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With manufacturing going through the Industry 4.0
revolution, a vast amount of data and information
exchange leads to an increase in complexity of
digitized manufacturing systems. To tackle such
complexity, one solution is to design and operate
a digital twin model under different levels of
abstraction, with different levels of detail, according
to the available information and scope of the
model. To support efficient, coherent and stable
information flows between models with different
levels of detail, a mathematical structure, called a
delta lens, has been explored and developed to
support rigorous bidirectional transitions between the
models. To support different types of abstractions
in manufacturing, a hybrid delta lens has been
proposed and its formal representation is developed
to support the generalization of its structure and
properties. Benefits of the proposed hybrid delta
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lenses are demonstrated through an application to an industrial case to support the modelling
of an automatic, high-throughput assembly line.

1. Introduction
The design and analysis of engineered objects today have been developed with an impressive
degree of complexity. In a wide range of areas, e.g. information technology, transportation,
urban planning, manufacturing, logistics, etc., modern products, systems and services are the
result of multiple components acting together to provide a global behaviour or functionality.
This scheme falls into the area of complex systems, consisting of a large number of interacting
components/agents exhibiting an emergent collective behaviour which is difficult to anticipate
from the knowledge of each component/agent [1]. The design and analysis of complex
systems require proper models, i.e. a simplified formal representation of a system taking into
consideration the relevant features and behaviour of the complex system [2]. Pursuing this class
of analyses for large systems using analytical methods is usually hopeless [1], thus, researchers
and engineers must rely on computer-based approaches, e.g. numerical simulations.

Relevant examples of complex systems are manufacturing systems, comprising products,
equipment, people, information, control and support functions contributing to the final goal of
achieving the devising of products and services for the customers.

The complexity of manufacturing systems is due to a wide range of factors. Firstly, the need
to take into consideration different types of behaviours: the physics linked to the manufacturing
processes to be operated, the organization supporting the interactions among different agents
(machine, transporters, human operators, etc.), the dynamics due to the continuous evolution
of internal and external factors (supplies, failures, production volumes, etc.), management and
control policies governing the behaviour of components and agents, information and data
supporting many of the mentioned factors. Secondly, the need to address analyses and decisions
at different levels in the system (e.g. machine, production cell, factory) with different levels of
detail. As an example, fine-tuning a process requires us to take into consideration the detailed
behaviour of a machine and the continuously sampled values of monitoring variables. On the
contrary, planning the production can rely on a set of more aggregated datasets. Finally, as is
usual in complex systems, the comprehensive behaviour can only be analysed by considering all
the components/agents and their interactions at different levels of detail.

The use of digital technologies in industry, e.g. sensors, digital models, cloud computing, and
integration of multiple heterogeneous data repositories, has opened a wide range of routes to
manage and control manufacturing systems. Such enabling technologies, often referred to as
Industry 4.0 [3], have facilitated the implementations of intelligent design [4,5], management [6,7],
data analytics [8] and control approaches [9,10]. The Digital Twin (DT) plays a key role in this
context [11] because it is the virtual (digital) counterpart of a real system, equipped with a set of
models and algorithms to support decision-making, a continuous flow of data sending from the
real manufacturing system and a control bus to implement decisions back to the system [12,13].
The bidirectional and continuous flow of data asks for appropriate communication technologies
and algorithms. Various data, knowledge, models, services, etc., need to be linked to achieve more
efficient, smart and sustainable manufacturing environments.

If all the resources of a DT are centrally stored and processed, it will cause a large burden
for the transmission, computation usage, and maintenance. Thus, pursuing the achievement of
accurate representations of a whole manufacturing system in a single monolithic digital twin
is an unreasonable and unfeasible approach. On the contrary, a wise strategy is the definition
of different interacting models designed to provide the desired level of details, matching the
objective of the analysis or design phase. Indeed, a digital twin can be designed under a ladder
of abstraction, where each abstraction represents a level of details, driving the need for multi-
scale models where complex phenomena are abstracted into different levels exploiting data with
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heterogeneous resolutions. This approach is applied in multi-fidelity models [14] consisting of
multiple models with different levels of complexity or accuracy according to the intended use
and the available data. Low-fidelity models (LFMs) are constructed by reducing certain details
of a real system that is associated with a high-fidelity model (HFM). LFMs enable rapid analyses
and low computational load, but cannot catch all the details of HFMs. The composition of models
with different fidelity leads to a multi-fidelity surrogate model (MFSM), designed to bring in the
desired degree of detail [15]. The seamless integration of these sub-models must guarantee that it
is possible to go up and down the ladder of abstraction in a steady and secure way, i.e. to ensure
bidirectional transitions with different levels of fidelity in an efficient, coherent and stable manner.

In this paper, a digital lens that enables the digital system to zoom in and out between
models with different fidelities, is proposed as the mathematical foundation to formalize rigorous
bidirectional transitions between models in a digital twin for manufacturing applications. The
remainder of the paper is organized as follows. Section 2 describes basic characteristics of
bidirectional information flow and what is a digital lens. Section 3 further extends the digital
lens with an extra Delta structure, namely Delta lens, and why the Delta lens is suited for
providing mathematical foundations for bidirectional information flow. To support different
types of abstraction, a hybrid delta lens is proposed and its formal representation is developed to
support the generalization of its structure and properties in §4. The proposed hybrid delta lens
structure is then tested in §5 using an assembly line digital twin. Section 6 ends the paper with
the conclusions.

2. Bidirectional information flow and lenses
With respect to modelling approaches for complex systems, the intrinsic complexity drives the
need for hierarchical structured models consisting of sub-models interacting together in terms of
information flows, propagating information within the model of the whole system. Moreover, as
described in §1, models could support analyses and decisions at different scales and/or levels
of detail. Thus, sub-models with different fidelity [14] could be interchanged, within the same
structure of the global model, to pursue efficiency and tractability of the problems to be solved.

Information flow, in the context of hierarchical structured models, is considered as
transformation/synchronization of information from one model to another, and vice versa when
backwards. Therefore, the flows between the two models are intrinsically bidirectional, with
forward flow and backward flow, in a sense that after the forward flow data in the sender and
receiver co-exist and evolve independently, and the backward flow is able to bring the updated
data back to a consistent state. It is essential to understand how information is transmitted from a
sender to a receiver, and vice versa. To ensure stability of the flow, one requires small changes in
either models to produce small changes in other model after the forward or backward flow [16].

Mathematically a bidirectional flow is considered as vertical, whenever the two models have
different scales or levels of detail in the hierarchical structure, and flows between two models
with the same scales or levels can be characterized as horizontal, provided that the two models
share a common piece of information, but each of them contains something new not present in
the other. Note that the definitions of vertical and horizontal information flows are distinct from
information flows in the management of manufacturing as in [17], as in our case we focus on the
mathematical characteristics of the flow rather than its management aspect. In real-case scenarios,
without an explicitly defined hierarchical structure of the whole system, it is sometimes rather
difficult to have a clear distinction about whether two models are from the same level (or with
the same fidelity), and mathematically it is more challenging to characterize its general structure
as sometimes it is heuristic and case based. In this paper, the focus will be on bidirectional
information flows between two models with different fidelity, i.e. information flow between the
global model and its sub-models, or flows between a sub-model and its sub-sub-model.

For example, as shown in figure 1, under the same digital system, let model A be a global
model, and model C be one of its sub-models, the bidirectional flows between model A and
model C, written as A � C, represent the exchange of information between the two models. As
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Figure 1. Bidirectional information flow between two models with different fidelity. (a) Forward information flow.
(b) Backward information flow. (Online version in colour.)

model C takes a sub-set of information a from A, model C is generated by abstracting away some
characteristics of model A, that is, C is deterministically computed from A. Mathematically the
relationship between A and C is many-to-one, therefore different states of A can have the same
states in C. Technically as the same model A can have many different sub-models other than C,
understanding possible behaviour and outcomes of the bidirectional flow between A and C, or
many others, will be helpful to aid with identifying a suitable sub-model.

Take the flows A � C as an example: as shown in figure 1a, the forward flow f from model
A to C sends all information taken from the common part a in A to C; for the receiving end,
model C gets all a from A and maps all things in a isomorphically to all things in C. Here, any
updated A′ results in an updated a′, will be mapped into C to get a new status of C′. The backward
flow f −1 from model C to A, as shown in figure 1b, sends all in C to the common part a in A;
and any updated C′ will be mapped isomorphically to the same part in a of A, resulting in an
updated A′.

(a) Lenses
In a similar sense to a physical optic lens, a lens can be a mathematical structure which allows
zooming into a small part of a larger system in the digital world. Here the zoomed-in part is the
view, and the larger system the source. Any changes in the view will be reflected or zoomed out to
the source. Lenses were originally defined to precisely present synchronization between a pair of
sets, called state-based lenses [18] in which it is possible to update from one state of the system to
another, and the only information retained on this update is its initial and final states. Here lenses
are asymmetric, as the view is determined by the source, and the source has all the information
required to reconstruct the view.

Formalized by category theory, let S be a set of source models, and V be a set of view models,
a lens l between the two sets of models, write as l : S � V, as shown in figure 2a, consists of
two propagation functions get and put. The get : S → V function takes a source model S ∈ S and
computes its view V ∈ V, that is V = get(S). The put : S × V → S function takes an updated view
V′(V′ ∈ V) of V and the original source model S, and computes an updated source model S′(S′ ∈ S)
of S, that is S′ = put(V′, S). The readers can refer to [19–25] for more information about lens and
its different types.

The intended behaviour of a lens is specified by the set of lens laws, in which three lens laws
(PutGet, GetPut, PutPut) are important to ensure a coherent and predictable exchange between S
and V. As shown in table 1, the PutGet law states that any update to V is represented faithfully in
S, therefore it confirms that the systems S and V are indeed synchronized under the get and put
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Figure 2. Lens and lenses’ composition. (a) Lens S� V. (b) Lenses composition T� S� A.

Table 1. Lens laws.

laws semantics

PutGet S = put(get(S), S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GetPut get(put(V ′, S))= V′
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PutPut put(V′′, put(V′, S))= put(V′′, S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

functions. The GetPut law represents that if V is not changed then neither is S. The PutPut law
indicates that any update to V completely overwrites previous updates.

A lens is called well-behaved if it satisfies PutGet and GetPut laws; and a well-behaved lens is
called very well-behaved if it also satisfies PutPut law.

When applying lenses in practical applications, such as database view updating, Haskell
programs, systems interoperations, data sharing and model-driven engineering, compositionality
is at the heart of lenses’ applications. Given two lenses l1 : T � S (with get1 and put1) and l2 : S � A
(with get2 and put2), the composition of l1 and l2 is (l1; l2) : T � A, as shown in figure 2b. It consists
of a new pair of get and put functions get1_2(T) := get2(get1(T)) and put1_2 := put1(put2(A′, S), T). If
both lenses satisfy a lens law, so does the composition. The composition of lenses is a powerful
tool, as the updating of one dataset can affect all other datasets that it is related with, therefore
compositing the lenses can ensure a coherent update synchronization across the whole system.

By analysing the characteristics of the bidirectional information flow and how information
is transmitted and then updated between two models, one can identify that all aspects of such
information flow match the structure of lenses. If combining figure 1a,b together, and making
model A the source S and model C the view V, one can get the structure of a lens as shown in
figure 2a. Therefore a basic information flow can be viewed as a concrete example of lenses, such
that the structure of lenses can provide a mathematical foundation for bidirectional information
flow.

3. Asymmetric delta lenses for vertical information flow
The notion of lens was developed originally as state-based, which concerns only the initial and
final states of a system. It suffers from two problems in practice. The first problem is about the
control of alignment [26]. To propagate changes from S to S′, a tool should be used to align the
two models. The alignment process should map elements in S′ to the corresponding elements
in S, such that changed elements in S′ can be identified, and then the respective elements in S
can be updated. Such alignment operation is computationally expensive and complex, and is
usually based on fine-grained heuristics. As heuristics are not always reliable, model designers
might prefer to use a different alignment strategy, or make corrections to automatically identified
differences between S and S′. However, there is no room for such control of alignment with state-
based lenses.
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S' V'

S V
get

get

S V

dget

dput (S, V)

Figure 3. The structure of delta lens.

The second problem is the compatibility issue when composing multiple updates [26].
Owing to the complexity of the alignment operation, a single update propagation can become
complicated and less predictable. Such a problem will be accumulated to the next lens after
composition, and as such becomes more and more cumbersome whenever there are multiple
compositions for models with complex structure.

(a) Delta lenses
To overcome the two above-mentioned issues, Diskin et al. [26] proposed a new type of lens, called
the delta lens (d-lens). An inter-model delta was introduced to represent differences between a
model and its updated version, followed by a delta propagation. A delta has a source model and
a target model, and there may be multiple deltas between two models. For any model A, there
is a special identity delta idA: A → A which specifies an idle (empty) update of model A resulting
in the identity alignment of A to itself.

The delta propagation inputs and outputs not only models but also the deltas between them.
In addition to the pair of put and get functions, d-lens introduces two higher order functions dget
and dput, as shown in figure 3. �S : S → S′ is a set function which represents the difference from
model S to its updated version S′. While the get function computes views from the source system,
the dget translates deltas �S in the source to deltas �V in the view, that is �V = dget(�S). The
backward update translation is given a higher-order function dput, which takes a delta �V in
the view system and the original source S as input, and outputs a delta �S in the source, that is
�S = dput(�V , S). In other words, the dput not only considers the changes in the view, but also
uses the original source system to retrieve information missing in the view.

The benefits of separating the process of identifying a delta (delta discovery) and delta
propagation is that there are two distinguishing features of the delta lens over the state-based
lenses. (1) It enables controlled alignment between the original and updated model. One can
use different alignment strategies to generate a delta, and can also make corrections to any
automatically discovered deltas. (2) As deltas produced by the dput can be passed to the input of
other delta lenses, not only can it reduce the amount of expensive alignment processes, but also
ensure correct composition at the same time.

(b) Delta lenses for information flow
Definition 3.1. Let α : S � V and β : V � T be two delta lenses. The composition of α and

β is a delta lens (α; β) : S � T. The dget function of (α; β) is the composition of the two dget
functions, dget(α;β) = dgetα ; dgetβ . The dput function of (α; β) is defined as follows. Let �T :
T → T′ be an update on T, such that get(α;β)(S) = T, here T, T′ ∈ T, that is, getβ (V) = T with
V = getα(S), then dput(α;β)(�T, S) = dputα(�V , S) with �V = dputβ (�T, V), that is dput(α;β) :=
dputα(dputβ (�T, V), S).
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Table 2. Delta lens laws.

laws semantics

GetId dget(idS)= idV , with V = get(S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PutId idS = dput(idV , S), with V = get(S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PutGet dget(dput(�V , S))= �v
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GetGet dget(�S ;�S′ )= dget(�S);dget(�s′ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PutPut dput((�V ;�V′ ), S)= dput(�V , S);dput(�V′ , S′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As there are two types of information flow, vertical and horizontal, for each type the
implementation of delta lenses will be different. For a vertical flow, the delta lens should be
applied in an asymmetric way [26], and symmetrically [27] for a horizontal case. The asymmetric
case will be the focus of our paper and the symmetric one will be studied in the future.

One of the major advantages of using delta lenses is that different delta lenses can be composed
while maintaining the consistency of the semantics of the update procedures, thanks to the set of
delta lens laws, as indicated in table 2. The GetId law requires that an idle update (identity delta)
in the source model will translate into an idle update (identity delta) in the view; and the PutId
says that an idle update in the view will generate an idle update in the source. In a similar sense
to the PutGet law of the state-based lenses, the PutGet law on deltas also confirms the systems S
and V are indeed synchronized under the dget and dput functions. The GetGet law ensures that
the delta between two views arising from composition of updates in the source will be the same
as computing delta incrementally over each update. Similarly, the PutPut law says that any new
update �v′ in the view overwrites the previous update �v .

A delta lens is called well-behaved if it satisfies GetId, PutId and PutGet laws; and a well-behaved
delta lens is called very well-behaved if it also satisfies GetGet and PutPut laws.

Note that one does not require the GetPut law on deltas. As for an asymmetric delta lens, the
view is generated from the source and therefore some information contained in the source might
not be in the view, and some changes contained in the source delta cannot be retrieved from the
dget function.

The above-mentioned laws provide a foundation for enabling transitions among many models
in a rigorous manner via composition of delta lenses.

Here, GetGet and PutPut laws also ensure the composition of updates is rigorous during the
composition of delta lenses. For example, two sequential updates of �T and �T′ on T composed
together under the PutPut laws can then use the backward propagation to get the composed �S

and �S′ .
It is proved that the composition of two (very) well-behaved delta-lenses is also a (very) well-

behaved delta lens.
During the composition, only the very first delta in a nesting of delta lenses needs to be

computed. For example, in figure 4, updating a view in multiple steps and backward propagating
the cumulative difference (composition of differences due to each update) produces the same
result as backward propagating each difference in view individually and composing on the
source side. Therefore, complex (multi-level modelling and nesting of lenses) information flow
and synchronizations can become less computationally expensive and easier to manage, as the
behaviour of the composed lenses is predictable under the set of delta lens laws.

4. Hybrid delta lenses= delta lenses+ hybrid dput
Delta lenses can play a relevant role in the design and analysis of complex systems, supporting the
development of digital models of real systems. In this scenario, decisions related to the requested
level of details are fundamental, since they relate to the trade-off between the effort/cost to collect
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S T

S' V'

V

T'

S" V" T"

geta getb

S

S'

T

T'

V

V'

dputa (V, S) dputb (T, V)

dputa (V' , S') dputb (T',V')

Figure 4. Delta lenses’ composition.

data (e.g. installation of sensors and communication networks) and the desirable accuracy, and
run elaborations (e.g. optimization, simulation, performance evaluation, planning, etc.).

Multi-fidelity models have been proposed to address these aspects [14], with the aim of
exploiting multiple models of the same system with different levels of accuracy or complexity, and
taking into consideration the specific availability of data and/or objectives of the analysis. Thus,
while high-fidelity models (HFMs) consider the full set of features and information available for
a manufacturing system, low-fidelity models (LFMs) are defined by reducing the level of details
to enable rapid analyses and low computational load.

An LFM provides an abstraction of the HFM, entailing the need for mechanisms providing
their reciprocal mapping and defining information and data flow to guarantee consistency.

The aforementioned asymmetric d-lens structure is applicable whenever the view embeds in
the source faithfully, thus, it supports a fundamental class of abstraction taking a small part from
a larger system. Nevertheless, different abstraction mechanisms can be needed in the modelling
of a complex system. A very common one is the aggregation of a set of objects into a single
one, entailing that the get function will be many-to-one, and there will be many possible dput
functions for a given get, except if the mapping is defined by specific rules. While such rules can
be difficult to define, a possible solution without defining the rules is to design an estimation
algorithm to generate a possible mapping for the one-to-many relationship. Again, as there can
be many estimation algorithms available, the way of hybridizing the dput with an arbitrary
estimation algorithm might potentially affect the stability of a d-lens. To this end, a hybrid delta
lenses structure is then proposed, and a formal representation of the hybrid delta lenses will be
developed to support the generalization of its structure and properties.

(a) A formal representation of hybrid delta lenses
A hybrid delta lens, written as hd-lens, is defined under the formalization of category theory, as
follows:

Definition 4.1. Let l : K � L be an asymmetric delta lens from a set of source models K to a set
of view models L, with get : K → L, put : K × L → K, dget : [K, K] → [L, L], and dput : K × [L, L] →
[K, K], where K ∈ K, L ∈ L, [K, K] the set of deltas from K to K, and [L, L] is the set of functions
(deltas) from L to L. Let estK,L

Y : [K, K] → [K, K] be an estimation algorithm which takes a delta
(�K) on K and computes an estimated new delta �KY , here �K, �KY ∈ [K, K].

A hybrid delta lens lh : K � L, as shown in figure 5, is a new asymmetric delta lens constructed
from l and the estimation algorithm estK,L

Y . The get function of lh, denoted as geth, is defined
by the composition of a surjective mapping π1 : K → K and get, that is geth(K) := get(π1(K)). The
put function of lh, is defined by the composition of an inverse of π1 (which is to be decided by
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K K L

K'Y
K' K' L'

L'

get

L L

get

KY
KY

p1

p1

dput (L, K)estY 
K, L

K L
geth

geth

dputh (L, K)

dget

(a) (b)

K

Figure 5. The structure of hybrid delta lens lh: H� L. (a) Hybrid delta lens—full map. (b) Hybrid delta lens—simple map.

estK,L
Y ) and put, that is puth(L′, K) := π−1

1 (put(L′, K)), with L′ ∈ L. The dput of lh, denoted as dputh,
is the sequential composition of dput and estK,L

Y , therefore dputh(�L) := estK,L
Y (dput(�L)), where

�L ∈ [L, L].
Note that dget functions on l and lh are the same, as the estK,L

Y only deals with the backward
propagation of update from L to K, and no estimation algorithm is required to generate L
from K.

Similar to the set of delta lens laws, a set of hybrid delta lens laws are defined as follows:
GetId: dget(idK) = idL, with L = get(K)
PutId: idK = dputh(idL, K), with L = get(K)
PutGet: dget(dputh(�L, K)) = �L

GetGet: dget(�K; �K′ ) = dget(�K); dget(�K′ )
PutPut: dputh((�L; �L′ ), K) = dputh(�L, K); dputh(�L′ , K′)

Proposition 4.2. Given a well-behaved asymmetric delta lens l : K � L and an estimation algorithm
estK,L

Y , then the hybrid delta lens lh : K � L is also a well-behaved asymmetric delta lens.

Proof of proposition 4.2. From the definition of lh we get dget on lh is the same with dget on l, as
dget(idK) = idL, thus lh satisfies GetId law.

From the definition we get dputh(idL, K) := estK,L
Y (dput(idL, K), K). As dput(idL, K) = idK, and

estK,L
Y (idK, K) = idK, we get dputh(idL, K) = idK, thus lh satisfies PutId law.
We know dputh(�L, K) := estK,L

Y (dput(�L, K), K). Given dput(�L, K) = �K, dputh(�L, K) =
estK,L

Y (�K, K) = �KY . As dget on lh is the same with dget on l, we have dget(�KY ) = �L, thus we
have dget(dputh(�L, K)) = �L, and lh satisfies PutGet law. �

Proposition 4.3. Given a very well-behaved asymmetric delta lens l : K � L and an estimation
algorithm estK,L

Y , the hybrid delta lens is also very well-behaved if the estK,L
Y function satisfies PutPut

law, that is estK,L
Y ((�K, K); (�K′ , K′)) = estK,L

Y (�K, K); estK,L
Y (�K′ , K′).

Proof of proposition 4.3. If l is very well-behaved, l also satisfies PutPut and GetGet laws, and we
get dget(�K; �K′ ) = dget(�K); dget(�K′ ), and dput((�L; �L′ ), K) = dput(�L, K); dput(�L′ , K).

We know dget on lh is the same as dget on l, as we have dget(�K; �K′ ) = dget(�K); dget(�K′ ), lh
also satisfies GetGet law.

We have dputh((�L; �L′ ), K) := estK,L
Y (dput((�L; �L′ ), K), K)). From PutPut law on l we get

dput((�L; �L′ ), K) = dput(�L, K); dput(�L′ , K′). Let dput(�L, K) = �K and dput(�L′ , K′) = �K′ , then
we have dputh((�L; �L′ ), K) = estK,L

Y ((�K, K); (�K′ , K′)). As the estK,L
Y function satisfies PutPut law,

we have dputh((�L; �L′ ), K) = estK,L
Y (�K, K); estK,L

Y (�K′ , K′). As estK,L
Y (�K, K) = dputh(�L, K), and

estK,L
Y (�K′ , K′) = dputh(�L′ , K′), we can then get dputh((�L; �L′ ), K) = dputh(�L, K); dputh(�L′ , K′),

thus lh satisfies PutPut law. �
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5. Implementing lenses in an assembly line digital twin
As introduced in §1, a digital twin model for a manufacturing system is defined in terms of
different interacting sub-models designed to provide the desired level of details, matching the
objective of the analysis or design phase. A major engineering problem in the instantiation
of this class of models is coping with information and data coming from different sources
and characterized by heterogeneous resolution and sampling rates. At the same time, different
types of decisions require specific levels of modelling details. Thus, a digital twin of a real
manufacturing system is likely to contain a mixture of different types of models and abstractions,
as described in §4, and would benefit from the adoption of hybrid delta lenses.

The proposed mathematical foundation is tested and demonstrated to collect and elaborate
monitoring data streamed from installed sensors in manufacturing systems that are modelled
with a multi-scale approach [28]. The HFM describes all the resources in the system (e.g. machines
and buffers), while an LFM is triggered by the position of the available sensors monitoring the
flow of parts between the resources in the system. The actual flow of parts can be observed only
where a sensor is installed. On the contrary, if no sensor is present, the interfaces among the
resources cannot be observed, determining a simplified model of the system (LFM) where some
resources are clustered into a single one.

An exemplary case is provided by an assembly line represented in figure 6. The shown
assembly line is a simplified version of an automatic assembly line producing furniture
components, consisting of 13 resources, specifically seven assembly machines (from M1 to M7)
and six buffers (from B1 to B6). The main raw artefact (partA) enters machine M1, while another
component (compB) to be assembled enters machine M2. Buffers are specified with transport time
tj and capacity cj, and machines with service time sj and the number of servers kj. The property
values of the resources are reported in table 3. All machines are single-server and the transport
time of buffers is negligible.

Taking this assembly line (figure 6) as the high-fidelity model (HFM), a low-fidelity model
(LFM) can be represented as a partition of the HFM where resources are grouped into mutually
exclusive clusters.

(a) Implementation of backward transition: a hybriddput function
Owing to the abstraction of multiple machine tools and buffers into single clusters, it is clear that
the GetPut law cannot be satisfied. In this case, as shown in figure 8, the exact position of each
artefact in the abstracted machine tools and buffers will not be determined, for example as M2
and M3 in the HFM have been aggregated into M2_1, at a certain time Ti, an artefact located in
either M2 or M3 can be recovered, but the exact position is unclear.

Though the GetPut law cannot be satisfied, one can estimate where an artefact is by
considering requirements and constraints imposed by capacity and minimum transition time.
This estimation, which can be implemented via alternative algorithms, is denoted as estH,L

Y . In this
case, under the hd-lens structure, as shown in figure 7, the dputh function will be a sequence of
two functions: a normal dput function to generate an intermediate delta: �H′ = dput(�L, HFM);
and an estimation algorithm estH,L

Y to allocate each artefact’s exact location on the aggregated
machines/buffers, here Y represent different algorithms. The estimation algorithm estH,L

Y takes
�H′ and a collection of properties for the aggregated buffers/machines {cj, tj, kj, sj} as input, and
output a final delta �H. The geth is a sequential composition from π1 to the get of its normal
d-lens structure. Here π1 maps each resource (M1 − M7 and B1 − B6) into its aggregated group.
In the case shown in figure 8, π1 presents the mappings of M2 → {M2, M3}, M3 → {M2, M3},
M1 → {M1, B1}, B1 → {M1, B1}, and so on.

Formally, written as

�H = dputh(�L, HFM) = estH,L
Y (dput(�L, HFM), {cj, tj, kj, sj}). (5.1)
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M2

M1

M3

M4 M5 M6 M7B4 B5 B6

B1

B3

B2

Figure 6. Representation of the assembly line. The squares denote machines and the circles as buffers.

Table 3. Properties of (a) machines and (b) buffers in the assembly line.

(a) machines (b) buffers

ID operation service time (s) ID capacity

M1 machining 5 B1 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2 machining 3 B2 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M3 machining 3 B3 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M4 assembly 10 B4 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M5 machining 11 B5 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M6 machining 12 B6 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M7 machining 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As shown in figure 8, for example, whenever a part (compB.1) exits from M2_1 (representing
the aggregation of M2 and M3), the time it leaves M2 to enter M3 must be determined by an
estimation algorithm, exploiting the available information, i.e. the number of servers k2 and k3,
service times s2 and s3, and capacity c2 and c3 for M2 and M3, respectively.

To support the testing and validation of the described approach, two estimation algorithms
have been used to implement the dputh function.

(i) dputh by queuing reasoning

An estimation algorithm can be obtained based on queuing theory. Generally speaking, a part
enters an element k (a buffer or a machine) at time tk and leaves it at time t′k. The resulting lead
time t′k − tk can be partitioned in a time waiting in the queue wk and service time sk. Let tA and
t′A be the enter and exit time for a part partx flowing through an aggregated set of elements Al
described by an ordered list LA of buffers and machines. While the service times for each element
k in the list are known, the waiting times can be estimated through the following:

wk =
⎛
⎝ ci

ki

∑
i∈L

ci

ki

⎞
⎠ ×

⎛
⎝t′ − t −

∑
k∈L

si

⎞
⎠ (5.2)

Thus, the enter and exit times of each part in an element h ∈ A can be estimated, starting from
t, considering the waiting and service time for all the elements preceding h in the ordered list LA.
Finally, starting from this estimation, a further step applied to fine-tune the enter and exit times to
match the capacity limit of each buffer/machine. At each time stamp, the number of parts located
within a buffer/machine is calculated and, if the capacity limit of the buffer/machine is violated,
the last part entered is moved back to the previous element until there is a vacancy in the next
buffer/machine, granted that the preceding element belongs to A.
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H'0–1

L0–1

HFM1

LFM1

LFM0

Artefacts

assembly line

buffer element

state
(0/1)

host

Artefacts
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(0/1)

host

connected To

machine tool

+ capacity
+ transport time

+ service time

dputh
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+ server

geth

assembly line

Artefacts
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(0/1)
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Artefacts
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(0/1)

host

connected To

machine tool

+ capacity
+ transport time

+ service time
+ server

geth

assembly line

{cj, tj, kj, sj}

estimation
algorithm

Figure 7. The hd-lens structure between the HFM and LFM. (Online version in colour.)

(ii) dputh by forward scheduling

Another estimation algorithm, based on forward scheduling [29], is also developed to calculate
the earliest enter/exit times of parts for each element k ∈ A. Thus, a permutation flow shop
scheduling approach is used. Modelled as a flow shop, the portion of the system represented
by A, to obtain the earliest time schedule, i.e. the earliest t′k for each part matching both t and t′
as well as the constraints related to the element and the process (capacity, number of servers and
service times) are all modelled.
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H'
0–3 = {(partA.1, {M1, B1})  (partA.1, {B2});

(compB.1, {M2, M3})  (compB.1, {M2, M3})}

H
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c1 = 5

t1 = 5

k1 = 1

s1 = 5...

Figure 8. The hd-lens structure in the example—using an estimation method. (Online version in colour.)

(b) Performance evaluation of hd-lenses for multi-fidelity transitions
The performance of the hd-lens for these multi-fidelity transitions is evaluated in terms of
the differences between the actual high-fidelity data and the result of the estimated backward
mapping. The difference can be evaluated only if the high-fidelity log is available. Typically,
this log can be the output of simulation during the design phase of the manufacturing system.
The reconstructed high-fidelity log and actual high-fidelity log are compared by calculating
the difference between the actual Ti and the estimated T′

i entry time of each part at each
machine/buffer; furthermore, it is possible to calculate the difference between the actual number
of parts NTi and the estimated number of parts N′

Ti for each Ti on each machine/buffer.
The performance indicator |�|j denotes the mean absolute difference between the actual and

estimated number of parts on resource j during the entire log; |�|tot represents the sum of the
|�|j for all the resources j and it is used to measure the global magnitude of the average errors
obtained after applying the dputh function. Similarly, given σ (�)j the standard deviation of the
difference between the actual and estimated number of parts in resource j, σtot denotes their sum
over all the resources in the system, which offers a measurement of the global variability of the
estimation error. Finally, �LB

UB specifies the minimum and maximum deviation between actual
and estimated number of parts over all system resources. The described evaluation is operated
for the two estimation approaches considered, namely Method I based on queuing reasoning and
Method II using forward scheduling.

Considering all the possible partitions, a total of 511 LFMs have been generated for the
assembly system defined in figure 6 and table 3. The performance of the proposed approach
has been assessed by elaborating the simulation log of 200 parts flowing through the assembly
system.

Table 4 reports an excerpt of the results, where columns ID, Agg, Clusters and LFM stipulate
the identifier of the LFM, the number of aggregated resources, the size of each aggregation cluster
and the configuration of the LFM using round brackets to identify clusters. For instance, LFM
n.5 (shown in figure 9a) has only one cluster with three resources (B5, M6, B6), thus there are
two aggregated resources (Agg = 2) with respect to the HFM. The performance of the two dputh
functions is reported in columns Method I and Method II.

The aggregation number can be a benchmark to compare the performance of the estimation on
both methods. In general, the larger the aggregation numbers, the greater the estimated errors are
expected to be. However, there are a few exceptions. For example, LFM n.5 with a low aggregation
(Agg = 2) and a single cluster has larger errors on both Method I and II compared with other LFMs
with equal or even larger aggregation (e.g. n.75 as shown in figure 9c). This can be at least partially
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Table 4. Low-fidelity models.

Method I Method II

ID Agg Clusters LFM |�|tot σtot �LB
UB |�|tot σtot �LB

UB

5 2 3 {M1},{B1},{B2},{M2},{M3},{B3},
{M4},{B4},{M5},{B5,M6,B6},{M7}

1.9516 1.8979 −3, 3 5.9046 5.2409 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 2 3 {M1},{B1},{B2},{M2},{M3},{B3},
{M4},{B4},{M5,B5,M6},{B6},{M7}

0.4793 1.1050 −1, 2 0.0015 0.0642 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 3 2;3 {M1},{B1},{B2},{M2},{M3},{B3},
{M4},{B4,M5},{B5,M6,B6},{M7}

1.9867 2.3742 −3, 3 5.9050 5.2683 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23 2 3 {M1},{B1},{B2},{M2},{M3},{B3},
{M4},{B4,M5,B5},{M6},{B6},{M7}

1.1370 1.7662 −3, 3 0.0004 0.0291 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 5 6 {M1},{B1},{B2},{M2},{M3},{B3},{M4},
{B4,M5,B5,M6,B6,M7}

2.7019 3.2362 −3, 3 6.0778 6.5980 −7,7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63 1 2 {M1},{B1},{B2},{M2,M3},{B3},{M4},
{B4},{M5},{B5},{M6},{B6},{M7}

0.0000 0.0000 0,0 0.0003 0.0262 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75 3 2;3 {M1},{B1},{B2},{M2,M3},{B3},{M4},
{B4},{M5,B5,M6},{B6},{M7}

0.3982 1.0157 −1, 2 0.0018 0.0904 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

123 5 3;4 {M1},{B1},{B2},{M2,M3,B3},{M4},
{B4,M5,B5,M6},{B6},{M7}

2.8636 3.5138 −3, 3 0.0018 0.0947 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

190 7 2;2;6 {M1},{B1,B2},{M2},{M3,B3},
{M4},{B4,M5,B5,M6,B6,M7}

4.8996 5.5505 −3, 3 6.0785 6.6504 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

202 5 2;2;2;3 {M1},{B1,B2},{M2,M3},{B3},{M4},
{B4},{M5,B5},{M6,B6,M7}

1.6620 2.7764 −3, 2 0.2127 0.8066 −1, 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

208 4 2;2;2;2 {M1},{B1,B2},{M2,M3},{B3},{M4},
{B4,M5},{B5},{M6},{B6,M7}

1.5282 2.4171 −3, 2 0.0016 0.1111 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

222 7 2;2;6 {M1},{B1,B2},{M2,M3},{B3},{M4},
{B4,M5,B5,M6,B6,M7}

3.8589 4.5863 −3, 3 6.0785 6.6504 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

318 7 2;2;6 {M1,B1},{B2},{M2},{M3,B3},{M4},
{B4,M5,B5,M6,B6,M7}

3.9315 4.8043 −3, 3 6.0785 6.6507 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

340 5 2;2;2;2;2 {M1,B1},{B2},{M2,M3},{B3},{M4},
{B4,M5},{B5,M6},{B6,M7}

0.7458 2.2933 −1, 1 0.0030 0.1645 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

350 7 2;2;6 {M1,B1},{B2},{M2,M3},{B3},{M4},
{B4,M5,B5,M6,B6,M7}

2.8619 3.8517 −3, 3 6.0785 6.6507 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

411 5 3;4 {M1,B1,B2},{M2},{M3},{B3},{M4},
{B4,M5,B5,M6},{B6},{M7}

2.4762 3.8494 −3, 3 0.0018 0.0966 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

502 8 3;3;2;4 {M1,B1,B2},{M2,M3,B3},{M4},
{B4,M5},{B5,M6,B6,M7}

5.0667 5.8518 −3, 3 5.9059 5.4666 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

508 8 3;3;4;2 {M1,B1,B2},{M2,M3,B3},{M4},
{B4,M5,B5,M6},{B6,M7}

4.0486 5.6866 −3, 3 0.0027 0.1567 −1, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

510 9 3;3;6 {M1,B1,B2},{M2,M3,B3},{M4},
{B4,M5,B5,M6,B6,M7}

5.5294 6.4392 −3, 3 6.0785 6.6575 −7, 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

explained by the fact that LFM n.5 aggregation ({B5, M6, B6} → B5_1) includes two buffers with
large capacity.

LFM n.23 (shown in figure 9b) has an aggregation comparable to LFM n.5 with a similar error
on Method I, but with a much lower error on Method II. This case demonstrates the impact that
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Figure 9. Examples of different aggregations of the assembly line. (a) LFM n.5, (b) LFM n.23, (c) LFM n.75, (d) LFM n.340,
(e) LFM n.502 and (f ) LFM n.508.

the specific estimation algorithm may have on the performance of dput. Similarly, LFMs n.502
(figure 9e) and n.508 (figure 9f ) have the same type of clusters, but different estimation errors, in
particular for Method II. This difference is explained by the fact that Method II can be more or
less influenced by the transient behaviour, depending on the position and size of the clusters.

Furthermore, it can be observed that typically the estimation error is lower when the
aggregated resources are split into smaller clusters. This is particularly true for Method I (e.g.
LFMs n.123, n.202, n.340), and less evident for Method II (e.g. LFMs n.123 and n.202 are an
exception).

(c) Discussion
The results show that the approximation of an LFM can be accessed, thus providing a valuable
tool to select the most suited LFM with considerations of requirements related to accuracy. It
must be highlighted that the choice of the estimation algorithm may have a significant impact
on the approximation error of LFMs. Herein, Method I is less sensitive towards the transient
changes of the system because the estimation is based on a fusion of the scheduling and queuing
approaches. However, both the methods suffer from an accumulated delayed effect, as more
estimated errors will be accumulated towards the end of the assembly line when an increasing
number of parts have been loaded into the system. It might be possible to eliminate such effect
via an advanced estimation method which is tailored for the specific characteristics of the system
under study. The estimation error can be further reduced using more sophisticated methods, but
this is out of the scope of this paper. The two estimation methods have been adopted out of
simplicity to test and to validate the stability of the hd-lens structure on the assembly line case,
providing that the estimation algorithm complies with the structural properties of the constructed
hd-lens.

The developed hd-lens structure provides a formal way to construct bidirectional information
flow between multi-level digital models. The lens structure itself does not enclose any information
on how to develop the low-fidelity model, more specifically, defining the get function.

The experiment results from the designated 511 aggregations provide a comprehensive
analysis of all possible partitions of the 13 connected buffers/machines. Regardless of the
estimation method used, there are a number of patterns which can be summarized: (1) if
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the aim is to minimize the number of sensors used on the assembly line, large aggregation
can be considered with as many clusters as possible to reduce the overall estimation
error; (2) if the aim is to minimize the estimation error, it is better to avoid aggregating
several resources with relatively large capacities (i.e. it is better to aggregate machines than
buffers).

6. Conclusion and future work
To address the growing challenges of managing complexity imposed by ever-advancing digital
technologies in manufacturing, designing and operating digital models under multi-levels of
abstraction is one of the solutions. There is however a lack of mathematical foundations
to support information flow between models with different levels of detail in an efficient,
coherent and stable manner. In this paper, a mathematical structure, called Delta lens, has
been explored and used to provide mathematical foundations to support rigorous bidirectional
transitions between digital models with different fidelities. In order to support different
types of abstractions in manufacturing, e.g. aggregation of many objects into a single one, a
hybrid delta lenses structure (hd-lenses) has been proposed and its formal representation is
developed to support the generalization of its structure and properties. To validate the proposed
formal framework, the proposed hd-lenses structure was then tested and demonstrated via
a multi-level digital model of an assembly line. An hd-lens has been constructed to support
information flow between a high-fidelity model and a low-fidelity model of the system. In
the experiment, the performance of 511 different LFMs, communicating with the same HFM,
has been analysed under two different estimation methods. The results have shown that even
though the estimation methods behave differently in terms of errors, the general properties of the
constructed hd-lens are rigorously complied. This gives us insight into finding the most suitable
abstractions for the LFM, providing a way to aid decision-making in sensor configurations on the
assembly line.

The proposed formal structure to support information flow between models with different
fidelities paves the way to many possible further studies. As the hd-lens allows different
estimation algorithms to be employed under the constraint of the hd-lens properties, to further
refine the demonstrated test case, future work might involve exploration of the estimation
algorithms and finding the optimal algorithms based on the specific application. Theoretically, the
power of compositionality of d-lenses and the proposed hd-lenses have been discussed but not yet
tested. Future work will include exploration of the compositionality of hd-lenses to support more
complex transitions between multi-level digital models. Furthermore, this paper has a particular
focus on vertical information flow between models with different fidelities; the next major focus
will be the study of Delta lenses and other structures to provide formal foundations for horizontal
information flow.
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