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______________________________________________________________________ 

Abstract: Shewhart charts with variable sampling intervals (VSI) have received considerable interest in 
academic literature. For industrial practice, three aspects of  VSI schemes are of  vital interest: i) a simple 
algorithm for switching, i.e., varying sampling intervals, which can easily be executed on shop floor, ii) a 
simple design of  the charts, and iii) flexible model assumptions on the time to failure in the process, 
which are able to express phenomena of  tool wear, aging of  equipment, wear out of  adjustment devices 
etc. VSI schemes suggested by literature often tend to fall short in these respects. The present paper 
suggests a novel framework for VSI policies based on the distribution of  the time to failure in the process, 
with a very simple and easily executable switching algorithm. The distribution of  time to failure is 
assumed to be a member of  the Weibull family, which is rich enough to model a large class of  aging 
phenomena. The design parameters of  VSI charts can be determined easily from graphs. It is shown that 
VSI charts considerably outperform fixed sampling interval charts with respect to the time of  
out-of-control operation.  

Keywords: Bipartition policy, false alarms, inherent degradation, Shewhart control charts, variable 
sampling interval. 
______________________________________________________________________ 

1. Introduction 

he Shewhart control charting scheme, as exposed by textbooks and industrial standards, 
formally defines the way of  evaluating samples, the relevant test statistics, e.g., X  or 

, control limits, e.g., three-sigma limits, and the alarm rule. However, the sampling distance 
or sampling interval, i.e., the time interval between successive samples, is left to informal 
reasoning. Implicitly, textbooks assume fixed sampling interval (FSI) policies, i.e., time 
intervals of  identical and constant length between successive samples. Only under an FSI 
policy the average run length (ARL) is a reasonable performance measure for control charts. 
FSI policies are simple in administration, and hence very popular in industrial practice. 
Nevertheless, sampling intervals are sometimes varied by practitioners on an ad hoc basis. 
Strategies of  changing the sampling interval or the sampling distance are denoted as 
variable sampling interval (VSI) strategies. Three motivations for the use of  VSI approaches 
can be identified. 

S
T

(i) Observation of  suspect samples where the test statistic is close to the control limits 
without violating them, e.g., beyond 1 sigma limits or beyond 2 sigma limits. Such 
samples may indicate an out-of-control operation of  the process. Hence it seems 
reasonable to increase the sampling frequency afterwards.  
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(ii) Occurrence of  corrective interventions onto the process, like adjustments or repairs. 
Afterwards, the sampling frequency is increased to check whether the intervention had 
the desired effect on process operation.  

(iii) Knowledge of  inherent laws of  deterioration or aging of  the process equipment or the 
process environment. With increasing operation time the process is increasingly prone 
to unwelcome substantial variation, i.e., inadequate operation, failure, or breakdown. 
Hence, with increasing operation time, the sampling frequency is successively 
increased so as to achieve early detection of  out-of-control operation.   

Motivation (i) has received considerable interest in literature. Shewhart charts based 
on (i) were investigated by [12], [15], [14], [13], [17], [18], [1], [16], [4], [10], [9], for 
instance. It is difficult to reflect the motivation (ii) by a formal and general stochastic model. 
Essentially, motivation (ii) requires a phase I period of  control charting, i.e., stable 
in-control operation is restored and the control chart is retuned. Hitherto, motivation (iii) 
has received little attention only. Ramalhoto et al. [11] outline a general model of  
monitoring aging processes based on (iii).  

Ideas (i) and (iii) require some insight into the stochastic mechanism of  substantial 
variation (failures, shifts) in the process, i.e., into the distribution of  time to failure. Such 
knowledge is not considered by Shewhart’s [20] original approach. However, the 
application fields of  control charts have been changing and enlarging, see [19]. There may 
be cases where the failure time distribution is completely unknown, or where shifts from 
the in-control to the out-of-control state are completely unpredictable or chaotic, e.g., 
operators’ fault. In modern manufacturing or service industry, plants, machines, staff, 
process history are continuously documented and analyzed for maintenance and 
improvement purposes. In many cases, there is sufficient information to establish stochastic 
models of  tool wear, process degradation or aging. Throughout, VSI approaches based on 
the idea (i) stipulate exponentially distributed times between process failures. Studies based 
on the idea (iii) have to be based on more general and flexible classes of  failure time 
distributions like Weibull distribution. 

Two aspects are crucial for successful implementation of  control charts on shop floor: 
Simplicity of  the control algorithm and the chart design, and generality and flexibility of  the 
underlying model assumptions. Simplicity and generality made the FSI Shewhart chart a 
success in industry. VSI approaches are more flexible. However, they tend to fall short in 
simplicity. In particular, approaches based on idea (i) may be difficult in administration due 
to frequent and unscheduled changes of  the sampling distance. The organizational 
difficulties in implementing such VSI strategies are pointed out by Baxley [2].  

The present paper elaborates upon idea (iii), i.e., VSI control charting policies 
motivated by knowledge on inherent degradation or aging of  the process. We choose the 
Shewhart chart as the control chart paradigm to illustrate the VSI design approach, because 
of  three properties of  the Shewhart scheme: i) simple analytical manipulation, ii) 
straightforward understanding and interpretation, iii) by far of  the highest popularity in 
industrial practice. To achieve the requested properties of  simplicity, generality and 
flexibility of  the VSI design, the following features of  the control policy are important: 1) 
Changes in the sampling interval are fixed along the time axis in a predetermined schedule. 
2) Changes in the sampling interval are infrequent. 3) Primary interest is not in deriving the 
policy parameters as optimum solutions under a specific model. Instead, it is shown that a 
simply designed VSI chart considerably outperforms a comparable FSI chart under a 
variety of  failure time models expressed by Weibull distributions. 
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The paper is organized in the following way. Section 2 establishes a dynamic model of  
process quality and explains the control charting procedure. Section 3 defines VSI and FSI 
sampling policies in a formal manner. Section 4 provides formulae for the expected time of  
out-of-control operation and the expected number of  false alarms. Section 5 suggests a 
simple design for VSI charts: the bipartition policy with one switching time, based on two 
rules labelled 1 and 2, and on experience gained on shop floor. Section 6 discusses the 
parameters of  VSI charts under a scale family of  failure time distribution. Graphs for 
determining VSI charts and for evaluating their performance are given by section 7. A 
numerical example is given in section 8. Section 9 presents a conclusion and some 
suggestions for further research. In order to make the paper easier to be read, mathematical 
derivations are provided in the appendices A, B, and C.  

2. Process and Sampling Model 

Samples of   items with corresponding univariate quality characteristics  
are taken from a process at sampling time . Successive samples are independent. Each 
sample  is independent and identically distributed where the distribution of  

 is characterized by a value 

n 1t tX X,...,
0t >

1tX X,...,
1tX X,..., tθ  of  the process quality parameterθ . In most 

situations the usual univariate process quality parameters are the process mean 
[ ]E Xθ µ= =  and the process variance . Sometimes in some of  these 

situations it is useful to monitor both the mean and the variance, i.e., to consider the 
bivariate process quality parameter 

2 [ ]V Xθ σ= =

2( )θ µ σ= , , as we did in section 7 for the Shewhart 
case.  

At time 0 the process is assumed to be in an in-control state which is characterized by 
the in-control value intθ θ=  of  the parameter. At a random time  a disturbance or 
shock shifts the process from the in-control state to an out-of  control state, 
where . In terms of  the process parameter this amounts to a shift from the 
in-control value 

0D >

P( 0) 1D > =
intθ θ=  holding for t D<  to the out-of  control value outtθ θ=  holding 

for t . The disturbance results from failure in machinery or equipment or in the process 
environment, e.g., by operators or service staff. Hence  is called failure time. In view of  
such failure sources a self-repair of  the process is excluded – without a corrective 
intervention, after the failure time occurs the process continues in the out-of-control state. 
Statistical inference from process documentation data, from technical parameters of  the 
equipment, including equipment reliability and maintenance strategies, provide knowledge 
on the distribution function  of  the failure time .  

D≥
D

F D

A control chart of  Shewhart type is used to test the process for the presence of  a shift 
in the quality parameter. At sampling time t , a real-valued statistic  is 
compared to control limits . An alarm or out-of-control signal is triggered iff  

, or . After an alarm, the process is inspected so as to detect the actual 
state of  the process. If  the inspection confirms the in-control state of  the process (false 
alarm), the process continues without further intervention. If  the process is actually 
out-of-control, the process is subject to a corrective intervention, e.g., adjustment, repair, or 
installation of  new equipment. The corrective intervention removes the causes of  failure 
and renews the process. The renewed process restarts in the in-control state.  

1( )t tT T X X= ,..., tn
LCL UCL<

tT LCL≤ tT UCL≥

The stochastic properties of  the control chart are essentially characterized by the 
conditional alarm probabilities: the probability of  a false alarm, i.e., the probability  

 
inin P ( or ) P( or | )t t t tp T LCL T UCL T LCL T UCL D tθ= ≤ ≥ = ≤ ≥ >  (1) 
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of  an alarm under the condition that the process is in control at time t , and the probability 

 
outout P ( or ) P( or | )t t t tp T LCL T UCL T LCL T UCL D tθ= ≤ ≥ = ≤ ≥ ≤  (2) 

of  an alarm under the condition that the process is out of  control at time t . 

3. Arrangement of Sampling Times 

In a VSI policy, the sampling distances are changing along the time axis. We consider 
 different sampling distances 1s + 0 1 sh h h, ,..., . Let 0 1sk k −,...,  be positive integers, 

let , and let the times  be defined by  sk = +∞ la

 , 0 0a = 0 0 1 1l l la k h k h− −= + ... + for 1l s  = ,...,

.

 (3) 

The sampling times  are arranged as multiples of  the sampling distances 
according to the following rule:  

1 2 3t t t< < ..

 
0 1

0 0for 1 2 0

for 1 2 1lk k i
l l l

ih i k l
t

a ih i k l s−+...+ +

= , ,..., , = ,⎧
= ⎨ + = , ,..., , = ,..., ,⎩

 (4) 

i.e., the sampling distance is changed from 1lh −  to  at the switching time  
for , and remains stable at 

lh la
1l s= ,..., −1 sh  after the last switching time sa .  

A proper VSI policy or switching policy is characterized by the sampling distances 

0 sh h,...,  with 1l lh h −≠ , the interval numbers 0 1 sk k k, ,..., , and the switching rules expressed 
by equations (3) and (4). A FSI policy can be considered as an instance of  the same scheme 
with identical sampling distances lh h= .  

If  sampling distances become too small the assumption of  independent samples made 
in section 2 may be violated. This is a general objection against VSI policies. However, the 
VSI policy considered in section 5, below, prescribes few switches so that the smallest 
sampling distance achieved is still large enough to maintain the independence assumption. 
See also the numerical example in section 8. The discussion of  autocorrelated process data 
is out of  the scope of  the paper and should be considered separately, see the discussion in 
the conclusion, section 9.  

4. The Renewal Cycle and its Characteristics 

  A renewal cycle is the period between the start of  the process at a time 0 and the first 
alarm in the out-of-control state of  the process. After this alarm, the out-of-control state is 
detected. The process is renewed, i.e., the effect of  the disturbance is removed and the 
process is restarted in the in-control state. Under this assumption, the stochastic 
characteristics of  successive cycles, like cycle length, number of  false alarms, time of  
disturbance, are independent and identically distributed and constitute a simple renewal 
process. In this simple situation we can omit a time index in the cycle characteristics.  

We consider the following stochastic cycle characteristics:   

z The cycle length , i.e. the time of  the first alarm in the out-of-control state.  Z

z The time  of  out-of-control operation.  O Z D= −

z The number false  of  false alarms, i.e. the number of  sampling times  before 
the disturbance time , where an alarm is signalled.   

A it D<
D

We are interested in the expectations of  these cycle characteristics. The average cycle length, 
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i.e., the expectation [ ]Z E Zµ =  of  the cycle length, is calculated in appendix B:  

 
1

0 0
[ ] ( )

mks

Z m i
m i

m mE Z F aµ
−

,
= =

= = ∆ +∑ ∑ ih ,  (5) 

where for , , we let  0m s= ,..., 0 1mi k= ,..., −

 

0 1

1

0 out
1

1out out

1 out
1

(1 )
( )  ,           if 0

( )(1 ) other

l

m m l

k ks

l l
l

m i
s m k k i

m m l m l
l

h p
h h m i

p p

h h h p

−

+ −

+...+

−
=

,
− +...+ −

+ + −
=

⎧ −
+ − =∑⎪⎪∆ = ⎨

⎪ + − − ,∑⎪⎩
wise

=
, (6) 

and where 1F = − F

Z D

 is the complement of  the cumulative distribution function of  the 
disturbance time (failure time) . The average time of  out-of-control operation is given by  D

 [ ] [ ] [ ]O E O E Z E Dµ µ µ= = − = − .

]

 (7) 

The average number of  false alarms, i.e., the expectation 
false false[A E Aµ =  of  the number 

of  false alarms, is calculated in appendix C:  

 
false

1

false in
0 0

[ ] ( )
mks

A
m i

E A p F a ihµ
−

= =
= = +∑ ∑ m m .  (8) 

5. A Simple Design for VSI Charts 

The design of  control charts has received enormous interest. In particular, starting 
with Duncan’s [5] pioneering work, various authors have suggested economically optimum 
designs based on economic loss functions. See [8], [3] or [6] for literature surveys. However, 
economic designs have not gained popularity in industry, essentially because of  their 
complexity. In particular, the following issues are important: 1) it is difficult and time 
consuming to determine economic parameters, e.g., because of  missing or inaccessible cost 
allocations, 2) adaptation to changes in the economic environment can be intolerably slow, 
3) the numerical computation of  economically optimum designs is involved and is not 
supported by statistical packages, and 4) restrictions and costs of  administration on shop 
floor are not taken into account by economically optimum design schemes.  

In industry, the design parameters of  control charts are often chosen arbitrarily or 
possibly by experience. Sample sizes usually range from 1n =  to 10n = , with  
as customary choices. Three-sigma limits are the preferred choice for control limits. The 
most important criteria for determining the sampling distance are frequently related to shop 
floor administration and insights regarding process failures. It is often recommended to 
sample more frequently as a tool or machine approaches the end of  its cycle in order to 
prevent against poor quality. Typically, Wheeler ([21], p. 142) states that "it is the rate at 
which the process can change that determines the rationality of  the sampling frequency". 
From a formal point of  view this amounts to studying the distribution  of  the time  
to failure in the process, an approach which is addressed by the present paper.  

3 5 7n = , ,

F D

In the sequel, we distinguish between the VSI policy and the design of  a specific VSI 
chart. The VSI switching policy provides a general rule for changing the sampling distances 
and for determining the number of  switching times. In the framework of  a VSI policy, the 
design of  a VSI chart consists of  sample size, control limits, and a specific choice of  
sampling distances and switching times.  
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Let us first consider the design of  a specific VSI chart in the framework of  a given VSI 
switching policy. We do not establish an objective function to derive optimum charts. 
Instead, we use a comparative design approach. In a given practical context, we assume that a 
FSI chart with sample size , control limits  and UCL , sampling distance  is 
designed using some rational considerations. In the comparative design, the sample size  
and the control limits ,  shall be the same for the FSI and for the VSI chart. For 
the FSI chart with sampling distance  and for the VSI chart with switching parameters 

n LCL h
n

LCL UCL
h

0 sh h,..., , 0 1sk k −,..., , consider the average times  

 ( )O hµ , 0 0(O s sh h k k 1)µ −,..., , ,...,  (9) 

of  out-of-control operation and the average number  

 
false

( )A hµ , 
false 0 0( )A sh h k k 1sµ −,..., , ,...,  (10) 

of  false alarms as functions of  the parameters h  and 0 sh h,..., , 0 1sk k −,..., , respectively. 
The comparative design proceeds by the following rule 1.  

Rule 1 (Comparative design of a VSI chart from an FSI chart). Let the sample size  and 
the control limits ,  be adopted from a given FSI chart with sampling distance , and let a 
switching policy be prescribed. A VSI chart with parameters  

n
LCL UCL h

  (11) 0 0 0 0 1 1( ) ( ) ( ) ( )s s s sh h h h h h k k h k k h− −= ,..., = , = ,..., =

is determined by the following requirements:    

(R1) The expected sampling cost is the same for the FSI and the VSI chart, i.e.,  

 
false false0 0 1( )A s s Ah h k k h( )µ µ−,..., , ,..., = .  (12) 

(R2) The expected time of  out-of-control operation is minimum among all VSI charts conforming to 
the prescribed switching policy and satisfying equation (12). 

From the point of  view of  sampling cost the prescribed FSI chart and the VSI chart 
determined by rule 1 are equivalent. Hence among the two the chart with smaller expected 
out-of-control operation time is the one with better performance. 

The comparative design by rule 1 can be applied to determine VSI charts under any 
VSI policy type. In view of  current industrial practice it makes little sense to recommend 
VSI policies based on some optimality principle. Instead, we suggest a policy with the 
following properties: i) infrequent switching times, ii) simple scheduling of  switching times 
according to the distribution of  the time to failure in the process, and iii) easy integration 
into the administration of  the production process. The policy is intended for the control of  
an aging process, i.e., with increasing operation time the process exhibits increasing 
proneness to failure. In this case it is reasonable to sample more often with increasing 
operation time, i.e., to reduce the sampling distance with increasing operation time. In the 
terminology of  the switching model of  section 3, this amounts to assume a decreasing 
sequence 0 1 sh h h> > ... >  of  sampling distances, as prescribed by the following geometric 
degression policy (rule 2).  

Rule 2 (VSI degression switching policy). In the geometric degression policy the sampling 
distances form a decreasing sequence 0 1 sh h h> > ... >  structured by  

 1 0,......, -1i ih h r for i s+ / = =  (13) 
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1with some degression parameter . Two simple instances of  the degression policy are: 0 r< <

z Bipartition policy:  for 1 0 5i ir h h+= / = . 0 1i s= ,..., − .  

z Bipartition policy with one switching time: 1s = , 1 0 0 5h h/ = . .    

For industrial implementation, the bipartition policy with one switching time is 
preferrable to make administration on the shop floor simple, and to make switching times 
infrequent. The subsequent section 7 investigates numerically the design by rule 1 under the 
simple bipartition policy with one switching time. It will be shown that the VSI chart 
outperforms the FSI chart for a large class of  failure time distributions.  

6. Scale Families of Failure Time Distribution 

In a great variety of  cases, the distribution function  of  the time to failure is a 
member of  a scale family 

F
( )Fϑ  indexed by a positive scale parameter 0ϑ > . The 

cumulative distribution functions in such a family are related by the equation  

 1( ) for all all >0
x

F x F xϑ ϑ
ϑ
⎛ ⎞= ,⎜ ⎟
⎝ ⎠

.  (14) 

The two parameter Weibull distribution ( )WEI ϑ β,  is a member of  the family of  
distributions indexed by the scale parameter ϑ  and the shape parameter β  with 
cumulative distribution function  

 

0 i

( )
1 exp if 0

x

F x x
x

β
ϑ β

ϑ
,

f 0, < ,⎧
⎪

⎛ ⎞= ⎨ ⎛ ⎞− − , ≥⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎝ ⎠⎩
.
 (15) 

For an arbitrary scale family ( )Fϑ , the influence of  the scale parameter on the average 
cycle length and the average number of  false alarms can be expressed by simple formulae. 
Consider the average time 0 0 1(O s sh h k k )µ ϑ−,..., , ,..., ,  of  out-of-control operation and the 
average number 

false 0 0 1(A s sh h k k )µ ϑ−,..., , ,..., ,  of  false alarms as functions of  the policy 
parameters 0 sh h,..., , 0 1sk k −,...,  and of  the scale parameter ϑ . Then obviously from 
formulae (3), (5), (6), (8), and (14)  

 0 0 1 0 0 1( ) (O s s O s sh h k k h h k k 1)µ ϑ ϑ µ ϑ ϑ−,..., , ,..., , = ⋅ / ,..., / , ,..., , ,−

1)

 (16) 

 0 0 1 0 0 1( ) (O s s O s sh h k k h h k kµ ϑ ϑ µ ϑ ϑ−,..., , ,..., , = ⋅ / ,..., / , ,..., , ,−  (17) 

Consider the comparative design by rule 1, i.e., let  be a prescribed FSI sampling 
distance and let the parameters 

h
( )i ih h hϑ ϑ, ,= , ( )j jk k hϑ ϑ, ,=  of  a corresponding VSI chart 

be determined by the requirements (R1) and (R2) of  rule 1. From the requirements (R1) 
and (R2) and formulae (12), (16), (17), we obtain  

 1( )i i
h

h h hϑ ϑ
ϑ, ,
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 1( )i i
h

k h kϑ ϑ, ,
⎛ ⎞= ,⎜ ⎟
⎝ ⎠

 (18) 

 
0 0 1

0 1 1 0 1 1 1

( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ) 1
O s s

O s s

h h h h k h k h

h h h h k h k h
ϑ ϑ ϑ ϑ

)

µ ϑ

ϑ µ ϑ ϑ ϑ ϑ
, , , − ,

, , , − ,

,..., , ,..., , =

⋅ / ,..., / , / ,..., / ,
 (19)  

From formulae (18) and (19) it is clear that in investigating the comparative design of  VSI 
charts by the rule 1 attention can be restricted to scale parameter 1ϑ = .  
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7. The Performance of Bipartition Charts with One Switching Time 

We compare the performance of  FSI and VSI charts related one to each other by the 
design rule 1. The VSI policy is the simple bipartition type with one switching time 
described by rule 2. In this case, the VSI chart is characterized by the parameters , 

, , where  is the sampling distance before switching, the sampling 
distance after switching, and where the integer  is the number of  samples taken before 
switching.  

0h
1 0 2h h= / 0k 0h 1h

0k

The comparison refers to the Shewhart chart due to its simplicity in analytics and 
interpretation, and because it remains the most popular in industrial practice. The 
controlled parameters are the process mean µ  and the process variance 2σ , i.e., we have 

2( )θ µ σ= ,  in the model of  section 2. We consider two charts:    

Chart 1: Two-sided Shewhart X  chart. The sample statistic at sampling time  is the 
sample average 

t
1 l tlt n XX = / ∑ . The control limits are the three-sigma limits  

 in 3
X

LCL nµ σ= − / , in 3
X

UCL nµ σ= + / , (20) 

the center line is fixed at inµ . For the design of  the chart, the in-control process 
variance is assumed to be known.  

Chart 2: One-sided upper Shewhart  chart. The sample statistic at sampling time  
is the sample variance 

2S t
2 1

1 (lt tl tnS X X−= −∑ 2) . The upper control limit is the 
three-sigma limit  

 2
2
in

2
1 3

1S
UCL

n
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= +
−

. (21) 

For the design of  the chart, the in-control process variance is assumed to be 
known. 

The  chart is considered only in the combination 2S X -  chart. The 2S X  chart 
and the combined X -  charts are investigated under three shift models: 2S

(SM1) Shift in the process mean at time  of  D ρ  units of  process standard deviation, 
constant process variance; i.e., intµ µ= for t D< , out intµ µ µ ρσ= = +  for t D , ≥

2 2
tσ σ= .  

(SM2) Shift in the process variance at time  by a factor D 2κ , constant process mean; 
i.e., 2

int
2σ σ=  for , t D< 2 2 2

out int
2σ σ κ σ= =  for t D , ≥ intµ µ= .  

(SM3) Shifts both in the process mean and variance at time ; i.e., D intµ µ= , 2 2
intσ σ=  

for , t D< out in intµ µ µ ρσ= = + , 2 2 2
out int

2σ σ κ σ= =  for t .   D≥

For the evaluation of  the charts we assume independent normally distributed quality 
characteristics . Under this assumption the sample statistics tlX tX  and  at sampling 
time  are independent. 

2
tS

t tX  has normal distribution 2( )N nµ σ, / , 2 2( 1)n S σ− /  has 
2χ -distribution with degree of  freedom 1n − . The alarm probabilities for the in-control 

states and the out-of-control states under the shift models (SM1), (SM2), (SM3) are 
displayed by Tables 1 and 2. 

For the failure time distribution we will use the two parameter Weibull model 
(WEI )ϑ β,  described by equation (15). Though sparse in parametrization, this distribution 

is flexible and permits a good fit to phenomena of  aging equipment with failure rate 
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increasing over time. The estimation of  the parameters of  the Weibull model has been 
discussed extensively in literature (see [7] for a survey).  

Table 1. Alarm probabilities for the X  chart under independent 
normally distributed quality characteristics, where Φ  is the 
distribution function of  standard normal distribution . (N 0,1)

Shift model Alarm probability 

In control 2 2 (3)inp = − Φ  

Out of control (SM 1) 1 ( (3 ) ( 3 ))outp n nρ ρ= − Φ − −Φ − −  

Out of control (SM 2) ( )32 2in kp = − Φ  

Out of control (SM 3) ( ) ( )( )3 31 n n
out k kp ρ ρ− − −= − Φ −Φ  

Table 2. Alarm probabilities for the 2X S−  chart under independent normally 
distributed quality characteristics, whereΦ  is the distribution function of  standard 
normal distribution . 

2χ(0,1)N 2F χ  is the distribution of  distribution with 
degree of  freedom . 1−n

Shift model Alarm probability 

In control ( )( )( )2
2

11 1 3 1 (2 (3)in np F nχ − 1)= − + − Φ −  

Out of control 
(SM 1) ( )( )( )2

2
11 1 3 1 ( (3 ) ( 3out n ))p F n nχ ρ ρ−= − + − Φ − −Φ − − n  

Out of control 
(SM 2) ( )( )2 2

1 32
11 1 3 (2 ( )n

out n kk
p Fχ

−
− 1)= − + Φ −  

Out of control 
(SM 3) ( )( )2 2

3 312
11 1 3 ( ( ) (n nn

out n kk
p F ρ ρ

χ
− − −−

−= − + Φ −Φ ))k  

The two parameter Weibull distributions ( )WEI ϑ β,  constitute a scale family in ϑ  
(see section 6). Hence for the investigation of  the performance of  the VSI bipartition charts 
attention can be restricted to scale parameter 1ϑ = .  

As functions of  a given FSI sampling distance , figures 1 through 6 display the 
parameters of  the corresponding VSI chart designed according to rule 2. For the sample 
size we consider the popular value 

h

5n = . The results for 3 7 9n = , ,  are similar and are 
displayed on the website http://statistik.mathematik.uni-wuerzburg.de/projekte/shewart 
charts. As well-known, the Weibull form parameter in an aging process satisfies 1β >  
where 1β =  characterizes the memoryless exponential distribution. Hence values of  β  
close to 1 are not relevant. For exemplifying the properties of  the VSI chart, we consider 
the β  values 1.25 (modest aging of  the process), 1.50, 1.75, 2.25 (distinct aging of  the 
process). In the framework of  the three shift models (SM1), (SM2), (SM3) described on 
page 9 we consider moderate shifts only. Large parameter shifts are detected very quickly 
and are less interesting for comparing FSI and VSI policies. We consider a shift in the mean 
of  1ρ =  unit of  standard deviation, i.e., a shift from inµ  to out inµ µ σ= + . For the shift 
in the variance, we consider an increase to double standard deviation, i.e., a shift from inσ  
to out in2σ σ= . 

http://statistik.mathematik.uni-wuerzburg.de/projekte/
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 1. Comparison of  FSI and VSI X chart with sample size =5 under out-of-controln  
shift in the mean from inµ  to out inµ µ ρσ= + , ρ = 1.00. 
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 2. Comparison of  FSI and VSI X chart with sample size =5 under out-of-controln  
shift in the variance from 2

inσ  to 2 2 2
out inkσ σ= , = 2.00. 2k
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 3. Comparison of  FSI and VSI X chart with sample size =5 under out-of-controln  
shift in the mean from inµ  to out in inµ µ σ= + , and in the variance from 2

inσ  to 2 22out inσ σ= . 
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 4. Comparison of  FSI and VSI 2X S− chart with sample size =5 undern  
out-of-control shift in the mean from inµ  to out inµ µ ρσ= + , ρ = 1.00. 
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 5. Comparison of  FSI and VSI 2X S− chart with sample size =5 undern  
out-of-control shift in the variance from 2

inσ  to 2 2 2
out inkσ σ= , =2.00. 2k
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Weibull form parameter β  = 1.25 and β = 1.50. 

Weibull form parameter β  = 1.75 and β = 2.25 

Figure 6. Comparison of  FSI and VSI 2X S− chart with sample size n =5 under 
out-of-control shift in the mean from inµ  to out in inµ µ σ= + 2, and in the variance from inσ  
to 2 22out inσ σ= . 
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The range of  the FSI sampling distance  is restricted to values smaller than the 10% 
quantile of  the failure time distribution. Larger values of   are unrealistic. The lower 
bound for  is  so that all practically relevant cases will be covered. The infinite 
sums in the expressions for the average number of  false alarms and for the expected time of  
out-of-control operation were approximated by finite summations. Sufficient precision was 
achieved by selecting the truncation points according to inequalities for the end pieces.  

h
h

h 0 005h ≥ .

Each of  the figures 1 through 6 consists of  two parts (upper part, lower part) where 
each part covers two cases of  the Weibull form parameter β . Each of  the two parts of  a 
figure contains four graphs. By the upper left-hand graph the VSI sampling distance 

 can be determined from a given FSI sampling distance . The upper right-hand 
graph shows the number of  samples 

0 0 ( )h h h= h
0 0 ( )k k h=  taken with distance  until the switching 

time . The lower left-hand graph shows the switching time . After the 
switching time , the sampling distance is 

0h
1 0a k h= 0 0

0h
1 0a k h=

1a 1 0 5h = . . The lower right-hand graph 
displays the comparative performance ratios 0 1( ) (O Oh h h)µ µ, /  of  the expected times of  
out-of-control-operation.  

Figures 1 through 6 demonstrate the following properties of  comparatively designed 
VSI charts. Throughout, the first VSI sampling distance  is considerably larger than 
the FSI distance , with larger differences for small h  and smaller differences for 
increasing . Thus the VSI chart is a distinct alternative to the FSI chart, and a better 
alternative as obvious from the performance ratios 

0 ( )h h
h

h
0 1( ) (O Oh h h)µ µ, /  which are considerably 

smaller than 1. Conforming to intuition, the comparative performance ratios 

0 1( ) (O Oh h h)µ µ, /  decrease in . For small , the advantage of  the VSI chart over the FSI 
chart is smaller. For all values of  the Weibull form parameter 

h h
β ,  decreases very 

rapidly for small values of  , approximately for 
0 ( )k h

h 0 05h ≤ . . For larger values of  ,  
varies very slowly, adopting values 

h 0 ( )k h
04 ( )k h 8≤ ≤ .  

For fixed FSI distance , the ratios h 0 1( ) (O Oh h h)µ µ, /  are decreasing in the Weibull 
form parameter β : The more rigorous the aging pattern of  the process, the better the 
performance of  the VSI chart.  

8. Numerical Example 

To illustrate the use of  figures 1 through 6 we consider a simple numerical example. 
Let the process quality parameter be the mean µ  of  some normally distributed quality 
characteristic. Let the process time be measured in hours of  operation. A process failure 
shifts the mean by one unit 1 00 σ. ⋅  of  the standard deviation from the in-control target 
value inµ  to the out-of  control value out inµ µ σ= + . From historic process documentation 
of  the time to failure , let a Weibull distribution be estimated with values D 1 25β = .  of  
the form parameter and 51 00ϑ = .  of  the scale parameter. The mean time to failure is 

47 50Dµ = . , i.e., on the average a process failure (shift) occurs after 47.50 hours of  
operation. The standard deviation of  the time to failure is 38 24Dσ = . . In view of  the large 
standard deviation the process is monitored by a Shewhart X  chart with three-sigma 
limits and with sample size .  5n =

Under the periodic FSI policy, samples are taken every two hours, i.e., the FSI 
sampling distance is . Following the design rule 1, the corresponding VSI 
bipartition chart can be determined from the upper part of  figure 1 by applying formula 
(18).We find 

2 00h = .

0 0 1 0 1( ) ( ) 51 00 (0 04) 51 00 0 07 3 60h h h h hϑ ϑ ϑ, , ,= / ≈ . . ≈ . ⋅ . ≈ . , 0 0 1( ) ( )k h k hϑ ϑ, ,= /  
. Under the VSI chart, the first 5 samples should be taken at distances of  approximately 

three and a half  hours, the remaining samples at distances of  approximately one hour and 
5≈
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45 minutes. The lower right-hand graph of  the upper part of  figure 1 shows that the VSI 
chart yields a reduction in average out-of-control operation time of  approximately 8%.  

9. Conclusion 

1) We have developed a novel framework for VSI policies depending on the 
distribution of  the time to failure in the process. This framework represents a reasonable 
attempt to formally address Wheeler’s ([21], p. 142) statement that the rate at which the 
process can change should determine the rationale of  the sampling frequency.  

2) Section 5 suggests a simple policy for VSI charts, comparatively determined from a 
prescribed FSI chart: the bipartition policy with one switching time, based on the rules 1 
and 2, and on experience gained on shop floor. This is a quite straightforward design 
principle with the potential to be considered a basic tool. Indeed, this design approach is a 
general strategy to promote VSI charts as the more economical alternative to 
well-established FSI charts.  

3) We have developed a framework for the design of  VSI Shewhart charts – two sided 
Shewhart X  chart and the combined X -  charts under the three shift models SM1, 
SM2 and SM3, respectively – under a scale family of  failure time distributions, as defined 
in Section 6. When the time to failure is Weibull, the comparative design of  a VSI 
bipartition chart is easily determined by graphs of  the type presented in Section 7, for any 
value of  the scale parameter. Other lifetime distributions of  the scale family for which 
designing is likewise straightforward are the Gamma and the Birnbaum-Saunders. These 
graphs show that a VSI chart with the same average amount of  sampling as a given FSI 
considerably reduces the average time of  out-of-control operation. Moreover, the VSI 
bipartition chart presented is in line with the practitioners’ concept of  sampling more 
frequently as a tool or machine approaches the end of  an operation cycle. The numerical 
example presented in section 8 shows how easy it is to use the graphs. For calculations 
under further values of  the relevant parameters (sample size , shift size, Weibull 
parameters) graphs and software are made available to the interested reader on the website 
http://statistik.mathematik.uni-wuerzburg.de/projekte/shewartcharts.  

2S

n

4) For future research, the following issues are important: i) examine further and more 
general classes of  failure time distributions, but bearing in mind that handy graphs can be 
built only if  the adjustable parameter (the β  in this article) is one dimensional; ii) extend 
the comparative design approach to VSSI charts with both sampling distance and sample 
size variable as considered by Costa [4]; iii) consider other types of  control charts such as 
CUSUM or EWMA, provided the alarm probabilities can be derived adequately; iv) 
assume more complex process models, in particular involving autocorrelation; v) study 
policies with increased frequency of  reducing the sampling distance, e.g., more than one 
bipartition.  

5) Model generalization as stipulated under 4), above, is not the only issue to make the 
framework useful for industry. It is also very important to communicate the scheme to 
industry. The authors declare their interest and availability for the dialogue with interested 
practitioners to discuss problems of  shop floor implementation and to clarify matters of  
theory or notation used. Unlike the case treated here, the inevitably more complex theory 
and notation of  studies in VSI schemes, in comparison with the traditional FSI schemes, 
seriously obstructs industrial implementation, see [2].  
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Appendix 

A. A Summation Formula 

The following summation formula is used in appendices B and C.  

Proposition. Let  be a univariate discrete random variable which adopts the values 
. Then we have  

L
0 1 20 x x x= < < < ..

 1
1 1

P( ) ( )P( )i i i i
i i

x L x x x L x
∞ ∞

−
= =

= = − ≥∑ ∑ .  (22) 

The proof  proceeds either directly or by considering the formula as a special instance of  the 
formula for integration by parts.  

B. Calculation of the Average Cycle Length 

  The cycle can terminate only at one of  the sampling times 1 2 3t t . We 
calculate the conditional distribution of  the cycle length  under the condition that the 
disturbance time  adopts values in the time intervals 

t< < < ...
Z

D m iI , , which for  are 
defined by  

0m s= ,...,

  (23) ( ( 1) ] for 0m i m m m m mI a ih a i h i k, = + ; + + = ,..., − .1

From equation (23) it is clear that the family m iI , , 0m s= ,..., , 0 1mi k= ,..., −  is a disjoint 
partition of  the half  axis . The natural succession of  the intervals is  (0 );+∞

  
0 1 10 0 0 1 1 0 1 1 1 0 1 1 0 1sk k s s k sI I I I I I I I

−, , − , , − − , − , − , ,,..., , ,..., , . . . ., ,..., , , ,... .s

For , , 0m l s= ,..., 0 1mi k= ,..., − , 1 lj k= ,..., , we obtain the conditional probabilities  

 1

1
out out

1
out out

(1 ) if 1

P( | ) (1 ) if

0 othe

m l

j i

k k j i
l l m i

p p l m j i

Z a jh D I p p l m−

− −

+...+ + − −
,

⎧

rwise

− , = , ≥
⎪⎪= + ∈ = − , > ,⎨
⎪ , .⎪⎩

+ ,

 (24) 

and  

 1

1
out

1
out

(1 ) if 1

P( | ) (1 ) if

0 otherw

m l

j i

k k j i
l l m i

p l m

Z a jh D I p l m−

− −

+...+ + − −
,

⎧

ise

j i− , = , ≥
⎪⎪≥ + ∈ = − , > ,⎨
⎪ , .⎪⎩

+ ,

 (25) 

By equation (22) we obtain the conditional expectation  

[ | ] ( )P( | )m i m i l l l l m i
l j

e E Z D I a jh Z a jh D I, , ,
,

= ∈ = + = + ∈∑  
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( ( 1) )P( ( 1) | )m m m m ma i h Z a i h D I ,= + + ≥ + + ∈ i +  

2 P( | )mk
j im m mh Z a jh D I= + ,≥ + ∈ +∑ m i   

+
=+ + + ,≥ + ∈ + ... +∑ 1

11 1 1P( | )mk
jm m m m ih Z a jh D I  

1
11 1 1P( | )sk

js s s m i, +h Z a jh D I−
=− − −≥ + ∈∑ 1P( | )js s s m ih Z a jh D I∞

= ,≥ + ∈∑  

1
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1 (1 )
( ( 1) ) (1 )
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− −− −
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out
1
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mk i
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p p
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1 1
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2 1 1
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m m s s
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For , , let 0m s= ,..., 0 1mi k= ,..., − m i,∆  be defined by equation (6). From the definition of  
 by equation (3) and from equation (26) we obtain for la 0m s= ,..., 0 1i k, m= ,..., −  

 
1

1

0 1 1

, if 1 1

, if 0
m

m i m i m
m i

m m k

e e i k

e e i
−

, , −
,

, − , −

− ≤ ≤ −⎧⎪∆ = ⎨ − =⎪⎩
, (27) 

where we let 
1

 by definition. The unconditional expected cycle length is 
obtained by averaging over the conditional expectations 

1 1 0ke
−− , − =

m ie ,  with weights :  P( )m iD I ,∈

 
1

0 0
[ ] P( )

mks

Z m i
m i

E Z e D Iµ
−

m i, ,
= =

= = ∈∑ ∑ .  (28) 

By equation (22) we obtain equation (5).  

C. Calculation of the Average Number of False Alarms. 

Let the time intervals  be defined by equation (23). The conditional distribution 
of  the number  of  false alarms under the condition 

m iI ,

falseA m iD I ,∈  follows a binomial 
distribution with parameters  (number of  independent trials, i.e., number 
of  samples inspected) and  (probability of  success in one trial, i.e., the probability of  a 
false alarm). Hence the conditional expected number of  false alarms is  

0 mk k −+ ... + +1 i
inp

 , −∈ = + ... + +false 0 1 in[ | ] ( )m i mE A D I k k i p  (29) 

for , . Averaging over the conditional expectations and applying 
equation (22) we obtain the unconditional expectation as given by equation (8).  

0m s= ,..., 0 1mi k= ,..., −
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