SPIKE-synchroniza-
tion is zero if and only if the spike trains do not contain any
coincidences and reaches one if and only if each spike in every
spike train has one matching spike in all the other spike trains.
Examples for both of these extreme cases can be found in Fig.
2, B and D.

In contrast to I(t) and S(t), the time-resolved SPIKE-syn-
chronization C(tk) is a measure of similarity. The PSTH is
oriented the same way so it makes sense to compare these two
measures (Fig. 2). The SPIKE-synchronization profile C(tk) is
only defined at the times of the spikes, but a better visualization
can be achieved by connecting the individual dots. For larger
spike train datasets (here example in Fig. 2A) it also makes
sense to smooth the profile with a moving average of appro-
priate order. Figure 2A demonstrates the similarities and dis-
similarities between the PSTH and SPIKE-synchronization on
a rather general example. Figure 2, B–D, shows that SPIKE-
synchronization, in contrast to the PSTH, is a true measure of
spike train synchrony (see also Kreuz 2011). Since the PSTH
is invariant to shuffling spikes among the spike trains, it yields
the same value regardless of how spikes are distributed among
the different spike trains.

Comparison with Other Implementations

The very first all-in-one implementation of the ISI- and the
SPIKE-distance was published online at the time of the pub-
lication of Kreuz et al. (2013).1 In between this first and our
current release, several other source codes written in various
languages and for different platforms have been made avail-
able. The most prominent examples are the Python-Implemen-
tation of the SPIKE-distance courtesy of Jeremy Fix and
available on his homepage and the C��-Implementation of
both ISI- and SPIKE-distance courtesy of Razvan Florian and
hosted on GitHub.2,3 The SPIKE-distance was also imple-
mented in the commercially distributed HRLAnalysis software
suite (Thibeault et al. 2014) designed for the analysis of
large-scale spiking neural data. Note that all of these imple-
mentations are restricted to the dissimilarity profile and its
temporal average (the overall dissimilarity). In contrast,
SPIKY also allows the user to interactively access all the other
different ways to extract information that will be introduced in
LEVELS OF INFORMATION EXTRACTION.

All of these codes for calculating the ISI- and the SPIKE-
distance rely on equidistantly sampled dissimilarity profiles,
and the same holds true for codes of event synchronization.
Typically, the precision is set to the sampling interval of the
neuronal recording. Since the dissimilarity profiles have to be
calculated and stored for each pair of spike trains, one obtains,
for each measure, a matrix of order “number of time instants” �
“number of spike train pairs” [i.e., #(ts) � N(N �1)/2]. For
small sampling intervals and large numbers of spike trains this
leads to memory problems.

In SPIKY we use an optimized and more memory-efficient
way of storing the results. We make use of the fact that the

1 This section concerns only the ISI- and the SPIKE-distance. Since SPIKE-
synchronization is a new proposal there are no other implementations.

2 http://jeremy.fix.free.fr/Softwares/spike.html.
3 https://github.com/modulus-metric/spike-train-metrics.

Innovative Methodology

3436 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

http://jeremy.fix.free.fr/Softwares/spike.html
https://github.com/modulus-metric/spike-train-metrics

dissimilarity profile I(t) of the ISI-distance is piecewise con-
stant and the dissimilarity profile S(t) of the SPIKE-distance is
piecewise linear. Each constant/linear interval runs from one
spike of the pooled spike train to the next. Thus, for each such
interval (and for each pair of spike trains), we have to store
only one value for the ISI-dissimilarity and two values for the
SPIKE-dissimilarity, one at the beginning and one at the end of
the interval (see Fig. 3). The memory gain is proportional to the
number of sample points per interspike interval in the pooled
spike train and is typically much larger than one.

The dissimilarity profiles exhibit instantaneous jumps at
the times of the spikes since this is where the lengths of the
interspike intervals and the identity of the previous and the
following spikes change abruptly or where a new coinci-
dence is counted. For sampled dissimilarity profiles one has
to “cut the corners” of these instantaneous jumps. This leads

to an estimation error that increases with the sampling
interval. In contrast, within the new implementation each
spike marks both the end of the previous and the beginning
of the next interval and it becomes possible to store two
dissimilarity values for these points. This way the integra-
tion from one spike of the pooled spike train to the next can
be performed over the full interval. Thus, besides being far
more memory efficient, the new implementation also com-
putes the exact distance values without any spurious depen-
dence on the sampling interval.

The third effect of the new implementation is a considerable
speed-up. To show this (and to provide relative computational
costs for the different measures) we here calculate the speed
gain achieved by going from the old equidistantly sampled
implementation to the new minimally sampled implementation
of the ISI- and the SPIKE-distance.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

0

0.1

Spike

trains

PSTH

CC

A

0

0.5

0

0.2

Spike

trains

PSTH

C

B

0

0.5

0

0.2

Spike

trains

PSTH

C

C

0 200 400 600 800 1000
0

0.5

0

0.2

Spike

trains

PSTH

C

Time

D

Fig. 2. Comparison of peristimulus time his-
togram (PSTH) and SPIKE-synchronization.
For the latter we added a dashed similarity
profile that serves as a visual aid only. A:
multivariate example with 50 spike trains. In
the first half within the noisy background there
are 4 regularly spaced spiking events with
increasing jitter. The second half consists of
10 spiking events with decreasing jitter but
now without any noisy background. In the
noisy first half PSTH and the smoothed
SPIKE-synchronization exhibit very similar
profiles. The fact that the firing events become
more distinct in the second half is indicated by
the smoothed SPIKE-synchronization as a
gradual increase to synchronization. In the
PSTH the peaks become more and more nar-
row. B–D: by construction the pooled spike
train of these examples is identical consisting
of 10 evenly spaced bursts. The only differ-
ence is the distribution of the spikes among the
individual spike trains, which varies from low
via intermediate to high synchrony. Whereas
the PSTH is the same for all three examples,
SPIKE-synchronization correctly indicates the
increase in synchrony (note that in B SPIKE-
synchronization attains the value zero and in D
the value one over the whole time interval, see
arrows). B: synfire chain of bursts. C: random
distribution of spikes among spike trains. D:
high reliability. Each spike train contains 1
spike per firing event.

Innovative Methodology

3437SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

As benchmark we use the comprehensive performance com-
parison carried out by Rusu and Florian (2014). In this test the
authors compared the performance of their newly proposed
modulus-metric with the performance of previously proposed
spike train distances including the ISI- and the SPIKE-dis-
tance. Like them we used two random spike trains with
different numbers of spikes. However, since we were also
interested in applications to larger datasets, we extended the
maximum number of spikes from 500 to 10,000 spikes. The
firing rate is kept constant; hence, the duration of the trial
increases with the number of spikes. For a fair comparison we
implemented all algorithms in C�� and ran them on an Intel
i7-4700MQ CPU @ 2.4 GHz. All speed gains were averaged
over 10,000 trials (Fig. 4).

In a first step we replicated the results of Rusu and Florian
(2014), who had calculated the ISI- and SPIKE-distances using
dissimilarity profiles that were equidistantly sampled with a
fixed time step of dt � 1 ms. Rerunning the same algorithms on
our computer, we could reproduce their results (for �500
spikes) within the same order of magnitude. Subsequently, we
measured the running times using minimally sampled dissim-
ilarity profiles and found that for both the ISI- and the SPIKE-
distance the new implementation was considerably faster than
the old implementation. As expected, the speed gain depends
critically on the sampling rate used for the old implementation
and is particularly large for densely sampled data (Fig. 4).

Apart from minimal sampling, SPIKY includes another
improvement that strongly increases the overall performance.
The source codes published along with Kreuz et al. (2013)
were entirely written in Matlab. In contrast, the new SPIKY-
implementation uses C-based Matlab executables (MEX)-files
for the most time-consuming parts and this leads to another
enormous performance boost (typically by a factor between 3
and 30).

LEVELS OF INFORMATION EXTRACTION

The ISI- and the SPIKE-distance combine a variety of
properties that make them well suited for the application to real
data. In particular, they are conceptually simple, computation-
ally efficient, and easy to visualize in a time-resolved manner.
By taking into account only the preceding and the following

spike in each spike train, these distances rely on local infor-
mation only. They are also time-scale adaptive since the
information used is not contained within a window of fixed size
but rather within a time frame whose size depends on the local
rate of each spike train.

Moreover, the sensitivity to spike timing and the instanta-
neous reliability achieved by the SPIKE-distance open up
many new possibilities in multineuron spike train analysis
(Kreuz et al. 2013). These build on the fact that there are
several ways to extract information all of which we describe in
the following. As an illustration we use the detailed analysis of
an artificially generated spike train dataset with the SPIKE-
distance (for the raster plot see Fig. 5A, top). Since the profile
of SPIKE-synchronization is only defined at the times of the
spikes and not at any instantaneous instants, for this mea-
sure only a few of these levels apply, as we will explain in
more detail below.

Full Matrix and Cross Sections

The starting point is the most detailed representation in
which one instantaneous value is obtained for each pair of
spike trains (see Eq. 12). This representation could be viewed
as a movie of a symmetric pairwise dissimilarity matrix in
which each frame corresponds to one time instant (an example
can be found in the Supplemental Material of Kreuz et al.
2013). For a movie of finite length the time axis necessarily has
to be sampled but in principle this most detailed representation
consists of an infinite number of values. However, since all
dissimilarity profiles are piecewise linear there is a lot of
redundancy.

One step towards a more compact and memory-efficient
representation is to store all pairwise dissimilarity profiles in a
matrix of size “number of interspike intervals in the pooled
spike train” � “number of spike train pairs” (�2 for the
SPIKE-distance, see Comparison with Other Implementa-
tions). From this two-dimensional matrix it is possible to
extract both kinds of cross sections. By selecting a pair of spike
trains, one obtains the bivariate dissimilarity profile S(t) for this
pair of spike trains. Selecting a time instant ts (and using linear
interpolation for time instants in between spikes) yields an
instantaneous matrix of pairwise spike train dissimilarities
Smn(ts) (see Fig. 5B). This matrix can be used to divide the
spike trains into instantaneous clusters, that is, groups of spike
trains with low intragroup and high intergroup dissimilarity.

For SPIKE-synchronization it is possible to select pairwise
dissimilarity profiles but instantaneous matrices are not de-
fined.

Spatial and Temporal Averaging

Another way to reduce the information of the dissimilarity
matrix is averaging. There are two possibilities that commute:
the spatial average over spike train pairs and the temporal
average. Since the spatial average over spike train pairs can be
done locally, it yields a dissimilarity profile for the whole
population. Examples for averages over four different spike
train groups as well as over all spike trains are shown in Fig.
5A, bottom. Temporal averaging over certain intervals on the
other hand leads to a bivariate distance matrix (see Fig. 5, C
and D, for examples of noncontinuous and continuous inter-
vals). In real data, these temporal intervals could be chosen to

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0

0.4

Spike
trains

Pooled

Ia

Sa

Time

Fig. 3. Illustration of the memory efficient storage of the dissimilarity profile
for both the ISI- and the SPIKE-distance.

Innovative Methodology

3438 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

correspond to different external conditions such as normal vs.
pathological, asleep vs. awake, target vs. nontarget stimulus, or
presence/absence of a certain channel blocker.

A combination of temporal and spatial averaging can be seen
in Fig. 5F. This dissimilarity matrix is obtained from the

overall temporal average shown in Fig. 5D by (spatially)
averaging over the 16 submatrices and thus depicts the pair-
wise spike train group dissimilarity (4 � 4 instead of 20 � 20).
Figure 5G shows the respective dendrogram. In applications to
real data, these groups could be different neuronal populations

10
100

1000
10000

1

0.1

0.01
0

100

200

300

400

Number of spikesTime step

S
pe

ed
 g

ai
n

10
100

1000
10000

1

0.1

0.01
0

200

400

600

800

Number of spikesTime step
S

pe
ed

 g
ai

n

A B

Fig. 4. Speed gain achieved by the new (min-
imally sampled) implementation of ISI-dis-
tance (A) and SPIKE-distance (B) with respect
to the old (equidistantly sampled) implemen-
tation in dependence on the number of spikes
and on the time step used by the old imple-
mentation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.4

Time

G1

G2

G3

G4

Sa

0.192

A 1
2
3 4

Spike trains

S
pi

ke
 tr

ai
ns

1B

5 10 15 20
20

15

10

5

Spike trains

2C

5 10 15 20

1 2 3 4
Spike train groups

G
Spike trains

3D

5 10 15 20

Spike trains

H
Spike trains

4

E

5 10 15 20
0

0.5

1

Spike trains

I

Spike train groups

S
pi

ke
 tr

ai
n

gr
ou

ps

F

G1 G2 G3 G4

G4

G3

G2

G1

Fig. 5. The different levels of information
extraction for the SPIKE-distance. A, top:
spike raster plot of 20 artificially generated
spike trains divided in 4 spike train groups of
5 spike trains each. The clustering behavior
changes every 500 ms. A, bottom: dissimi-
larity profiles of the SPIKE-distance for the 4
spike train groups (thin color-coded lines)
and for all spike trains (thick black line). The
overall dissimilarity is defined as the tempo-
ral average of the dissimilarity profile of all
spike trains (0.192 in this case) and is
marked by a dashed horizontal line. The
green lines and symbols on top of the raster
plot mark temporal instants and intervals
results of that are detailed in the subplots at
the bottom. B–E: matrices of pairwise instan-
taneous dissimilarity values for a single time
instant (B, mark 1), for 2 selective averages
(over nonconsecutive intervals in C, mark 2,
and over the whole interval in D, mark 3),
and for a triggered average (E, mark 4).
F and G: for the overall average (mark 3) we
also show the matrices of overall pairwise
instantaneous dissimilarity values for the 4
spike train groups (F) and the corresponding
dendrogram (G). H and I: dendrogram of
spike train matrices in D and E. Note that in
contrast to the overall average (mark 3
shown in H) the triggered average (mark 4
shown in I) captures the local similarity be-
tween 5 of the spike trains.

Innovative Methodology

3439SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

or responses to different stimuli, depending on whether the
spike trains were recorded simultaneously or successively.
Finally, successive application of spatial average over all spike
train pairs and temporal average over the whole interval results
in just one distance value that describes the overall level of
dissimilarity for the entire dataset. In Fig. 5A this value is
stated in the bottom top right.

Both spatial and temporal averaging are well-defined for
SPIKE-synchronization and so is the overall value.

Triggered Averaging

The fact that there are no limits to the temporal resolution
allows further analyses such as internally or externally trig-
gered temporal averaging. Here, the matrices are averaged over
certain trigger time instants only. The idea is to check whether
this triggered temporal average is significantly different from
the global average since this would indicate that something
peculiar is happening at these trigger instants.

The trigger times can either be obtained from external
influences (such as the occurrence of certain features in a
stimulus) or from internal conditions (such as the spike times
of a certain spike train). External triggering is a standard tool
to address questions of neural coding, for example, it can be
used to evaluate the influence of localized stimulus features on
the reliability of neurons under repeated stimulation. In multi-
neuron data, internal triggering might help to uncover the
connectivity in neural networks or to detect converging or
diverging patterns of firing propagation.

An example is shown in Fig. 5E. Here, neurons 2, 9, 14,
and 19 follow the 7th neuron during the 2nd and the 4th
500-ms subinterval. This can be revealed by triggering on
the spike times of neuron 7 during these subintervals. The
difference between the dissimilarity matrix of the full inter-
val in Fig. 5D and the triggered dissimilarity matrix of Fig.
5E can be best seen by comparing the respective dendro-
grams in Fig. 5, H and I. Since instantaneous values are not
defined, triggered averaging does not make any sense for
SPIKE-synchronization.

SPIKY

SPIKY is a graphical user interface for monitoring syn-
chrony between artificially simulated or experimentally re-
corded neuronal spike trains. It contains implementations of
the ISI-distance, the SPIKE-distance, and SPIKE-synchroniza-
tion. Moreover, SPIKY includes the forward variant of the
SPIKE-distance as well as a “simulation” of the real-time
SPIKE-distance. The latter calculates the values the real-time
version would give but instead of going forward in real time it
just calculates all values in parallel (see also Outlook). The
source codes are written in Matlab (MathWorks, Natick, MA)
with the most time-consuming loops coded in MEX-files.4

Consequently, SPIKY is not stand-alone but requires Matlab to
run.

The following sections give a broad overview of the features
of SPIKY. For a more detailed description of the specific
procedures that realize these features please refer to the docu-
mentation and the web pages listed below.

Access to SPIKY and How to Get Started

SPIKY is distributed under the BSD license [Copyright (c)
2014, Thomas Kreuz, Nebojsa Bozanic. All rights reserved]. A
zip-package containing all the necessary files can be accessed
for free on the download page.5 This package also contains a
folder with documentation (such as a FAQ-file and an intro-
duction to all individual elements of SPIKY and all individual
files of the SPIKY-package). Further information and many
demonstrations (both images and movies) can be found on the
download page and on the SPIKY Facebook page.6 Both of
these pages are used to announce updates and distribute the
latest information about new features. They also provide an
opportunity to give feedback and ask questions. Moreover, the
Facebook page includes various screen recordings with voice-
over in which the user is guided step by step through some of
the most important features of SPIKY. All of these movies can
also be viewed on the SPIKY YouTube channel.7

After downloading SPIKY the user has to first extract the
zip-package, which leaves all files in one folder named
“SPIKY.” If the system has a suitable MEX-compiler installed,
the MEX-files can be compiled from within this folder by
running the m-file “SPIKY_compile_MEX.” The program is
started with the m-file “SPIKY.”

When SPIKY is running, the user has the option to select to
view short hints (“tooltips”) when hovering above individual
elements of the graphical user interface. An overview of all the
information contained in the hints can be found in the docu-
mentation file “SPIKY-Elements.” Furthermore, at each step
the suggested element for the next user action is highlighted by
a bold font.

To get the user started quickly, SPIKY provides a few
example datasets from previous publications. The most useful
example is the “Clustering” dataset, which has already been
used in several figures as well as in the Supplemental Movie of
Kreuz et al. (2013). The best way to get acquainted with
SPIKY is to advance from panel to panel by pressing the
highlighted button. When the end is reached the user can reset
and run the same example again while changing some param-
eters to see the consequences. Note that it is not necessary to
set all the parameters each time when SPIKY is started. Rather,
it is possible to use the file “SPIKY_f_user_interface” to set
and modify the spike train data as well as the parameters
(again, the dataset “Clustering” provides an example).

Structure and Workflow of SPIKY

Overall, SPIKY has a rather linear workflow; however, it is
much more interactive than previous implementations of the
measures and there are many potential shortcuts and loops
along the way. As can be seen in the SPIKY-flowchart in Fig. 6,
the general flow is clearly directed from the input of spike train
data to the output of results. Therefore, the first step the user
has to do is to give SPIKY spike train data (i.e., sequences of
spike times) to work with. There are four possible ways to do
this: one can make use of predefined examples, load data from
a file or from the Matlab workspace, detect discrete events
from continuous data, or employ the spike train generator (see
Input for more details on the SPIKY input).

4 In our case these are subroutines written in C. However, as some users may
not have access to a suitable C compiler, SPIKY contains the (slower) pure
Matlab code as well.

5 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.
6 https://www.facebook.com/SPIKYgui.
7 https://www.youtube.com/user/SPIKYgui1.

Innovative Methodology

3440 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
https://www.facebook.com/SPIKYgui
https://www.youtube.com/user/SPIKYgui1

Once the full dataset is available, modification is still pos-
sible. The user can restrict the analysis to a specific subset, e.g.,
select a smaller time window and/or a subset of spike trains. It
is also possible to impose some external structure on the raster
plot (spike trains vs. time). For that, SPIKY allows the defini-
tion of two types of time markers (e.g., thick/thin markers for
specific events such as seizure onset/offset in epilepsy, trigger
onset/offset during stimulation etc.) and two types of spike

train separators (e.g., a thick separator for neurons from the left
vs. neurons from the right hemisphere and a thin separator for
different regions within the two halves). The user can also
define spike train groups. Depending on the setup these could
be spike trains recorded in different brain regions or upon
presentation of different stimuli. Figure 7 shows an example of
a raster plot with annotations marking all these different
elements.

After updating all of these data parameters, the next step is
to select the measures to be calculated. Options include the
PSTH as well as all measures described in detail in MEASURES

AND IMPLEMENTATION. In the same step the user can select
successive frames for a temporal analysis of spike train pat-
terns. These can be individual time instants for cross sections,
temporal intervals for selective averages, and sequences of
time instants for triggered averages (see LEVELS OF INFORMATION

EXTRACTION).
Now the actual calculation of the measures takes place. For

reasonably sized datasets this should take at most a few
seconds. Very large datasets (typically datasets containing
hundreds of spike trains and/or hundred thousands of spikes)
are divided in smaller subintervals and the calculation will be
performed in a loop that might take longer. It is from this point
on that SPIKY becomes truly interactive. Now the user can
switch between different representations of the results (such as
dissimilarity profiles, dissimilarity matrices, and dendro-
grams). Different matrices and dendrograms can be compared
in the same figure or they can be viewed in sequence.

The presentation can be restricted to smaller time windows
and/or subsets of spike trains, and temporal and spatial aver-
aging (for example moving average and average over spike
train groups) can be performed. Spike trains or spike train
groups can also be sorted according to the number of spikes
(either within the whole spike train or within a certain interval)
or according to the spike latency with respect to a specific time

SP KY

MODIFY
DATA

MODIFY
PLOTS

SELECT
MEASURES

SELECT
PLOTS

Update

Calculate

Plot

Use Matlab
code

Load
data

GET
RESULTS

Movie

Save to
filePrint

SELECT TIME
INSTANTS/AVERAGES

Event
detector

Reset

GET DATA

Export
variables

Spike train
generator

Plot

Fig. 6. SPIKY-logo (center) and flowchart describing the workflow of SPIKY
from the input of spike train data to the output of results. A typical SPIKY-
session begins at the top with “Get data” and then goes clockwise and ends on
the left with “Get results.” For clarity we omitted 2 possible actions that can be
performed from multiple positions on the workflow circle: From any point it is
possible to reset to the very beginning (“reset” leads to the symbol �), and
from any later point it is possible to jump back before the measure calculation
(“reset with the same data” leads to the symbol p).

0 500 1000 1500 2000 2500 3000 3500 4000

40

30

20

10

Time [ms]

A

G1

G2

G3

G4

10 20 30 40

30

20

10

Spike trains

S
pi

ke
 tr

ai
ns

SB

Spike trains

C 10 20 30 40

30

20

10

Spike trains

S
r

Spike trains

G1 G2 G3 G4

G4

G3

G2

G1

Spike trains

< S >
G

1 4 2 3
Spike train groups

G1 G2 G3 G4

G4

G3

G2

G1

Spike trains

< S
r
 >

G

0

0.2

0.4

2 3 1 4
Spike train groups

Spike train groups (color−coded)

Separators2 Separators1 Spike train group separators Markers2Markers1

Fig. 7. Annotated screenshot from a movie.
A: artificially generated spike trains. B: dis-
similarity matrices obtained by averaging
over 2 separate time intervals for both the
regular and the real-time SPIKE-distance as
well as their averages over subgroups of
spike trains (denoted by � · �G). C: corre-
sponding dendrograms.

Innovative Methodology

3441SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

instant. The order can even depend on the result of the
clustering analysis, i.e., spike trains belonging to the same
cluster will appear next to each other.

Furthermore, it is possible to add further figure elements
such as spike number histograms, overall averages, or dissim-
ilarity profiles for individual spike train groups. At this stage
the user can also retrospectively change the appearance of all
the individual elements of the figure (see Figure layout for
more details). Finally, SPIKY allows the user to extract both
data and results to the Matlab workspace for further analysis,
and it is also possible to save individual figures as postscript
file or a sequence of figures as an “avi”-movie (see Output for
more details on the SPIKY output).

Input. There are four different ways to input spike train data
into SPIKY.

The first option is to select one of the predefined examples
that are generated using Matlab-code. Initially these are the
examples used in Kreuz et al. (2013) but one can also define
new examples.

The second option is to load spike train data either from the
Matlab workspace or from a file. Two different file formats are
accepted, “.mat” and “.txt” (ASCII) files. For the mat-files
SPIKY currently allows three different kinds of input formats
(further formats can be added on demand):

1) Cell arrays (ca) with just the spike times. This is the
preferred format used by SPIKY since it is most memory
efficient. The two other formats will internally be converted
into this format;

2) Rectangular matrices with each row being a spike train
and zero padding (zp) in case of nonidentical spike numbers;
and

3) Matrices representing time bins where each zero/one (01)
indicates the absence/presence of a spike.

In case of a mat-file or of the workspace, SPIKY looks for
a variable called “spikes”; if it cannot find it, the user has the
chance to select the variable name (or field name) that contains
the spikes via an input mask that provides a hierarchical
structure tree of all the variables and fields contained in the
mat-file or in the workspace.

In the text format spike times should be written as a matrix
with each row being one spike train. The SPIKY-package
contains one example file for all four formats (“testdata ca-
.mat,” “testdata zp.mat,” “testdata 01.mat,” and “testdata. txt”).

The third option is to use the event detector to detect discrete
events in continuous data. There are many different possibili-
ties of defining an event. A variety of standard events (such as
local maxima and minima and threshold crossings) with a
number of parameters are already included.

The fourth option is to create new spike train data via the
spike train generator. After setting some defining variables
(number of spike trains, start and end time, and sampling
interval) the user can build spike trains from predefined spike
train patterns (such as periodic, splay, uniform, or Poisson)
and/or by manually adding, shifting, and deleting individual
spikes or groups of spikes.

Figure layout. SPIKY is designed so that it can directly
generate figures suitable for publication. The user is given
control over the appearance of every individual element (e.g.,
fonts, lines, etc.) in each type of figure. There are two ways to
determine essential properties such as color, font size, or line
width. It is possible to change elements in the active figure

while the program is already running. Context menus let the
user edit the properties of individual elements or of all ele-
ments of a certain type. Conveniently, one can also use the file
“SPIKY_f_user_interface” to define the standard values for all
the parameters that describe the principal layout of the figure.

If a figure contains more than one subplot (besides the
subplot containing the spike rasterplot and/or the dissimilarity
profiles, these are typically subplots with dissimilarity matrices
and dendrograms), it is possible to change their position and
size. One can edit all position variables together or change the
x-position, the y-position, the width, and the height individu-
ally. In case there are several dissimilarity matrices/dendro-
grams this can be done either for an individual matrix/dendro-
gram or for all of them at once.

Output. From within SPIKY it is possible to extract the spike
trains and the results of the analysis (measure profiles, matri-
ces, dendrograms) to the Matlab workspace for further pro-
cessing. Results will be stored in variables such as “SPIKY-
_spikes,” “SPIKY_profile_X_1,” “SPIKY_profile_Y_1,”
“SPIKY_profilename_1,” “SPIKY_matrix_1,” and “SPIKY-
_matrix_name_1”. In addition, the results obtained during an
analysis will automatically be stored in the output structure
“SPIKY_results,” which will have one field for each measure
selected. Depending on the parameter selection within SPIKY,
for each measure the structure can contain the following sub-
fields that correspond to the different representations identified
in LEVELS OF INFORMATION EXTRACTION:

1) SPIKY_results.�Measure�.name: name of selected
measure.

2) SPIKY_results.�Measure�.overall: level of distance/
synchronization over all spike trains and the whole interval.
This is just one value, obtained by averaging over both spike
trains and time.

3) SPIKY_results.�Measure�.matrix: pairwise distance/
synchronization matrices, obtained by averaging over time.

4) SPIKY_results.�Measure�.time: time-values of overall
(dis)similarity profile.

5) SPIKY_results.�Measure�.profile: overall (dis)similar-
ity profile obtained by averaging over spike train pairs.
Note that the dissimilarity profiles are not equidistantly sam-
pled. Rather they are stored as memory efficiently as possible,
which means just one value for each interval of the pooled
spike train for the ISI- and two values for the SPIKE-distance.
Since this format can be more difficult to process, SPIKY
includes three functions: “SPIKY_f_selective averaging” for
computing the selective average over time intervals, “SPIKY-
_f_triggered averaging” for calculating the triggered average
over time instants, and “SPIKY_f_average_pi” for averaging
over many dissimilarity profiles. Furthermore, for the ISI-
distance the function “SPIKY_f_pico” can be used to obtain
the average value as well as the x- and y-vectors for plotting.

Besides the standard way to work with Matlab-figures
SPIKY also offers the opportunity to save each figure as a
postscript file. Finally, it is possible to save a sequence of
figures as an “avi”-movie.

GUI vs. Loop

SPIKY was mainly designed to facilitate the detailed anal-
ysis of one dataset. It enables the user to switch between
different representations (see LEVELS OF INFORMATION EXTRAC-

Innovative Methodology

3442 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

TION) and to zoom in on both spatial and temporal features of
interest. However, SPIKY is less convenient for the analysis of
many different datasets when, e.g., the statistics of a certain
quantity such as an average over a specific time interval should
be evaluated over all available datasets (e.g., over all trials of
a stimulus setup or for recordings of all subjects, etc.) in some
kind of loop. For these purposes the SPIKY-package contains
a program called SPIKY_loop, which is complementary to
SPIKY. It is not a graphical user interface but it should be
simple enough (and plenty of examples are provided) to allow
everyone to run the same kind of analysis for many different
datasets and to evaluate and compare their “SPIKY_results.”
SPIKY_loop provides the full functionality of SPIKY and
gives access to time instants and selective and triggered aver-
ages as well as averages over spike train groups.

Therefore, by combining these two programs it is possible to
first use SPIKY for a rather exploratory but detailed analysis of
a limited number of individual datasets and then use SPIKY-
_loop and its output structure “SPIKY_loop_results” to verify
whether any effect discovered on the example dataset is con-
sistently present within all of the datasets.

Both SPIKY and SPIKY_loop require the storage of matri-
ces of the order “number of interspike intervals in the pooled
spike train” � “number of spike train pairs.” For very large
datasets with many spike trains and/or spikes this can lead to
memory problems. We addressed this issue by making the
calculation sequential, i.e., by cutting the recording interval
into smaller segments, and performing the averaging over all
pairs of spike trains for each segment separately. In the end the
dissimilarity profiles for the different segments (already aver-
aged over pairs of spike trains) are concatenated, and its
temporal average yields the distance value for the whole
recording interval. During this sequential calculation SPIKY
uses a waitbar (which displays the percent completed) to
continuously inform the user about the progress. This way, by
trading memory against speed, running more loops with
smaller matrices takes longer, SPIKY is able to deal with
datasets containing more than one hundred spike trains and
overall more than one million spikes.

Spike Train Surrogates and Significance

A very important issue that has not yet been addressed is
statistical significance. Given a certain value of the SPIKE-
distance how can one judge whether it reflects a significant
decrease or increase in spike train synchrony and does not just
lie within the range of values obtained for random fluctuations?
One answer to this question is the use of spike train surrogates
(Kass et al. 2005; Grün 2009; Louis et al. 2010). The idea is to
compare the results for the original dataset with the results
obtained for spike train surrogates generated from that
dataset. If the value obtained for the original lies outside the
range of values for the surrogates, this value can be assumed
to be significant to a level defined by the number of
surrogates, used (e.g.,
 � 0.05 for 19 surrogates or
 �
0.001 for 999 surrogates).

The SPIKY-package contains a program “Spiky_loop_
surro,” which was designed to evaluate significance. So far it
includes four different types of spike train surrogates. They
differ in the properties that are preserved and maintain either
the individual spike numbers (obtained by shuffling the

spikes), the individual interspike interval distribution (obtained
by shuffling the interspike intervals), the pooled spike train
(obtained by shuffling spikes among the spike trains), or the
PSTH. In the last case the spike train surrogates are obtained
by means of inverse transform sampling, i.e., by resampling
from the PSTH using its cumulative distribution function (Ross
1997). Other ways to calculate rate functions (e.g., based on
kernels with different bandwidths) will be added in future
releases.

DISCUSSION

Summary

In this article we presented SPIKY, a graphical user inter-
face which facilitates the application of methods of spike train
analysis to both simulated and real datasets. Apart from the
standard PSTH, SPIKY contains three parameter-free and
time-resolved measures (see LEVELS OF INFORMATION EXTRAC-
TION). These measures are complementary to each other since
each one addresses a different specific aspect of spike train
similarity. While the ISI-distance quantifies local dissimilari-
ties based on covariances of the neurons firing rate profiles,
both the SPIKE-distance and SPIKE-synchronization capture
the relative timing of local spikes.8 However, whereas the
SPIKE-distance weights and normalizes the differences be-
tween nearest neighbor spikes, SPIKE-synchronization acts as
a binary coincidence detector, i.e., there is a cutoff at the
(adaptive) time lag relative to which two neighboring spikes
are either considered coincident or not and all detailed infor-
mation both within or outside this coincidence window is
discarded.

All of these measures yield instantaneous values for each
pair of spike trains, and thus there are many different
possible representations of the results (see LEVELS OF INFOR-
MATION EXTRACTION). Often the most informative representation
might depend on the amount and type of spike train data and
SPIKY can be used to reveal it via some explorative and
interactive analysis. SPIKY also allows to alter a given dataset
before or after the actual analysis, e.g., to interactively select
subintervals or spike train subsets, to define time markers and
spike train separators, and to divide the dataset into different
spike train groups.

In addition to the main GUI designed for the detailed
analysis of one dataset, the SPIKY-package also includes two
complementary programs. While SPIKY_loop aims at the
grand average analysis of large numbers of datasets, SPIKY_
loop_surro allows the estimation of significance levels. In all of
these programs we use MEX-files, i.e., C-based Matlab ex-
ecutables for the more time-consuming parts and we exploit the
piecewise linearity of the dissimilarity profiles, thereby guar-
anteeing high computation speed and memory efficiency.

Outlook

One of the measures included in SPIKY is the real-time
SPIKE-distance. The present algorithm calculates its instanta-

8 One should be aware that all of these measures are based on some explicit
notion of localness and simultaneousness and thus they all can be fooled by
phase lags, no matter whether these are caused by internal delay loops in one
spike train or by a common driver that forces the two time series with different
delays. Therefore, any such phase lags should be removed by suitably shifting
the time series in a preprocessing step.

Innovative Methodology

3443SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

neous dissimilarity values by making use of past information
only, but it does so in a speed-optimized and parallelized
manner that would not be compatible with an actual real-time
implementation. However, such a real-time implementation
should actually be simpler and computationally (speed and
memory) less problematic even for large numbers of neurons
since the only information that would have to be stored at each
time instant are the time stamps of the latest spikes of each
spike train and their nearest neighbors in the other spike trains.

SPIKY was primarily designed to analyze neuronal spike
trains. However, in principle it is also applicable to any other
kind of discrete data that comes in the form of sequences of
time stamps (such as times of bouncing basketballs or time-
coded social interactions in a psychological test). Furthermore,
in Kreuz et al. (2013) the SPIKE-distance was already applied
not only to discrete data but also to an example of continuous
data (EEG). To clear the way for such applications SPIKY
includes an event detector that allows to bridge the gap be-
tween continuous data and our methods for discrete data.

We chose to write SPIKY in Matlab due to its popularity in
the neuroscience community, ease of use, and the engaging
visualization capabilities of its GUI design. Because of its high
level parallelization, Matlab provides a powerful tool for pro-
cessing vectorized data, but it also includes a well-developed
MEX-interface for integrating C functions for performance
enhancements. C functions do not only lead to an increase in
performance, they can also easily be incorporated into other
programming platforms. Indeed, we have already ported all
four measures (the PSTH, the ISI-distance, the SPIKE-dis-
tance, and SPIKE-synchronization) as well as some of the
additional SPIKY-functionality to Python as part of the
PySpike module, an open-source project hosted on Github.9 As
in SPIKY, in PySpike the computation intensive functions are
implemented as C backends.

Another potential direction would be the extension of the
methods used here from the quantification of synchrony within
one population of two or more neurons to the quantification of
synchrony between two (or more) neuronal populations. Sim-
ilar extensions have been done for two other spike train
distances (Aronov 2003; Houghton and Sen 2008), but both of
these methods depend on not one but two parameters. There-
fore, one particular challenge for a potential extension of our
methods would be to make them parameter-free while main-
taining their high temporal resolution.

There are still many open questions regarding neuronal
synchrony. Among these questions are its role in dynamical
diseases like epilepsy and its relevance for neural coding.
While a thorough discussion of these issues is beyond the
scope of this article, we argue that SPIKY will be a very useful
tool for investigation. If epileptic seizures and/or time-depen-
dent stimulations lead to changes in spike train synchrony or
spike train clustering, SPIKY should be able to detect them.

ACKNOWLEDGMENTS

T. Kreuz thanks Marcus Kaiser and his group for hosting him at the
University of Newcastle, UK. N. Bozanic thanks John van Opstal and his
group for hosting him at the Radboud University, Nijmegen, The Netherlands
as well as Joshua D. Berke and his group for hosting him at the University of
Michigan, Ann Arbor, MI. We thank Ralph Andrzejak, David Angulo Garcia,

Francesco Battaglia, Roman Bauer, Joshua D. Berke, Paolo Bonifazi, Emily
Caporello, Daniel Chicharro, Michael Farries, Tim Gentner, Bon-Mi Gu, Arif
Hamid, Conor Houghton, Marcus Kaiser, Jutta Kretzberg, Tatjana Loncar
Turukalo, Stefano Luccioli, Jason MacLean, Gorana Mijatovic, Ali Mohebi,
Florian Mormann, Leon Paz, Jeffrey Pettibone, Friederice Pirschel, Andreea
Sburlea, Peter Taylor, Richard Tomsett, Alessandro Torcini, Jonathan Victor,
and Yujiang Wang for useful discussions. We also thank Thomas Alderson,
Mayte Bonilla Quintana, Hamid Charkhkar, Didier Desaintjan, Mario Di-
Poppa, Andres Espinal Jiménez, Mahboubeh Etemadi, Gabriel Chew Guojun,
Taekyung Kang, Marion Najac, Oren, Robert Rein, Rodrigo Salazar, Andreea
Sburlea, Michael Schaub, Eitan Schechtman, Jannetta Steyn, Matthew Wil-
liams, Yunguo Yu, Maja Zorovic for user feedback and Black Square, Conor
Houghton, Eugenio Piasini, Matthew Phillips, and Sid Visser for advice.
Finally, we thank Daniel Chicharro, Conor Houghton, and Andreea Sburlea for
carefully reading the manuscript.

GRANTS

T. Kreuz acknowledges the Italian Ministry of Foreign Affairs regarding the
activity of the Joint Italian-Israeli Laboratory on Neuroscience and N. Bozanic
acknowledges the Serbian Ministry of Youth and Sports. T. Kreuz, M.
Mulansky, and N. Bozanic acknowledge funding support from the European
Commission through the Marie Curie Initial Training Network “Neural Engi-
neering Transformative Technologies (NETT)” Project 289146, and T. Kreuz
was also supported through the European Joint Doctorate “Complex Oscilla-
tory Systems: Modeling and Analysis (COSMOS)” Project 642563.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: T.K., M.M., and N.B. conception and design of
research; T.K., M.M., and N.B. performed experiments; T.K., M.M., and N.B.
analyzed data; T.K., M.M., and N.B. interpreted results of experiments; T.K.,
M.M., and N.B. prepared figures; T.K., M.M., and N.B. drafted manuscript;
T.K., M.M., and N.B. edited and revised manuscript; T.K., M.M., and N.B.
approved final version of manuscript.

REFERENCES

Aronov D, Reich DS, Mechler F, Victor JD. Neural coding of spatial phase
in V1 of the macaque monkey. J Neurophysiol 89: 3304–3302, 2003.

Bower MR, Stead M, Meyer FB, Marsh WR, Worrell GA. Spatiotemporal
neuronal correlates of seizure generation in focal epilepsy. Epilepsia 53:
807–816, 2012.

DiPoppa M, Gutkin BS. Correlations in background activity control persis-
tent state stability and allow execution of working memory tasks. Front
Comp Neurosci 7: 139, 2013.

Grün S. Data-driven significance estimation for precise spike correlation. J
Neurophysiol 101: 1126–1140, 2009.

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan
AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442:
164–171, 2006.

Houghton C, Sen K. A new multineuron spike train metric. Neural Comput
20: 1495–1511, 2008.

Kass RS, Ventura V, Brown EN. Statistical issues in the analysis of neuronal
data. J Neurophysiol 94: 8–25, 2005.

Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A. Measuring spike
train synchrony. J Neurosci Methods 165: 151–161, 2007.

Kreuz T, Chicharro D, Andrzejak RG, Haas JS, Abarbanel HD. Measur-
ing multiple spike train synchrony. J Neurosci Methods 183: 287–299, 2009.

Kreuz T, Chicharro D, Greschner M, Andrzejak RG. Time-resolved and
time-scale adaptive measures of spike train synchrony. J Neurosci Methods
195: 92–106, 2011.

Kreuz T. Measures of spike train synchrony. Scholarpedia 6: 11934, 2011.
Kreuz T. SPIKE-distance. Scholarpedia 7: 30652, 2012.
Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F. Moni-

toring spike train synchrony. J Neurophysiol 109: 1457, 2013.9 https://github.com/mariomulansky/PySpike.

Innovative Methodology

3444 SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

https://github.com/mariomulansky/PySpike

Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronal
networks: reconciling different perspectives on neural coding. Nat Rev
Neurosci 11: 615–627, 2010.

Louis S, Gerstein GL, Grün S, Diesmann M. Surrogate spike train genera-
tion through dithering in operational time. Front Comp Neurosci 4: 127,
2010.

Mainen Z, Sejnowski TJ. Reliability of spike timing in neocortical neurons.
Science 268: 1503–1506, 1995.

Miller EK, Wilson MA. All my circuits: using multiple electrodes to under-
stand functioning neural networks. Neuron 60: 483–488, 2008.

Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the
long and winding road. Brain 130: 314–333, 2007.

Nirenberg S, Victor JD. Analyzing the activity of large populations of
neurons: how tractable is the problem? Curr Opin Neurobiol 17: 397–400,
2007.

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P. Induction and mod-
ulation of persistent activity in a layer v pfc microcircuit model. Front
Neural Circuits 7: 161, 2013.

Quian Quiroga R, Kreuz T, Grassberger P. Event synchronization: a simple
and fast method to measure synchronicity and time delay patterns. Phys Rev
E Stat Nonlin Soft Matter Phys 66: 041904, 2002.

Quian Quiroga R, Panzeri S (Editors). Principles of Neural Coding. Boca
Raton, FL: CRC Taylor and Francis, 2013.

Ross SM. Introduction to Probability Models (6th ed.). New York: Academic,
1997.

Rusu CV, Florian RV. A new class of metrics for spike trains. Neural Comput
26: 306–348, 2014.

Sacré P, Sepulchre R. Sensitivity analysis of oscillator models in the space of
phase-response curves: oscillators as open systems. IEEE Control Systems
34: 5074, 2014.

Sanchez JC, Principe JC, Nishida T, Bashirullah R, Harris JG, Fortes JA.
Technology and signal processing for brain-machine interfaces. IEEE Signal
Process 25: 29–40, 2008.

Shlens J, Rieke F, Chichilnisky EJ. Synchronized firing in the retina. Curr
Opin Neurobiol 18: 396–402, 2008.

Thibeault CM, O’Brien MJ, Srinivasa N. Analyzing large-scale spiking
neural data with HRLAnalysis. Front Neuroinform 8: 17, 2014.

Tiesinga PH, Fellous JM, Sejnowski TJ. Regulation of spike timing in visual
cortical circuits. Nat Rev Neurosci 9: 97–107, 2008.

Truccolo W, Donoghue JP, Hochberg LR, Eskandar EN, Madsen JR,
Anderson WS, Brown EN, Halgren E, Cash SS. Single-neuron dynamics
in human focal epilepsy. Nat Neurosci 14: 635–641, 2011.

Victor JD. Spike train metrics. Curr Opin Neurobiol 15: 585–592, 2005.

Innovative Methodology

3445SPIKY

J Neurophysiol • doi:10.1152/jn.00848.2014 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (151.032.025.006) on June 16, 2022.

