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Abstract—To avoid the inception of tensile instability, the
δ+-SPH scheme is modified by switching the momentum
equation to a non-conservative formulation in those fluid regions
characterized by negative pressure. The loss of conservation
properties is shown to induce small errors, provided that the
particle distribution is regular. The latter condition is ensured by
implementing the Particle Shifting Technique (PST). The novel
variant of the δ+-SPH is proved to be effective in preventing
the onset of tensile instability in a number of challenging
benchmark tests, as for example, flows past bluff bodies at high
Reynolds numbers. Reference solutions for the benchmark cases
are obtained through DVH and Navier-Stokes solvers. A final
simulation characterized by a deforming body that resembles
a fish-like swimming is used as a practical application of the
δ+-SPH model in biological fluid mechanics.

I. Introduction

The modelling of boundary layers through classical SPH
models is generally a challenging problem because of
the irregular particle distribution induced by large velocity
gradients. The above problem worsens when the occurrence
of negative pressure regions leads to the onset of the so-
called tensile instability, causing the generation of voids
inside the computational fluid domain. For these reasons, the
attainment and maintenance of a regular particle distribution
is of crucial importance during the flow evolution. Recently,
different algorithms have been proposed to measure (e.g. [1])
or reduce the particle disorder (e.g. Particle Packing Algorithm
[2], Particle Shifting Technique (PST) [3], the Dynamic
Stabilization (DS) [4, 5]) both in weakly-compressible or
incompressible SPH models. Despite the good performances
of these algorithms at low and moderate shear stresses, their
extension to flows characterized by intense velocity gradients,
as for example the flow past a bluff body at high Reynolds
numbers, still remains a challenging problem.

In the SPH literature there are well-established strategies
for simulating flows around simple geometries (e.g. circular
cylinder) for Reynolds numbers in the regime Re ∈
[1, 1000], see e.g. [6]. For weakly-compressible SPH models,
a background pressure is generally needed in order to avoid
the onset of tensile instability in the wake region (where
negative pressure occurs). In fact, this expedient requires
an accurate calibration and can limit the application of the

model to more general problems (e.g. free-surface flows). An
alternative strategy to the use of the background pressure is the
Particle Shifting Technique (PST), which relies on the addition
of a suitable shifting velocity to the Lagrangian velocity of
particles. This approach also allows for a more regular particle
distribution and for an improved evaluation of the velocity
gradients (e.g. vorticity). The application of the PST to the δ-
SPH scheme (see [7, 8]) is at the basis of the δ+-SPH scheme
[9].

Despite the good performances of the δ+-SPH scheme,
the tensile instability still represents a major problem
as the Reynolds number increases and a more thorough
understanding of its genesis is required to get rid of this
phenomenon. With respect to this, the cause of the tensile
instability has to be pursued in the structure of the SPH
pressure gradient. As highlighted in [2], when the pressure
field is positive, the pressure gradient contains a stabilizing
term which leads to the particle resettlement towards ordered
and uniform distributions. On the contrary, when the pressure
field becomes negative, such a term behaves in the opposite
way, causing particles to cluster and leading to the generation
of voids in the computational fluid domain.

In the present work, we show that a simple strategy to avoid
this problem is achieved by switching to a non-conservative
formulation of the pressure gradient in the negative pressure
regions. This is equivalent to neglect the term that causes the
particle resettlement (and, therefore, the tensile instability).
The loss of the conservation properties induces only limited
errors, provided that the particle distribution remains regular
(see [1]). This latter point is easily achieved thanks to the
Particle Shifting Technique (see, for example, [3, 9]).

The proposed variant of the δ+-SPH is tested against a
number of challenging benchmark problems and is compared
with the numerical solutions obtained by using classic Navier-
Stokes solvers and the Diffused Vortex Hydrodynamics (DVH)
method (see [10]). The present work is arranged as follows:
in Section II, the SPH methodology is introduced along with
details on the theoretical aspects on the tensile instability
phenomenon, while in Section III an in-depth validation of
the proposed model is performed.
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II. SPH Methodology

The δ+-SPH belongs to the class of weakly-compressible
SPH schemes, that is, those SPH solvers that rely on
the hypothesis that the fluid is weakly compressible and
barotropic. Specifically, a linear state equation is assumed
between the pressure and the density field. For computational
reasons (see [11]), the sound velocity, c0, is usually chosen
according to the following bound:

c0 ≥ 10 max
�

Umax,
�

pmax/ρ0

�
, (1)

where Umax and pmax are the maximum expected velocity and
pressure. This ensures that the density variations are below
1%, in agreement with the weakly compressibility hypothesis.

Similarly to the δ-SPH scheme (from which it derives),
the δ+-SPH scheme contains a numerical diffusive term
inside the continuity equation which helps reducing the high-
frequency oscillations that usually affects the pressure field as
a consequence of the weakly compressibility assumption. The
governing equations for the δ+-SPH scheme are:
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dρi

dt
= − ρi

�

j

V j (u j − ui) · ∇iWi j + δ h c0Di

dui

dt
= f i −

1
ρi

�

j

F
�
p j, pi

�
∇iWi j V j +

µ

ρi

�

j

πi j∇iWi j V j

dri

dt
= ui , pi = c2

0 (ρi − ρ0) , r∗i = ri + δri ,

(2)

where d/dt denotes the material derivation with respect to
time. The first three equations are respectively the continuity,
momentum and advection equations. Symbols ri and ui

indicate the position and the velocity of the i-th particle while
r∗ is the modified position after the particle shifting δr is
applied (more details will be given later). The particle mass,
mi, is maintained constant during the simulation, this ensuring
the mass conservation of the overall fluid phase, while the
particle volume is Vi = mi/ρi. Finally, f i is a generic the body
force and µ is the dynamic viscosity.

In the present work the kernel function Wi j is a C2
Wendland kernel (see [12]) with smoothing length h, that is
set equal to 2Δx where Δx is the initial particle distance.
This corresponds approximately to 50 particles in the kernel
support.

The viscous term in system (2) is represented following
[13]. The diffusive term is the same used in the δ-SPH scheme.
As a common practice the diffusive parameter δ is set equal
to 0.1 (see [8, 14]).

Finally, we focus on the pressure gradient argument
F ji = F(p j, pi). Generally, under the weakly compressibility
assumption, this term is represented by (pj + pi) (or by an
equivalent sum of terms depending on pressure and density)
and the differential operator can be split in the following

manner:
�

j

�
p j + pi

�
∇iWi j V j =

�

j

�
p j − pi

�
∇iWi j V j +

2 pi

�

j

∇iWi j V j . (3)

As shown in [15], the first term in the right-hand side is the
smoothed counterpart of the actual pressure gradient. When
the pressure field is positive (i.e. pi ≥ 0), the last term in
the right-hand side behaves as a regularizing internal force
and leads to the particle resettlement towards uniform spatial
configurations. This property has been used, for example,
in [2] to build a particle packing algorithm for the initial
particle positioning in complex geometries. On the contrary,
if the pressure field is negative, the last term in equation (3)
behaves in the opposite way, increasing the particle disorder
and eventually leading to the occurrence of voids regions in
the computational domain. A naive way to get rid of this issue
is to drop such a term when the pressure becomes negative.
Unfortunately, this leads to problems close to the free surface
where the pressure generally oscillates around the zero value.
A more robust strategy is to maintain the second term in the
right-hand side of equation (3) when the fluid particles are
close to the interface. This corresponds to:

F ji =

�
p j + pi pi ≥ 0 or i ∈ SF

p j − pi pi < 0 and i � SF
(4)

where SF denotes the region of the fluid domain close to
the free surface, that is the free-surface particles and their
neighbour particles. The free surface particles are detected
through the algorithm described in [16].

The main drawback related to the use of the switch in
equation (4) is the loss of conservation of linear and angular
momenta when the negative sign is applied. Furthermore, the
switch also lessens the robustness of the SPH scheme (see e.g.
[17]). The above issues are, however, reduced by implementing
the Particle Shifting Technique, this helping maintaining a
regular and homogeneous particle distribution all over the
computational domain. The shifting displacement is given by:

δri = −CFL
Umax

c0
(2h)2

�

j

�
1 + R

�
Wi j

W(Δx)

�n �
∇iWi j

m j

ρi + ρ j
,

where n = 4, R = 0.2 and CFL is the Courant-Friedrichs-Levy
number (here set equal to 1.5). In particular, a fourth-order
Runge-Kutta scheme is used to march in time the system (2).
In order to reduce CPU costs and improve the stability of the
scheme, the particle repositioning is applied outside the sub-
time steps of the Runge-Kutta scheme, as described in [9].

III. Applications

In this section we show some practical 2D applications
of the proposed variant of the δ+-SPH scheme. Specifically,
we focus on flows past: a NACA profile, a circular cylinder
and a deforming body. All the body profiles are inside a
rectangular channel with an inflow condition on the left wall
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and an outflow condition on the opposite side. This requires
the implementation of different boundary condition along the
solids. Specifically:

1) Free-slip boundary conditions are implemented on the
lateral walls of the channel by using Fixed Ghost
Boundaries as in [18],

2) No-slip boundary conditions are implemented on the
body surfaces by using Fixed Ghost Boundaries and an
asymmetric extension of the tangential velocity (ASM)
(see [6, 19])

3) Inflow and outflow boundaries are implemented as
described in [18],

With respect to the last point, a major issue is related to
the expulsion of the strong vortices generated by the solid
structures out of the fluid domain. To obtain a reliable outflow
condition, a buffer damping zone with a width of 5L (where
L is the characteristic length of the bluff body) is attached to
the outflow boundary. In this region the viscosity coefficient
is increased to obtain Re ∈ [1, 10] in order to regularize the
flow before the outflow boundary.

In all the simulations the particle positions are initially set
by using the particle packing technique described in [2]. In
order to properly resolve the boundary layer regions, in all
the simulations an Adaptive Particle Resolution (APR) method
has been implemented (for details see [20]). Validations are
carried out by comparing the vorticity field and the coefficients
related to pressure, drag and lift force acting on the body with
reference solutions. Specifically, these are defined as follows:

Cp =
2 p
ρU2L

, CD =
2 fD

ρU2L
, CL =

2 fL

ρU2L
, (5)

where fD and fL denote the drag and lift force measured on
the body following the procedure described in [6, 21].

A. Flow past a NACA0010 profile at Re = 10, 000 and with
angle of attack α = 30◦

In this section, we consider the flow past a stationary
NACA0010 profile at Re = 10, 000 and angle of attack
α = 30◦. The computational domain is [−8L, 22L]× [−8L, 8L]
(here L indicates the airfoil chord) and the body center is
located at the origin of the frame of reference. The maximum
particle resolution is L/Δx = 400 and 5 levels of particle
refinements are used (for details see [9]) so that L/Δx = 25
far from the body.

The chosen Reynolds number and angle of attack rapidly
lead to the vortex detachment on the leading and trailing edges
of the NACA profile and, consequently, the present simulation
allows us to test the Tensile Instability Control (TIC) proposed
in section §II. In Figure 1 some snapshots of the numerical
results obtained with and without the TIC are displayed. In the
former case, large void regions are generated after few instants
from the beginning of the simulation and merge together and
grow as the simulation advances in time. On the contrary,
the use of the TIC completely eliminate the occurrence of
tensile instability and allows for a physical development of
the boundary layer and consequent vortex shedding.

Fig. 1. Snapshots of the flow around a NACA0010 profile at Re = 10, 000
using the δ+-SPH model without and with Tensile Instability Control.
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Fig. 2. Drag (top) and lift (bottom) coefficients for the NACA0010 profile at
Re = 10, 000. Comparison between the present δ+-SPH scheme and the DVH
[10]

Fig. 3. Details of the vorticity distribution close to the foil at two time
instants.

A validation for this case is carried out by comparing the
drag and lift force coefficients predicted by the δ+-SPH and
DVH results. As shown in Figure 2 a similar behaviour is
observed for both the coefficients.

The pressure gradient near the trailing edge makes the
secondary vortices to roll up and interact with the eddies
developed from the leading edge and the suction side. A
detailed view of the vorticity distributions close to the body
at tU/D = 15.64 and tU/D = 24.46 is shown in Figure 3.

Finally, Figure 4 shows the pressure field (with an opposite
sign) around the solid body at tU/L = 7.488. Accordingly, the
peaks indicates the points in which the pressure attains large
negative values. These peaks are not close to the NACA0010
profile but are generally located at the core of the strong

Fig. 4. The pressure field at t U/L = 7.488.

Fig. 5. Flow past a circular cylinder at Re = 9500: time histories of the drag
(top) and lift (bottom) coefficients as predicted by the δ+-SPH and DVH.

vortical structures. This result further shows the ability of the
proposed variant of the δ+-SPH model to prevent the tensile
instability.

B. Flow past a circular cylinder at Re = 9500

In the present section the flow past a circular cylinder at
Re = 9500 is considered. This corresponds to the lower sub-
critical regime for this kind of problem and is characterized by
an unstable boundary layer and by a chain of eddies that are
formed in the shear layer and are transported downstream into
the vortex wake (see, for example, [22]). The computational
domain is [−8D, 22D]× [−8D, 8D] and the body is located at
the origin of the frame of reference. Five levels of refinement
are used and the spatial resolution close to the cylinder is
D/Δx = 400, this corresponding to about 1, 450, 000 particles
in the whole fluid domain. It is worth noting that without the
spatial refinement the total number of particles would be about
76, 800, 000, that is about 50 times larger.

A primary validation of the δ+-SPH model is carried out by
comparing the drag and lift coefficients with those predicted
through the DVH method (see figure 5). Both schemes predict
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Fig. 6. Flow past a circular cylinder at Re = 9500: vorticity field as predicted
by the δ+-SPH (top) and DVH (bottom).

an almost chaotic behaviour of CD and CL because of the
unstable boundary layer. In any case, the mean values and
the amplitude of the oscillations of these coefficients are
approximately the same in both the schemes. The comparison
for the vorticity field close to the cylinder is displayed in figure
6 at tU/D = 9.938. Despite the spatial resolution of the δ+-
SPH is half the resolution of the DVH method, the agreement
is still satisfactory.

A more in-depth analysis of the mechanism of vorticity
generation can be drawn by observing an enlarged view of
the boundary layer close to the cylinder. Figure 7 shows
two snapshots of the vorticity field at tU/D = 1.969 and
tU/D = 18.00. At tU/D = 1.969, two shear layers merge
together in the upper shoulder of the cylinder and form a
“λ-shape” vortex structure. This separates two vortices of
negative vorticity: the smallest one is close to the λ-shape
vortex while the largest one starts detaching from the solid
body. At tU/D = 18.00, the vortex wake is fully developed
and several vortex structures are generated by the boundary
layer separation. The overall distribution is almost chaotic and
is typical of the sub-critical regime.

Fig. 7. Flow past a circular cylinder at Re = 9500: details of the vorticity
field and streamlines as predicted by the δ+-SPH.

C. Fish-like swimming modelling

As a final problem, we consider the motion of a deformable
body resembling a fish-like swimming model. The equilibrium
configuration for this body is represented through a 2D
NACA0012 profile so that the middle-line of the foil describes
the backbone of a fish. As the middle-line undergoes a
transversal motion in the form of waves propagating in the
streamwise direction, the movement of the backbone of a fish
is mimicked. Following [23], the evolution of the middle-line
are described through:

ym = Am (xm) cos( 2π(xm − c t) + φ ) (6)

where xm/L ∈ [0, 1] is the horizontal coordinate (from
foil head in the streamwise direction), and ym denotes the
movement of the middle-line of the NACA0012 foil in the
transversal direction. As usual, L is the length of the fish model
while c is the phase speed of the wave propagation (here set
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to 2 m/s) and φ is a phase shift (here set to zero without any
loss of generality). The amplitude of the waving motion is
represented through a quadratic polynomial as follows:

Am (xm) = C0 + C1 xm + C2 x2
m . (7)

Following [24], we set C0 = 0.02, C1 = −0.0825 and
C2 = 0.1625 in order to simulate a saithe swimming motion.

An inflow velocity U is imposed at the left side of the
computational domain and the Reynolds number is set equal
to Re = ρUL/µ = 5000. The foil is stationary except for the
waving motion. When the drag force measured along the foil
is negative, the “fish” swims forward thanks to the propulsion
generated by the waving motion. The computational domain
is [−2L, 8L] × [−4L, 4L] and the center of the body is located
at origin of the frame of reference. The spatial resolution is
L/Δx = 400 close to the body and in the wake region while
decreases to L/Δx = 50 far from it (specifically, four levels of
refinements have been used).

The pressure and vorticity distributions around the waving
foil at four time instants t/T = 0, 0.25, 0.5 and 0.75 are
depicted in Figure 8. Strong negative pressure values are
observed at the cores of the vortices while large negative
pressure regions alternate along the upper and lower sides of
the foil during its motion. These mainly contributes to the
generation of a thrust force that propels the foil forward.

The LCSs around the foil are depicted in Figure 9. The drag
and lift force coefficients are measured in the SPH simulation
and compared to the results of a FEM Navier-Stokes solver
[23] in Figure 10. A good agreement is observed between δ+-
SPH and FEM. Both the simulations show a negative drag
force on the foil, which means that with a phase speed of
c = 2.0 the “fish” swims forward with a velocity larger than
U in a fluid at rest.

The pressure distribution around the waving foil at t/T = 0
is also measured. The pressure contribution on the thrust force
is defined as fxp = p · nx where nx is the component in the
streamwise of the unit normal n on foil surface. Again, good
agreement is achieved between different solvers, see Figure
11. This shows that a large drag force acts at the head of
the foil, while the shaking tail produces major propulsive
contributions. Since in this part, the main purpose is to validate
the numerical scheme, a case with a single fish is presented and
validated. But the numerical scheme can be straightforwardly
extended to the simulation of a swimming fish-group and to
the investigation of their hydrodynamic interactions.

Conclusions

In the present paper, an enhanced δ+-SPH model is proposed
which allows preventing the onset of tensile instability. This
is achieved by switching to a non-conservative formulation
when the pressure field becomes negative. The effects related
to the loss of conservation of linear and angular momenta
are maintained small by implementing the Particle Shifting
technique, this helping the attainment of regular particle
distributions.

Fig. 8. Fish-like swimming model. Snapshots of the pressure field and
vorticity field at different time instants.
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Fig. 9. LCSs in the wake of the fish-like swimming profile

Fig. 10. Fish-like swimming model: the drag and lift force coefficients in
one swimming period

Fig. 11. Fish-like swimming model. Pressure distribution along the upper
(top panel) and lower (bottom panel) profiles of the foil surface at t/T = 0.

To test the proposed method, Direct Numerical Simulations
of flows past airfoils at different angles of attack and
past a circular cylinder have been conducted at large
Reynolds numbers. All the simulations have been carried on
implementing an adaptive particle resolution algorithm. Both
fixed and deformable solid profiles have been considered,
proving the proposed variant of the δ+-SPH scheme to
be robust and accurate. In particular, the latter test case,
mimicking a fish-like swimming motion, suggests that the
present scheme may be suitable for applications in biological
fluid mechanics.
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