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Abstract The main purpose of this study is to analyze the intrinsic tumor physiologic
characteristics in patients with sarcoma through model-free analysis of dynamic contrast
enhanced MR imaging data (DCE-MRI). Clinical data were collected from three patients with
two different types of histologically proven sarcomas who underwent conventional and
advanced MRI examination prior to excision. An advanced matrix factorization algorithm
has been applied to the data, resulting in the identification of the principal time-signal uptake

>4 M. Venianaki
maria.venianaki@imtlucca.it

0. Salvetti
ovidio.salvetti @isti.cnr.it

E. de Bree
debree @uoc.gr

T. Maris
tmaris @med.uoc.gr

A. Karantanas
akarantanas@ gmail.com

E. Kontopodis
elko@ics.forth.gr

K. Nikiforaki
kat@ics.forth.gr

K. Marias
kmarias @ics.forth.gr

Image Analysis Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy

Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research
and Technology — Hellas, Heraklion, Greece

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5046-6&domain=pdf
mailto:maria.venianaki@imtlucca.it

9418 Multimed Tools Appl (2018) 77:9417-9439

curves of DCE-MRI data, which were used to characterize the physiology of the tumor area,
described by three different perfusion patterns i.e. hypoxic, well-perfused and necrotic one.
The performance of the algorithm was tested by applying different initialization approaches
with subsequent comparison of their results. The algorithm was proven to be robust and led to
the consistent segmentation of the tumor area in three regions of different perfusion, i.e. well-
perfused, hypoxic and necrotic. Results from the model-free approach were compared with a
widely used pharmacokinetic (PK) model revealing significant correlations.

Keywords Pattern recognition - Dynamic MR imaging - Biomedical image processing - Soft
tissue sarcomas - Tumor hypoxia - Matrix factorization

1 Introduction

Hypoxia is a hallmark of most solid malignant neoplasms and is usually related with more
aggressive tumor phenotypes and resistance to chemotherapy and radiotherapy [7, 15]. Tumors
are associated with abnormal rapid formation of new blood vessels, in an aim to overcome the
increased oxygen and other nutrient demands during tumor growth. However, tumor newly-
formed vessels are typically dysfunctional impeding proper vessel-to-tissue delivery of both
oxygen and chemotherapy drugs. Eventually, the augmented interstitial fluid pressure is
followed by a subsequent decrease of tumor perfusion, further favoring tumor hypoxia [5].
As aresult, hypoxia estimation from imaging data can play a key role in tumor characterization
and lead to a more accurate and effective treatment planning.

A number of different techniques have been used for the assessment of tumor hypoxia [29].
These include invasive techniques, such as pO, electrode measurements and immunohistochem-
istry of exogenous markers e.g. pimonidazole (PIMO). Imaging techniques have also been widely
used, including positron emission tomography (PET) imaging using radioactive hypoxia tracers
and MR imaging. In particular, dynamic contrast enhanced MR Imaging (DCE-MRI) is a non-
invasive perfusion imaging technique, which offers high spatial resolution, can be performed on
clinical MRI scanners with standard specifications and can yield information concerning tissue
oxygenation and vascularization. It has been used in previous studies for different purposes, such as
for determining tumor grading, predicting response to therapy and differentiating between benign
and malignant lesions [4, 21]. DCE-MRI involves the intravenous injection of a contrast agent
(CA) with T1-weighted (w) sequences acquired before, during and after injection. The paramag-
netic CA diffuses from the arteries to the extravascular extracellular space (EES), which accelerates
the T1 relaxation process of tissue and leads to signal enhancement in T1-w MR images. As
mentioned previously, hypoxic tumors are typically characterized by poor perfusion, thus DCE-
MRI could provide useful information about the presence and distribution of hypoxia in tumors.

Currently, compartmental pharmacokinetic (PK) modeling is the most widely used tech-
nique for the DCE-MRI data analysis. It relies on dividing the anatomic area of interest in two
compartments, the intravascular and EES. Perfusion related parameters are estimated in order
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to quantify the CA transfer rates between the different compartments and the percentage
volume they occupy. However, PK models involve a number of limitations such as the signal
to contrast conversion and the computationally expensive fitting algorithms [3].

A different model-free approach that has been used for the analysis of DCE-MRI data,
comprises of the shape classification of the time-signal uptake curves of image voxels in a
selected region of interest (ROI) within the tumor. According to the literature [12], the most
common enhancement patterns of the DCE time-signal curves are three (Fig. 1). The first one
is characterized by steady enhancement of the MR signal intensity (Type 1), the second one by
enhancement followed by some wash-out (Type 2) and the third one by fast enhancement and
rapid wash-out (Type 3). The analysis of the structure of the DCE curves is somewhat
simplistic to be used for characterizing the tumor physiology. However, if combined with
pattern recognition (PR) techniques, it is able to provide an automatic identification of the
enhancement patterns that characterize the DCE-MRI data. Model-free and model-based
methods applied on DCE-MRI data have been reviewed previously in [3].

In a previous study [2], DCE-MRI data of a rat prostate tumor were analyzed using PK
modeling, resulting in the identification of well-perfused and necrotic areas, which was further
validated by histology. However, PET imaging was also used for the identification of hypoxic
areas. In [6, 23], DCE-MRI prostate cancer data have been analyzed using two different PR
methods, nonnegative matrix factorization (NMF) and Gaussian Mixture Models (GMMs) respec-
tively, leading to a three-area classification of the tumor in well-perfused, necrotic and hypoxic
regions. The results were correlated with hypoxic areas defined by the hypoxia marker PIMO,
necrotic areas defined by hematoxylin-eosin (H&E) and well-perfused areas derived from the
Hoffmann pharmacokinetic model [8]. In [24], DCE pharmacokinetic parameters (K, K™ v,
have been compared with histopathological parameters (microvessel density parameters and tumor
proliferation index) in head and neck squamous cell carcinoma (HNSCC) resulting in important
correlations. In [10], the DCE parameter k., was proven to be closely correlated with VEGF
expression in breast tumors. DCE-MRI parameters have been also correlated with pimonidazole
and CAO staining in patients with head-and-neck cancer [17], indicating that they can be used as

\ Type 2
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Time
Fig. 1 The three most common shapes of tissue curves identified in various tumor types. Type 1 (red) is

characterized by persistent slow enhancement of the SI while Type 2 (blue) by initial enhancement followed by
some wash-out and Type 3 (green) by fast enhancement and fast wash-out
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surrogate markers of hypoxia. In [31], semi-quantitative parameters of DCE-MRI were compared
with H&E, PIMO and vascular endothelial growth factor (VEGF) immunohistochemistry in a
maxillofacial VX2 rabbit model. Important correlations were revealed, showing that DCE-MRI is
an attractive choice to offer a reliable estimation of tumor hypoxia.

Since such studies strongly indicate that DCE-MRI parameters convey hypoxia informa-
tion, it is important to try to define automatic methods to extract hypoxia maps from DCE-MRI
functional images. Design of a rapid and accurate image analysis algorithm for DCE-MRI data
may have great impact on the evaluation of drug delivery as well as the development of
specific treatments with antiangiogenic agents. To this end, herein we present a machine
learning, model-free method that automatically decomposes the image in three dominant
components corresponding to necrotic, hypoxic and well-perfused areas.

In particular, in this study we extended the work in [23] by applying an advanced version of the
NMF algorithm and by testing it on human patient data. In particular, the block coordinate update
NMF (BU-NMF) algorithm, a PR technique, was applied to DCE-MRI data derived from patients
with histologically proven sarcomas. The algorithm detects the most representative patterns that
comprise the data. In our previous studies [27, 28] we have examined the efficiency and robustness
of this algorithm on a single patient and investigated the most suitable initialization approach to
use. In the present study, the BU-NMF algorithm is tested on three patients, which have different
types of sarcomas. Furthermore, in contrast to our previous reported works [27, 28], where a single
slice was used, in this work information from the entire tumor volume was given as input so that
the maximum available information regarding the malignancy could be used. The proposed BU-
NMF-based method was applied using three different initialization approaches and the structures
of the patterns identified seemed to approximate the three most common shapes of the DCE main
signal-time curves (Types 1, 2 and 3), which were described previously. Well-perfused areas were
defined as those having the Type 3 curve shape, hypoxic ones were assigned to the Type 2 shape
and necrotic regions were those with enhancement profile similar to Type 1 curve. The classifi-
cation of tumor areas has also been used in other studies investigating the role of DCE-MRI in
defining hypoxia [9]. The proposed approach could be considered as a quantitative morphological
analysis of the examined structures. In addition, we compare the spatial maps extracted by the PR
technique with the parametric maps derived from the pharmacokinetic Extended Tofts Model
(ETM), and investigate the correlation of the two different perfusion mappings for the selected
tumor areas. In the k™" map derived from the ETM model and for comparison purposes, image
areas with high k™" were labelled as well-perfused areas, those with k™" zero or close to zero as
necrotic areas, and those with intermediate values as hypoxic regions. Histopathology results
provided by experts are also supporting, at a certain extent, the obtained results. This approach
involves different types of analysis and has the advantage that by combining all the extracted
information, a more global view of the tumor physiology characteristics can be obtained.

2 Materials and methods

2.1 Description of dataset

Three male patients, with median age 58 years, were included in the study. All of them were
diagnosed with sarcomas, and more specifically one lower limb malignant peripheral nerve sheath
tumor (MPNST), one thigh pleomorphic liposarcoma and one neck pleomorphic liposarcoma.

This paper refers to the lower limb MPNST patient as Patient #1 while the patient with thigh
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pleomorphic liposarcoma is mentioned as Patient #2 and the patient with neck pleomorphic
liposarcoma as Patient #3. All data were provided anonymously by the University Hospital of
Heraklion (Pa.G.N.L). The patients underwent conventional and advanced MRI prior to excision.
The DCE-MRI experiments were performed on a 1.5 T Siemens scanner using the contrast agent
gadopentetate dimeglumine (Gd-DTPA) at routinely used dose. For the acquisition of T1-w MRI
sequences, six separate acquisitions were made prior to the CA injection, with variable flip angles
(VFA) of 5°, 10°, 15°, 20° 30° and 60°. T1-w MR images were acquired with fast three-
dimensional spoiled gradient echo (SPGR) with the following parameters: TR = 7 ms,
TE = 3.23 ms, flip angle = 15°, voxel size 1.04 x 1.65 x 5 mm for Patient #1 and Patient #3
and 1.15 x 1.82 x 5 mm for Patient #2, acquisition matrix 192 x 121, number of slices = 14, 45
time points for DCE-MRI protocol and temporal resolution 6.44 s. DCE datasets were co-
registered to the arterial phase (maximum signal-to-noise ratio (SNR)).

2.2 Pharmacokinetic model approach

The PK model used in our analysis is the ETM, which is a modified version of the well-known
Tofts model (TM) [26]. TM produces reliable results only when the tissue is weakly
vascularized, whereas the ETM can also be applied to highly perfused tumors [22]. The
contrast agent leaves the plasma space and enters the EES at a rate represented by k™" and
returns by ke, = k""*/ve, which is the exchange rate from EES to the plasma space where v, is
the volume of EES. Both k™" and ke, are measured in [min-1]. In this study, the arterial input
function (AIF) was calculated from a large vessel within the region of imaging and for the
signal to contrast conversion, the method of variable flip angles (VFA) was applied. The
parametric map of the k™" rate was used not only for the initialization of the PR approach but
also for comparing the results of the PR method with the results of the PK model method.

2.3 Pattern recognition approach

Images often contain redundant information since adjacent pixels in an image are highly
correlated. To this end, dimensionality reduction algorithms are typically used to extract the
important information from the image, while incurring very little error. Matrix factorization
and principal component analysis are among the most popular methods for data representation
in a lower-rank space. NMF, due to its non-negativity constraints, is distinguished from other
matrix factorization methods such as principal component analysis (PCA). NMF results have
more obvious visual interpretation and since it allows only additive combinations, it is suitable
for uniting parts to generate a whole, leading to parts-based representations [13]. In our work,
we want to identify certain patterns associated with cancer physiology and NMF learns to
represent our MRI data as a linear combination of basis images, called patterns, each of them
carrying a different weight. In this way, we can identify the pattern followed by each voxel as
well as the contribution of the other patterns to each voxel of the image. This allows for a
visual representation, which qualitatively resembles the nature of cancer behavior.

The basic NMF problem consists in finding an approximate decomposition of a large
dimension data matrix A of size m x n into two low-rank nonnegative matrices, m x k matrix
W and k x n matrix H. The ultimate aim is to minimize the functional:

1
min £(W,H) =5 | A-WH[}., subject to W, H>0 (1)
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The value ofk is usually selected such that k < < min (m, n) which confirms the fact that the product
'WH, named the NMF of matrix A, equivalents to acompressed form of A. In practice, it corresponds to
the number of basic patterns that NMF is going to use in order to represent the data in A.

The minimization of Eq. (1) involves some significant challenges. It implies the lack of
convexity in both W and H, thus the existence of local minima. In addition, there is no unique
solution of the minimization problem in Eq. (1) since the solution matrices W and H could also
be replaced by an infinite number of other solution pairs, such as WS and S™'H for any
nonnegative invertible matrix S having a nonnegative inverse S

The NMF problem has been approached by several numerical methods resulting in different
solutions [1]. Lee and Seung [14] established the first well-known NMF algorithm that is based on
multiplicative update rules in order to minimize the Euclidean distance described in Eq. (1). Partic-
ularly, it can be shown that the square Euclidean distance measure used in Eq. (1) is nonincreasing
under the iterative updated rules described in Algorithm 1, which is presented below [1].

Algorithm 1 — Multiplicative update

W = rand(m, k); % initialize W as random dense matrix

H = rand(k, n); % initialize H as random dense matrix

for i = 1: maxiter

H=H. * (WA)/W'WH+ 107);

W =W. * (AH")./(WHH' + 107°);

end

Alternating least squares (ALS) algorithms [18] are significantly faster to converge with
respect to the multiplicative update algorithms and are based on the fact that while the
minimization problem in Eq. (1) is not convex in both W and H, it is convex in either W or
H. The update rules used are presented in Algorithm 2 [1].

Algorithm 2 — Alternating least squares

W = rand(m, k); % initialize W as random dense matrix or use another initialization

for i = 1: maxiter

(LS) Solve for H in matrix equation WTWH = WTA.

(NONNEQG) Set all negative elements in H to 0.

(LS) Solve for W in matrix equation HH"WT = HA".

(NONNEQG) Set all negative elements in W to 0.

end

In our work, we opted for the BU-NMF algorithm, which is an efficient algorithm with
simple update steps and offering global convergence under certain assumptions [30]. It relies
on regularized multi-convex optimization, which is a method used in problems characterized
by non-convexity and non-smoothness.

A setofpointsis called block multiconvex ifits projection to each block of variables is convex but
canbe generally nonconvex. We consider a variable x, which consists of s blocks (xy, ..., x,),asetX
that is a closed and block multiconvex subset of R”, f is a differentiable and block multiconvex
function, and (r4, ..., r,) are extended value convex functions. The optimization problem is
described by the following equation [30]:

mingex F(x1, ..., x5) = e, .o,x) + 20 7i(x) (2)

Below it is presented the BU-NMF algorithm we used for our analysis by choosing one of
the three proposed choices of update schemes in [30].
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Algorithm 3 — block-coordinate update method
Initialization: choose two initial points (xfl7 ...,x;l) = (x(l), ...,xo‘)
for k=1,2, ...do
fori=1,2, ... ,s do
k

xb—argmin,x (g5, x—xf") —0—% ||| 2 + 7i(x;) (update scheme)

end for

if stopping criteria is satisfied then

return (xf, ..., x)

end if

end for

In the update scheme formula used in Algorithm 3, x¥! denotes an extrapolated point, g is
the block-partial gradient of f'at x*! and Z¥! is the Lipschitz constant of V/ f‘

In [30] it was shown that the BU-NMF algorithm, when tested on synthetic, hyperspectral
and real image datasets, it gave faster and more accurate results compared to other algorithms,
such as multiplicative update, ALS, alternating direction method (ADM) and Blockpivot.

All the numerical results presented in this work have been obtained by Matlab 8.1.0.604
(R2013a) implemented on an Intel Core 2 17-4770 processor, 3.4 GHz with 16 GB RAM. The
code for the BU-NMF algorithm was obtained from [30]. The ETM pharmacokinetic results
were obtained using a dedicated software tool for DCE-MRI data analysis [11].

2.3.1 Data pre-processing

The pre-contrast phase of the MR signal was first removed from the raw signal. A small
number of pre-contrast acquisitions were obtained in order to observe the effect of the CA to
MR signal intensity. Afterwards, the baseline was removed in order to extract the net effect of
CA uptake on the signal intensity.

Finally, the smoothing spline method was implemented in order to remove the noise from
the dynamic DCE-MRI data and obtain a smoother signal. In particular, a cubic smoothing
spline algorithm was applied to the data for fitting a smooth curve to the noisy MR signal. In
Fig. 2, we can see the plots resulting from all the previously described pre-processing steps
applied to the original intensity curve of a specific image pixel from Patient #1.

2.3.2 BU-NMF initialization
Two different approaches have been tested for the initialization of the BU-NMF algorithm:

1. Random initialization: The matrices W and H are typically initialized with random
nonnegative values in the standard NMF algorithm as shown in the three algorithms that
were formerly presented. In our case, the BU-NMF initialization relied on taking random
values from the Gaussian distribution.

Random initialization of the BU-NMF algorithm was proven not to be repeatable as it gave
ambiguous results when running it for multiple times [28]. For Patient #1, we ran the BU-NMF
algorithm with two different random initializations and the results were completely different.
We can see in Fig. 3 that BU-NMF in one case converged to a non-interpretable solution and
only nine iterations were required (Fig. 3a, c). However, when the algorithm was initialized

@ Springer



9424 Multimed Tools Appl (2018) 77:9417-9439

1200 T T T T T T T T
1000
> 80or
‘B
c
2
£ 600F
©
c
=l
“ 400 |
g
li / #= - original signal
200 ’l+\,.\,++# —& — pre-contrast removal |
? —& —baseline removal
! — 4= -smoothed signal
U ‘ 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Timepoints

Fig. 2 Pre-processing steps applied on the intensity curve of a pixel from Patient #1. Pre-contrast phase was first
removed, then the baseline, and finally smoothing was applied to the data

with different random values, it converged to interpretable results (Fig. 3b, d) and 376
iterations were required.

The number of iterations required for convergence of the BU-NMF algorithm, when ran for
50 times, is shown in Fig. 4 for all three patients. Fifty consecutive runs have been carried out
by using the same ROI in each run, and different random values per voxel were produced each
time for the algorithm initialization. The sets of points with the three different colors depicted
in Fig. 4 correspond to each one of the three different patients.

Fig. 3 BU-NMF results with the three NMF components (a, b) and the corresponding composite color maps
illustrating the percentage contribution of each component (¢, d) for one random initialization (a, ¢) and for a
different random initialization (b, d)
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Fig. 4 Number of iterations required for the BU-NMF algorithm convergence for each of 50 consecutive runs

For all three patients, the BU-NMF algorithm sometimes converged to interpretable
solutions while others it did not. As explained before for Patient #1, when it converged to a
non-interpretable solution, only a few iterations were required. On the other hand, when the
algorithm converged to interpretable results, a greater number of iterations were required.
Therefore, we concluded that the random initialization approach did not yield reproducible
results and we opted for different initialization techniques, which are explained in the
following paragraphs.

2. Data-driven initialization: A number of such methods have also been tested, including a
PK model as well as a simple gradient method. These initialization methods relied on
information extracted directly from the data and when tested on the same patient data,
similar results were obtained, which were also repeatable [28]. In particular, the wash-in
and the k™" maps were utilized for the initialization of the BU-NMF algorithm. In the
first case, the BU-NMF algorithm was initialized by classifying the tumor area in three
subareas using the “wash-in map” extracted from the first part of the time-signal curve
related to each individual voxel. In the second initialization approach, the BU-NMF three-
class initialization was derived by utilizing the k"™ map of ETM [26].

After computing the initial weight matrix W, the Hy matrix was initialized by the least
squares solution of A = Wy*H, where A is our given MR image data.

Concerning the decision on the value of k, for both random and data-driven initialization,
PCA was applied to the data with the aim of determining the number of principal components
that describe the 99% of the data variability. PCA is an orthogonal linear transformation, which
projects the data onto a lower-dimensional subspace with respect to the original one. PCA
involves the computation of the covariance matrix of the data and then its eigenvalues and
corresponding eigenvectors. Eigenvectors representing the highest proportion of variance are
the so-called principal components of the data. For the implementation of the PCA method,
apart from the standard pre-processing reported previously, mean centering was also utilized,
since this is a substantial requirement for PCA to work. After having identified the number of
principal components, we used this information as an indication of how many different
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patterns the BU-NMF algorithm needs to seek in order to discover the underlying patterns of
the MR data.

3 Results

For all three patients, an expert clinician has annotated the tumor region of interest within the
entire 3D volume of the lesion. DCE-MRI data were acquired at 45 time points and for each
patient, 384 x 384 x 14 pixels were used in our analysis. Data were organized in a two-
dimensional data matrix X (i, t), where 7 is an index spanning all pixels in the 3D imaging space
corresponding to the selected ROI and ¢ denotes the signal time samples. In the next paragraphs,
the results from the model-driven (PK) and model-free (PR) approach are presented along with
a statistical comparison between the two methods. All figures depict results from a ROI selected
by an expert clinician from the central slice of malignancy for each one of the patients.

3.1 Results from the pharmacokinetic model approach

ETM was applied to the data and in particular, the biomarkers k™" and k,, were estimated, the
extracted maps of which are shown in Fig. 5b and c for the selected central slice (Fig. 5a) of
Patient #1. The k™" parameter is indicative of necrotic regions [25] and necrosis is associated
with no enhancement regions having zero or close to zero k™" values. On the other hand,
well-perfused areas are those associated with high wash-in and wash-out values corresponding
to high k™" and k., accordingly. Last, it is important to mention that hypoxic regions are
expected to have intermediate perfusion values, therefore it is hard to identify them in a
straightforward way from the PK map.

To overcome the difficulty of approximating the hypoxic regions, three-region clustering of
the k™" map was performed using the k-means algorithm, resulting in a better distinction
between the areas having different perfusion values. The k"™ and clustered k™" maps
depicted in Fig. 6a, b respectively, were obtained from Patient #1. Areas with high perfusion
were assigned to green clusters, those with moderate perfusion to blue clusters and those with
low or no perfusion to red clusters.

3.2 Results from the proposed model-free pattern recognition approach

As explained in Section 2, after the data pre-processing, PCA was applied to the data in order
to discover the number of components that the BU-NMF algorithm will seek. For all three

ktmns

Fig. 5 Extracted maps from ETM pharmacokinetic model for Patient #1: a) The dynamic image. b) The
map, and ¢) The k., map
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Fig. 6 Initialization of the BU-NMF algorithm using the k"™ parameter of ETM for Patient #1. (a) The k"™
map. (b) The corresponding three-area clustering using k-means, with green clusters associated with areas of high
perfusion, blue clusters with moderate perfusion areas and red ones with low or no perfusion areas

patients, we found that the total data variability was sufficiently (more than 99%) described by
the three first three principal components identified by PCA.

The next step concerned the implementation of the BU-NMF algorithm. The algorithm was
given as prior information: a) the number of patterns that are going to represent the DCE-MRI
data, which was three as shown by the PCA results, and b) the initialized W0 and HO matrices
using the wash-in and PK initialization method, described previously in Section 2.

3.2.1 Initialization results

The first BU-NMF initialization approach relied on the extraction of the wash-in map,
described in Section 2.3.2. A three-region classification map was subsequently derived from
the wash-in map using the k-means algorithm. This map is depicted in Fig. 7a and it
corresponds to Patient #2. Areas with high wash-in values are colored green, those with
intermediate wash-in are blue and those with low or zero wash-in values are red.

The second BU-NMF initialization approach relied on the extraction of the k™" map from
the ETM model, similarly to the concept mentioned in the pharmacokinetic model method
(Section 3.1). The extracted map from Patient #2 is illustrated in Fig. 7b.

The two initialization maps appear quite similar in terms of the necrotic region (red) but
don’t seem to agree very much on the well-perfused (green) and hypoxic (blue) regions.

3.2.2 BU-NMF results

Results from both the wash-in and PK map initialization of the BU-NMF algorithm are
illustrated in the following figures. In Figs. 8, 9, 10 the results from the BU-NMF implemen-
tation using wash-in initialization, are presented for Patients #1, #2 and #3 respectively. In
Figs. 8a, 9a, 10a the plots of the three NMF components are depicted and in Figs. 8c, 9¢c, 10c
the corresponding composite color maps are illustrated, showing the contribution of the three
components to each individual voxel. Each image voxel is characterized by a mixture of well-
perfused (green), hypoxic (blue) and necrotic (red) regions. The results of the PR analysis
using the PK map initialization, containing the NMF plots and the composite color maps are
shown in Figs. 8b, 9b, 10b and Figs. 8d, 9d, 10d respectively. We notice that for all three
patients, the three different NMF components have the shape of the theoretically expected
DCE curves as explained in Section 1, confirming the efficiency of the BU-NMF algorithm in
automatically characterizing the enhancement profiles. In addition, considering the apparent
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Fig. 7 Initialization of the BU-NMF algorithm using the wash-in and the PK map for Patient #2. (a) The three-region
clustering map derived from k-means clustering on the wash-in map, with green clusters representing the high wash-in
areas, blue representing the moderate wash-in areas and red ones representing the low or no wash-in areas. (b) The
three-region clustering map derived from k-means clustering on the PK map, with green clusters representing the high
perfusion areas, blue representing the moderate perfusion areas and red representing the low or no perfusion areas

high variability in the initial conditions the method in all cases yields consistent results. This is
further investigated in the next section.

3.3 Statistical analysis

Statistical analysis of our results was performed using Pearson’s linear correlation coefficient.
The correlation coefficient can range between —1 and 1, which we corresponded to percentages
ranging from —100% and 100%. A perfect positive correlation is represented by the value +1,
the value 0 indicates no correlation and —1 indicates a perfect negative correlation. The closer
the coefficient values are to 1 and —1, the stronger the relationship is between the variables. All
image correlations described in the following paragraphs have been computed following
image background removal, thus taking into account only the tumor ROI pixels.

Fig. 8 PR analysis results for Patient #1. Left: Plots of the three NMF components using the wash-in map (a)
and the PK map initialization (b) respectively. Right: The corresponding composite color maps (¢, d) derived
from the two different initialization approaches describing the percentage contribution of the well-perfused
(green), hypoxic (blue), and necrotic (red) components
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Fig. 9 PR analysis results for Patient #2. Left: Plots of the three NMF components using the wash-in map (a)
and the PK map initialization (b) respectively. Right: The corresponding composite color maps (¢, d) derived
from the two different initialization approaches describing the percentage contribution of the well-perfused
(green), hypoxic (blue), and necrotic (red) components

In order to investigate the correspondence between the hypoxic, well-perfused and necrotic
components derived from the two BU-NMF initialization approaches. The results are present-
ed in Table 1 for all three patients.

We notice that the highest correlation percentages (greater than 91%) appear when the same
components from the two different BU-NMF implementations are compared e.g. hypoxic

a

Fig. 10 PR analysis results for Patient #3. Left: Plots of the three NMF components using the wash-in map (a)
and the PK map initialization (b) respectively. Right: The corresponding composite color maps (¢, d) derived
from the two different initialization approaches describing the percentage contribution of the well-perfused
(green), hypoxic (blue), and necrotic (red) components
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component from wash-in initialization with hypoxic component from PK initialization. As
expected, all comparisons of different components exhibit either low or negative correlations.

The relationship between the BU-NMF classification and the k™" map three-region classifi-
cation using k-means clustering, as explained in Section 3.1, was also investigated and the derived
correlation percentages are presented in Table 2. The BU-NMF classification results were
obtained from Patient #1 using the wash-in initialization method. Similar results were obtained
when the PK initialization was chosen instead. Correlation is dominant when the same regions are
compared even though percentages are not as high as in Table 1, ranging between 38.44% and
66.92%. The necrotic regions show the highest correlation (66.92%) whereas well-perfused and
hypoxic components show lower correlation, i.e. 45.99% and 38.44% respectively. This might be
due to the fact that the k™" parameter is indicative of necrotic regions, as explained in Section 3.1,
but is not able to distinguish well between the well-perfused and hypoxic regions when a simple
classification method as k-means is used. Negative or low correlation percentages were observed
when different components from the two methods were described.

In order to get a further understanding of the extracted tumor hypoxic regions, we focused
on comparing only the hypoxic map extracted from the BU-NMF algorithm with the entire
k™" map (Table 3). Correlation percentages varied between 23.73-43.23%, which does not
give very much evidence of correlation between the two methods.

Subsequently, we applied a double thresholding technique on the image in order to
approximate the location of the hypoxic region in the tumor. The rationale for this is that the
hypoxic areas will exhibit a k™" profile greater than the necrotic (k™" = 0) but less than the
well-perfused areas (k"™"- > 1). We tested different threshold values and we identified the
upper and lower bounds in the k™" image that lead to the highest correlation between the
image derived from k" thresholding and the hypoxic region derived from BU-NMF
(Table 4). It is noticeable that for all three patients these bounds were between 0.15 and
0.76 approximately, with k™" taking on values in a range of 0-1, leading to a maximum
correlation with BU-NMF results of around 52%. From this, we could assume that the necrotic
image regions according to our classification exhibit k"™ values lower than 0.15, well-
perfused exhibit k™" more than 0.76 and hypoxic regions lie in between these two thresholds.
This assumption is reasonable since the hypoxic k"™ range is in line with findings claiming that
the bulk of the tumor consists mainly of hypoxia; hence, the periphery of the tumor, which
typically relates to the normoxic/well-perfused area, occupies smaller space [16, 25]. Necrotic
regions instead are those with k™" close to zero, occupying a smaller space with respect to
hypoxia. However, in our case the necrotic region seemed to be overestimated by a small
percentage of 15%, which can be explained by the limitation of MR imaging resolution regarding

ktrans

Table 1 Correlation (%) between the hypoxic, well-perfused and necrotic components using the two initializa-
tion schemes for the BU-NMF algorithm

‘Wash-In

Hypoxic Well-Perfused Necrotic
PK Patient ~ Patient  Patient  Patient  Patient  Patient Patient Patient  Patient

#1 #2 #3 #1 #2 #3 #1 #2 #3
Hypoxic 98.09 99.64 96.37 -17.12  —-1242 2572 7459 8514 -76.37
Well-Perfused —4.26 5.71 -18.92  99.79 91.11 98.83 -51.3 —49.01 —46.37
Necrotic —87.83  —82.09 7137 4337 4555 4468 99.1 96.96 98.25
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Table 2 Correlation (%) between
the BU-NMF (wash-in initialized)
and the k™" (clustered by k-means)
hypoxic, well-perfused and necrotic BU-NMF Hypoxic Well-Perfused Necrotic

components for Patient #1

ktrans

Hypoxic 38.44 6.86 —42.86
Well-Perfused 23.75 45.99 —54.88
Necrotic -0.46 -31.2 66.92

physiology, thus voxels with values close to zero that are adjacent to necrotic regions with k™" =0
are also considered as necrotic. Similar assumptions for the k™" range were used in a recent study
[19], which deals with the delineation of tumor physiological regions through the application of a
cancer predictive model aiming to predict patients’ glioblastoma progress.

3.4 Qualitative findings from Histopathology reports

There is consistency in the morphological characterization of the three lesions regarding the
existence of necrotic areas sporadically distributed within the tumors. In addition, all three
tumors have been characterized by regionally high proliferation rates.

Specifically, for the patient with MPNST sarcoma, the immunohistochemical analysis has
shown positive value of the proliferation marker (MIB-1), high cellularity as well as positive
values of the microvessel density parameter CD34.

We can assume that localization of regions with high cellularity and vascularization, might
indicate either lack of adequate oxygenation of the tumor, hence hypoxic regions, or presence
of well-perfused areas.

4 Discussion

In the present work, three different approaches were tested on DCE-MRI data obtained from
patients affected by sarcoma; the quantitative pharmacokinetic ETM model, the semi-
quantitative BU-NMF algorithm applied on the time-signal DCE curves and the qualitative
examination of the data provided by experienced radiologists. The ETM model provided us
with the k™" map, which is a well-established quantitative parameter for the localization of
perfusion areas. As of the semi-quantitative PR approach, the BU-NMF algorithm was
initialized by one random approach and two data-driven approaches. In terms of histopatho-
logical data, important tumor morphological information was obtained and for one of the three
patients immunohistochemical information was also provided.

In particular, the three most common theoretically expected types of DCE tissue curve
shapes (Types 1, 2 and 3) were confirmed by the results of the BU-NMF algorithm as being the

Table 3 Correlation (%) between

the k"™ map and the hypoxic map k"™ versus BU-NMF k"™ versus BU-NMF
extracted from BU-NMF with dif- hypoxic map/Wash-in - hypoxic map/PK
ferent initialization schemes

Patient #1 32.26 23.73

Patient #2 43.23 39.36

Patient #3 38.87 40.51

Mean for all patients 38.12 34.53
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Table 4 Correlation (%) between hypoxic maps extracted from the k™™

k"™ bounds

map and BU-NMF and corresponding

k"™ versus BU-NMF with Wash-in k"™ versus BU-NMF with PK
Correlation k"™ lower k™" upper  Correlation k™" lower k™" upper
(%) bound bound (%) bound bound
Patient #1 53 0.14 0.52 48.59 0.12 0.7
Patient #2 57.7 0.06 0.77 55.82 0.05 0.77
Patient #3 50.17 0.28 0.76 48.99 0.29 0.81
Mean for all 53.62 0.16 0.68 51.13 0.15 0.76

patients

dominant patterns that represent the signal. In addition, the well-perfused, hypoxic and necrotic
components extracted from the two BU-NMF implementations (wash-in and PK initialized),
correlated well between them while there was also a positive correlation with the same
components extracted from the k™" map with a simple k-means clustering. Small positive
correlations were observed when comparing the k™" image with the hypoxic component of
BU-NMF. The correlations were significantly improved, i.e. improvement of 41% for wash-in
and 48% for PK initialization, when only a constrained (via double thresholding) part of the
k"™ map was compared against the hypoxic BU-NMF image. What is more, from the double
thresholding technique we used on the k" image, the BU-NMF hypoxic regions best
correlated to k™" image with values between 0.15 and 0.76 approximately, well-perfused
areas to k"™ above 0.76 and necrotic regions to k"™ below 0.15. These results are in
agreement with published results and findings on tumor hypoxia [16, 25] as explained in
Section 3.3. The histopathological findings indicated the presence of necrotic and well-perfused
areas in all three lesions, however the detection of hypoxic regions would need further analysis
since we only obtained immunohistochemistry results for one of the three patients.

In conclusion, the PR method used in this work gave fast (around 25 s execution time) and
repeatable results, always converging after a precise number of iterations for each patient. In
addition, the results obtained did not depend on complex fitting or initialization procedures in
contrast to computationally expensive PK models, which also require non-linear fitting
schemes that may lead to local extrema problems. After successfully addressing the problems
related to random initialization, the presented method was robust to initial conditions since it
gave very similar results for both initialization schemes. In addition, user interaction was
minimal, whereas for PK models there is need to select certain parameters in advance such as
the AIF [3]. Last but not least, in contrast to model-based approaches, our method does not
make any assumptions on the underlying biology since it is purely data-driven.

The findings stemming from the present study may be useful in many different ways. Tumor
classification based on hypoxia, could be very helpful in determining the malignancy grade of a
tumor and most importantly in assisting the oncologist to suggest more effective treatment
planning and possibly limit or even avoid the radiation therapy. Achieving hypoxia delineation
and mapping of the diverse perfusion areas present in heterogeneous tumors, will be also useful in
guiding core needle biopsy so that it targets the most representative areas of the tumor. In addition,
it could help to differentiate tumors based on the perfusion maps extracted from the MRI
examination that could play a key role in deciding whether surgery is needed or not.

An obvious limitation of the current work is further validation against histopathology and
immunohistochemistry, which was not available for all three sarcomas. To this end, the current
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work focused mainly on demonstrating the increased stability and invariance to initial conditions
that previous work suffered [27] and on correlating the automatically extracted regions to the well-
known k"™ variable. Interestingly, our results show that by containing the k" parametrized
image with a double threshold (lower to exclude necrosis and upper to exclude well-perfused
areas), the correlation to our extracted hypoxic components increases significantly. This is an
encouraging indication that our data-based approach is able to produce clinically significant results
related to tumor hypoxia, a hypothesis that needs further investigation in order to be confirmed.
To this end, we will also compare a large number of pharmacokinetic parameters from a
wide range of DCE-MRI models such as Tofts and GCTT [20], in order to examine possible
correlations more thoroughly and compare them to already published work from studies
investigating the relationship of DCE-MRI to tumor hypoxia. The main plan for future work
is to compare our computational results from the model-free and model-based approach with
quantitative histopathological parameters. All the tissue sections analyzed computationally, will
be histopathologically examined for morphological features, while additional immunohisto-
chemistry will identify biomarkers, which will be afterwards translated to hypoxia and other
related cancer hallmarks. What is more, further work and analysis on a large series of tumor
image data will be performed in order to confirm our results and investigate the correlations
between model-based, model-free methods and histopathology in different tumor malignancies.

5 Conclusion

The present study analyzed the tumor physiology of three histologically different sarcomas by
using non-invasive DCE-MR imaging data, which were post-processed leading to quantitative
and semi-quantitative results. An advanced matrix factorization algorithm, BU-NMEF, has been
applied to the data and its results were compared to the pharmacokinetic ETM model and to
histopathology findings as well. Our results indicate that hypoxia can be estimated from non-
invasive DCE-MR imaging data using purely data-driven methods.

The BU-NMF algorithm was proved to be robust, as it gave consistent results when
initialized by different methods. It yielded to the identification of the three most common
enhancement patterns of the DCE time-signal uptake curves, which is in line with theoretical
findings claiming that there are three types of DCE tissue curves as explained in Section 1.
BU-NMF also segmented the tumor area in three regions characterized by different perfusion,
i.e. well-perfused, hypoxic and necrotic one, which correlated well when compared with the
same areas extracted from the k"™ parametric map of the pharmacokinetic ETM model.
Interestingly, the BU-NMF hypoxic map seems to correlate with a constrained k™" image, as
is theoretically expected. What is more, from the histopathological findings, the existence of
necrotic and well-perfused areas in the three lesions was further confirmed.

The current study enabled us to obtain an objective evaluation of the physiology of the lesions
under examination, which was supported by the qualitative analysis of the experts. Once this is
validated, it could be particularly useful as an imaging hypoxia biomarker for monitoring the follow
up of the patient. To this end, additional studies have been planned to test the algorithm on larger
patient cohorts and to validate the results through histopathology, with the ultimate goal to develop
an automated tool for the detection of hypoxia using DCE-MRI.
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