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Abstract. The contract automata runtime environment (CARE) is a dis-
tributed middleware application recently introduced to realise service
applications specified using a dialect of finite-state automata. In this pa-
per, we detail the formal modelling and verification of CARE. We provide
a formalisation as a network of stochastic timed automata. The model
is verified against the desired properties with the tool Uppaal, utilizing
exhaustive and statistical model checking techniques. This research em-
phasises the advantages of employing formal modelling, verification and
testing processes to enhance the dependability of an open-source dis-
tributed application. We discuss the methodology used for modelling the
application and address the issues that have been identified and fixed.

1 Introduction

Behavioural contracts [1] have been introduced to formally describe the interac-
tions among services, to enable to reason formally about well-behaving properties
of their composition. Examples of properties are agreement among the parties
or reachability of target states.

Contract automata are a dialect of finite state automata used to specify be-
havioural contracts formally in terms of offers and requests [10]. A composition
of contracts is in agreement when all requests are matched by corresponding of-
fers of other contracts. A composition can be refined to one in agreement using
the orchestration synthesis algorithm [6,9], a variation of the synthesis algorithm
from supervisory control theory [26]. The Contract Automata Runtime Environ-
ment (CARE) [5] provides a middleware to coordinate the services implementing
contracts. In CARE, each transition of the orchestration automaton is executed
by a series of interactions among the orchestrator and the CARE services, im-
plemented using Java TCP/IP sockets. These interactions may vary according
to the specific configuration chosen among those provided by CARE. In [5] the
algorithms implemented in CARE are proved to enforce the adherence of each
contract specification to its CARE implementation (basically, the control flow of
the application follows the synthesised orchestration automaton).

In this paper, we tackle the problem of modelling and verifying the low-level
interactions among CARE services and the orchestrator. This aspect is no less
important, as witnessed by known cases of algorithms proved to be correct (e.g.,
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the Byzantine distributed consensus [20]) and whose low-level communication
implementations were found to have issues, e.g. deadlocks [27]. We verify several
properties, including the absence of deadlocks, absence of undelivered messages,
and reachability of target states. The formal model is a network of stochastic
timed automata as accepted by the Uppaal toolbox. Different variants of the
formal model are proposed. The model undergoes verification against the de-
sired properties using Uppaal, employing both exhaustive model checking and
statistical model checking. This combination allows for thorough analysis of the
model’s behavior and ensures scalability when dealing with systems that possess
a large state-space. All models, formulas, and logs are publicly available in [3],
together with traceability and model-based testing information connecting the
model to the source code.

The benefits of modelling and verifying CARE are: (i) increasing the confidence
in the reliability of CARE due to the formal verification through model checking
and model-based testing, (ii) quantitative evaluation of measures of interest of
CARE obtained through statistical model checking, (iii) improved documentation
thanks to the graphical and animatable state machines endowed with precise
semantics. Finally, this paper tackles the challenge of providing a full-fledged
model-based development and formal methods approach [15]. The final appli-
cation has been graphically modelled at an abstract level, formally verified and
tested using the formal model. The criteria followed for abstracting away irrel-
evant details are discussed together with the issues that have been found and
fixed thanks to the formal modelling, verification and testing.

Related work Several applications of Uppaal to various case studies are avail-
able in the literature, including land transport [8], maritime transport [28], med-
ical systems [22], and autonomous agents path planning [17]. These case studies,
along with the present paper, adopt a model-based approach, wherein partial
representations of the applications are created using models. A recent survey
conducted on formal methods [14] reveals that numerous publications lack a di-
rect correlation between the concrete implementation and its abstract model.
This holds especially when the systems are only envisioned, yet to be realised,
such as for example the ERTMS L3 railway signalling system [2,7]. This is also
the case for industrial systems whose implementations are non-disclosed [18]. In
all these cases, determining the accuracy of the model in relation to the actual
system and assessing the appropriateness of the chosen level of abstraction be-
comes challenging. Furthermore, measuring the influence of the formal modelling
and verification phase on the analyzed system poses difficulties.

In contrast to the previously mentioned literature, the innovation of this pa-
per lies in the bottom-up formal analysis of an established open-source system
that has already been developed [5]. The availability of the source code further
enables us to establish a connection between the abstract formal model and the
actual source code. This capability facilitates the precise identification of spe-
cific aspects of the real system that have been abstracted in the formal model.
Additionally, it allows us to validate the appropriateness of the chosen level of
abstraction. To the best of our knowledge, there are no other non-trivial open-
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source applications for which their Uppaal formal model is openly accessible
and directly connected to the source code through traceability and model-based
testing. This contribution assists in linking formal methods, particularly Up-
paal, to the software development process.

As reported in [12], the question of qualification and validation of formal
methods tools is “absolutely crucial”. Other tools for behavioural contracts are
present in the literature [16,25], but many of these implementations have not
undergone a process of formal verification. In this paper, we provide the formal
modelling and verification of CARE, which is part of the contract automata toolkit.

Outline In Section 2, we start by providing the background on contract au-
tomata, their tool support, Uppaal, and statistical model checking. The mod-
elling phase is described in Section 3, whilst the verification is described in
Section 4. Finally, the conclusion and future work are presented in Section 5.

2 Background

In this section, we will provide background on contract automata, their software
support, and the Uppaal statistical model checker. The focus of this paper is
on the formal analysis of the runtime environment of contract automata. While
we offer a concise overview of contract automata to enhance comprehension of
their runtime environment, they are not the focus of our formal analysis.

Contract Automata Contract automata are a dialect of finite-state au-
tomata modelling services that exchange offers and requests. A contract au-
tomaton models either a single service or a composition of interacting services.
Labels of transitions of contract automata are vectors of atomic elements called
actions. Similarly, states of contract automata are vectors of atomic elements
called basic states. The length of the vectors is equal to the number of services
in the automaton (this number is called rank). A request (resp., offer) action is
prefixed by ? (resp., !). The idle action is denoted by -. Labels are constrained
to be one out of three types. In a request (resp., offer) label a service performs
a request (resp., offer) action and all other services are idle. In a match label
one service performs a request action, another service performs a matching offer
action, and all other services are idle. For example, the contract automaton in
Figure 3 right has rank 2 and the label [?quit,!quit] is a match where the
request action ?quit is matched by the offer action !quit. Note the difference
between a request label, e.g. [?coffee, -], and a request action, e.g. ?coffee.

In a composition of contracts various properties can be analysed [10]. For ex-
ample, the property of agreement requires to match all request actions, whereas
offer actions can remain unmatched. The synthesis of the orchestration in agree-
ment produces a sub-automaton of the composition where all services can match
their requests with corresponding offers to reach a final state. Thus, in the or-
chestration in agreement labels of transitions are only matches or offers [9]. The
contract automaton in Figure 3 right is an orchestration in agreement.

CA and their functionalities are implemented in a software artefact, called
Contract Automata Library (CATLib) [4]. With CATLib it is possible to specify,



4 D. Basile

compose, and synthesise specifications given as contract automata, but CATLib
does not provide facilities for pairing the specifications computed with CATLib

with actual implementations of service-based applications. For this purpose, the
Contract Automata Runtime Environment (CARE) [5] was introduced, which will
be described in Section 3.

UppaalUppaal SMC [13] is a variant of Uppaal [11], which is a well-known
toolbox for the verification of real-time systems. Uppaal models are stochas-
tic timed automata, in which non-determinism is replaced with probabilistic
choices and time delays with probability distributions (uniform for bounded
time and exponential for unbounded time). These automata may communicate
via broadcast channels and shared variables. In this paper, we will use both ex-
haustive and statistical model checking. Statistical Model Checking (SMC) [21]
involves running a sufficient number of (probabilistic) simulations of a system
model to obtain statistical evidence (with a predefined level of statistical con-
fidence) of the quantitative properties to be checked. Monte Carlo estimation
with Chernoff-Hoeffding bound executes N = ⌈(ln(2) − ln(α))/(2ε2)⌉ simula-
tions ρi, i∈ 1...N , to provide the interval [p′ − ε, p′ + ε] with confidence 1 − α,
where p′ = (#{ρi | ρi |= φ})/N , i.e., Pr(|p′ − p| ≤ ε) ≥ 1 − α where p is the
unknown value of the formula φ being estimated statistically and ε and α are
the user-defined precision and confidence, respectively. Crucially, the number of
simulations used to estimate a formula is independent of the model’s size and
depends only on the parameters α and ε. In practice the number of simulations
required by Uppaal to reach a specific confidence level is optimized and is thus
lower than the above theoretical bound. Uppaal supports template automata
used to instantiate different copies (in different experiments) of the same au-
tomaton, distinguishable by their parameters. The selection of Uppaal as the
chosen tool is influenced by several factors. These include its extensive adoption
by the community, expertise of the author, usability, primitive support for real-
time and stochastic modeling, probabilistic and non-deterministic choices, and
capabilities for statistical model checking, simulation, and model-based testing.

CARE We provide a brief overview of CARE. Class diagrams, examples
of service applications created with CARE and other details are in [5]. Note
that our purpose is not to formally analyse the applications created using
CARE, but to formally analyse CARE itself. The formal verification of applica-
tions developed using CARE is a consequence of the reliance of CARE on the
formal guarantees provided by contract automata [5], along with the formal
verification of CARE as an application. This paper addresses the latter facet.
The two core abstract Java classes are the RunnableOrchestration and the
RunnableOrchestratedContract. The first one is the implementation of the or-
chestrator who reads the synthesised orchestration automaton and communicates
with the RunnableOrchestratedContract services to realise the prescribed be-
haviour. Each RunnableOrchestratedContract is responsible for pairing its
contract automaton specification with an implementation provided as a Java
class, where each action of the automaton is in correspondence with a method
of the class. Each time a new orchestration involving the service is initiated,
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the RunnableOrchestratedContract creates a new service. This service re-
mains in a waiting state to receive commands from the orchestrator, which then
triggers the execution of the corresponding methods. In case the orchestrator
requires to perform an action not prescribed by its service contract, then a
ContractViolationException will be raised by the service. As demonstrated
in [5], this exception will never be raised if the orchestration in agreement is
synthesised using the algorithms of contract automata.

In CARE, two main aspects to implement are the execution of choices and
actions. Principles of object-oriented programming are used to extend the frame-
work to various configurations. For choices, the two currently available imple-
mentations are DictatorialChoice (the orchestrator decides autonomously)
and MajoritarianChoice (each service involved votes and the majority wins).
For actions, the two currently available implementations are CentralisedAction
and DistributedAction. In a CentralisedAction, the orchestrator acts as
a broker forwarding the offers and requests of the two services to realise the
match. In a DistributedAction, the orchestrator makes the two services aware
of each other by communicating their addresses and ports. The two services
autonomously realise the match action, after which control returns to the or-
chestrator. Recall that in an orchestration in agreement, labels can be matches
or offers and in case of offers the orchestrator interacts with only one service.

3 Methodology and Formal Model

We now describe the methodology used for modelling the communications, ab-
stracting away irrelevant details and ascertain the adequacy of the model with
respect to the implementation.

3.1 Methodology

Modelling TCP/IP sockets communication Java TCP/IP sockets commu-
nications are asynchronous with FIFO buffers [24]. In Uppaal, the interactions
are via channel synchronisation and global variables. Thus, TCP/IP sockets are
solely employed in the actual implementation and are not utilized by the au-
tomata of the model. Instead, in the model, global (FIFO) arrays are used to
model the TCP/IP sockets buffers. These arrays are only modified by functions
for enqueueing and dequeuing messages. Each party communicates with the part-
ner using two global arrays (one for sending and one for receiving, respectively).
The local declarations of the two automata contain methods for sending and re-
ceiving from the partners and checking their queues of messages. Both automata
declare a method enqueue for sending to the partner a message (that is one of
the global constants described above). Indeed, in this model the actual payload
of each communication is abstracted away. The identifier of the service id is
only needed on the orchestrator side to identify the partner (there is only one
orchestrator thus no identifier is needed for it). Similarly, both automata have a
method dequeue for consuming messages from their respective arrays.
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The default mode for Java TCP/IP sockets is blocking [19], meaning that
the sender blocks when the buffer of the receiver is full, and waits until there
is enough space to proceed. Accordingly, a transition having a send in its ef-
fect will check in its guard whether there is enough space left in the array of
the partner by calling either the method available (returning the space left)
or isFull. Similarly, in Java TCP/IP sockets the read operation is blocking.
Accordingly, before reading it is always checked whether the array is not empty
with the method !isEmpty. When the array is empty the automaton blocks until
a message is received.

Source locations of sending and receiving transitions are neither committed
nor urgent. In fact, an enabled committed transition (i.e., whose source location
is committed, denoted with C) must be executed before any other transition
in the network. Instead, an urgent transition must be executed without any
delay. If a send or receiving transition were to be either committed or urgent, it
would introduce the possibility of false positive deadlocks. This scenario arises
when, for example, the receiver has a full buffer (i.e., array) and is prepared to
free it, but the sender transition is enabled and committed. Similarly, this false
positive can occur when the buffer is full, the send transition is urgent but the
receive operation is not urgent, or vice versa, when the buffer is empty, the read
transition is urgent, and the send operation is not urgent.

Hence, the operations of writing to and reading from a buffer are represented
using stochastic delays, specifically following an exponential distribution. Two
rates are employed to capture the delay associated with reading and writing.
However, the presence of unbounded delays introduces scenarios where the re-
ceiver (resp., sender) may wait indefinitely without executing its read (resp.,
write) transition, even when it is enabled. These scenarios would invalidate the
exhaustive model checking of reachability properties that are satisfied by the ac-
tual system, leading to false positives. In the real implementation, Java TCP/IP
sockets offer a timeout mechanism wherein an exception is thrown if no mes-
sage exchange occurs within a specified time frame. All sockets used by CARE

have this timeout. Consequently, a dedicated automaton called SocketTimeout

is replicated for each service to model the timeout operation (see Figure 3 left).
Each send or receive operation in every socket resets the SocketTimeout clock.
If no reset operation is received within a certain duration (variable timeout),
SocketTimeout enters a location called Timeout and broadcasts the signal fail,
indicating that an exception has been thrown. All automata have a transi-
tion from every location (except for Terminated) to a location Timeout that
is reached upon receiving the signal fail. For readability, these Timeout loca-
tions and all their incoming transitions are not shown in Figures 1 and 2.

Abstractions We have discussed the modelling of Java TCP/IP socket com-
munications. We now discuss other aspects that have been abstracted away in
the model. We note that the abstracted aspects are irrelevant for the analysis
discussed in Section 4. In the model, the underlying orchestration automaton is
abstracted together with the contracts of the services. Thus, all conditionals that
are dependent from the underlying orchestration are abstracted as probabilistic
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choices. We assume that the orchestration has been correctly synthesised from
the services contracts. This allows us to verify the interactions for any possible
valid orchestration. If a specific orchestration would be modelled, then we would
lose such generality. In particular, the payloads of the communications (e.g.,
which specific action, which choices) are abstracted. The conditions used to de-
cide whether to perform a choice, an action or to stop are also abstracted away.
The only modelled condition is that no two consecutive choices are allowed (i.e.,
after choosing, the chosen step must be performed). When executing a transi-
tion, the conditions used to check whether the label of the transition is an offer
or a match are abstracted away in the model. Moreover, the identifiers of the
services involved in performing a choice or an action (which are concretely ex-
tracted from the labels of the transitions) are also chosen non-deterministically.
Indeed, all services are distinguished replicas of the same automaton. Finally, we
model a single orchestration. In fact, when multiple orchestrations are executed,
they operate independently of each other and can be verified individually.

Adequacy The adequacy of the adopted level of abstraction is ascertained
as follows. Each transition in the model is traced back to the specific lines of
source code in [3]. The model-based testing functionality of Uppaal has been
employed to generate tests that demonstrate the model’s adherence to the actual
implementation. Roughly, each transition that involves enqueuing or dequeuing
messages produces test code for writing to or reading from a socket, respectively.
Due to lack of space, we refer to [3] for more details. The generated tests cover
all transitions of the model and all interactions between the orchestrator and
the services. The code coverage indicates that the tests derived from the model
cover a significant portion of the source code. This suggests that the model is
not excessively abstract compared to the actual implementation. Furthermore,
the modelling and verification allowed us to discover and fix some issues (see
Section 4). This would not have been possible in case the abstraction were too
coarse.

Remark We highlight the advantages of employing graphical diagrams. When it
comes to the implementation phase, developers typically work with the source
code, which currently consists of 770 lines of code in the case of CARE. On the
other hand, during the modelling phase with Uppaal, designers graphically edit
automata. The automata depicted in Figures 1 and Figure 2 succinctly and
accurately specify the interaction logic of CARE.

3.2 Formal model

The formal model of CARE is described. All models used in this paper together
with the evaluated formulas are available in [3].

Figure 1 displays the template automaton for the RunnableOrchestration

(i.e., the orchestrator), while the template automaton for the
RunnableOrchestratedContract (i.e., the service) is depicted in Figure 2
and has as parameter the id of the service. The behaviour according to the
given configuration of action and choice is modelled inside each automaton. We
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anticipate that we will use variants of these two automata in Section 4, in order
to perform different analyses. In particular, in Figures 1 and 2 the configurations
of choice and action (for both the services and the orchestrator) are instantiated
non-deterministically. Another version of the model is also available where the
configuration options are also parameters of the templates. The repository [3]
contains the model equipped with traceability information, i.e., each transition
of the model has a comment describing the class and the lines of the source code
that correspond to the specific behaviour of the transition. The models used for
generating tests, together with the generated tests, are also available in [3].

The Uppaal model is composed of a list of global declarations, the two
automata (with their local declarations) and the system set-up (i.e., the instan-
tiation of the automata). Global declarations include the number of services
N , the size of the buffers, the timeout threshold, the rates of the exponential
distributions, two variables action and choice storing the corresponding con-
figuration for all automata, and the communication buffers. Constants are also
defined globally and their identifiers are in capital letters. Some names of loca-
tions are displayed in the automata for readability. Labels of transitions contain
guards and effects and in a few cases also probabilistic selections.

Description of the automata We now describe Figure 1 and Figure 2. The
initial states of the automata are depicted with a double circle. In the first tran-
sition of the orchestrator one of four options encoding the combinations of choice
and action is selected non-deterministically. The function initialize(conf) in-
stantiates accordingly the choice and action global variables such that all have
the same configuration, and also initialises the communication buffers.

From the location CheckCompatibility of the orchestrator a loop is exe-
cuted to communicate with all services to check if all have the same config-
uration. The orchestrator sends the message ORC CHECK and its configuration
(action and choice). If a service has the same configuration an ACK is sent, or an
ERROR message otherwise. In case of no errors, the orchestration starts. From the
location Start the orchestrator internally decides (based on the orchestration)
whether to perform a choice or an action. The choice of termination is modelled
as a third alternative. As stated previously, after a choice is completed the or-
chestrator moves to a state where only an action or termination can be chosen.
After an action is completed, the orchestrator returns to the Start location.

In the case of termination, the orchestrator sends to all services an ORC STOP

message and the orchestration terminates. In the case of a choice, firstly all ser-
vices receive the message ORC CHOICE. If the choice is dictatorial, the orchestrator
decides autonomously, and no further interactions are necessary. Otherwise, in
the case of a majoritarian choice, the services involved in the choice are selected
non-deterministically, and a message ORC CHOICE is sent to them. Concretely,
the involved services are those who perform an action in one of the outgoing
transitions from the current state of the orchestration. The services that are not
involved will receive a SKIP message. The involved services then receive from
the orchestrator the available choices (i.e., the forward star of the current state).
These concrete choices are abstracted by the constant CHOICES. Each involved
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Fig. 1. The RunnableOrchestration Uppaal template

service now replies with its choice, abstracted as a message SERVICE CHOICE.
After all involved services have voted, the orchestrator will decide accordingly.

In case of an action, the orchestration behaves differently depending on
whether the configuration is centralised or distributed. In both cases, a proba-
bilistic choice is made on whether the transition is an offer or a match. After that,
the orchestrator picks non-deterministically an offerer and a requester (only in
the case of a match transition) with consecutive identifiers (recall that their IDs
are immaterial). In the case of a centralised offer action, the offerer receives from
the orchestrator the invocation of the action, abstracted by the constant ACTION,
followed by the NOPAYLOAD message (i.e., there is no payload from the requester)
and the offerer replies with a payload abstracted by the constant OFFER.

In a centralised match the requester receives the action invocation, abstracted
by the constant ACTION, and a SKIP command (i.e., the offer has not yet been
generated). Note that in the implementation the service is informed of being
an offerer or a requester upon receiving the action. Since the concrete action is
abstracted, in the model this disambiguation occurs when receiving either the
message SKIP (i.e., a requester) or the messages NOPAYLOAD (i.e., an offerer in an
offer transition) or REQUEST (i.e., an offerer in a match transition). The requester
replies with the message REQUEST (the concrete payload is abstracted away) that
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Fig. 2. The RunnableOrchestratedContract Uppaal template

is forwarded by the orchestrator to the offerer, who receives in sequence the
messages ACTION and REQUEST. Similarly to the previous case, the offerer sends
to the orchestrator its offer payload (now based on the payload of the requester),
abstracted again by the constant OFFER.

Concerning the distributed configuration, in case of an offer or match first
the offerer receives the ACTION command from the orchestrator. In case of an
offer, a TYPEOFFER message is received by the offerer followed by a NOPAYLOAD

message. The offerer replies with an OFFER message. In case of a distributed
match, the ACTION message is also sent to the requester and the TYPEMATCH

message is sent to the offerer. The offerer opens a fresh port and communicates
this port (abstracted by the constant PORT) to the orchestrator. The offerer
waits for a connection from the requester. The orchestrator communicates to the
requester (who was waiting after receiving the ACTION command) the address
(constant ADDRESS) and PORT of the offerer. Now the requester and the offerer can
interact without the orchestrator. The interactions between any two services in
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the orchestration all use two (one-position) buffers, implemented by the variables
requester2offerer and offerer2requester. Indeed, it is never the case that
some service interferes in a match in which it is not involved, and using different
buffers for each pair of services would unnecessarily increase the state space.
Initially, the requester sends its REQUEST payload to the offerer. The offerer
replies to the requester with its payload OFFER (based on the request) and reaches
location Done. The requester receives the payload and sends an ACK to the offerer
and the orchestrator (who both terminate the execution of the match transition
and returns to the Start and Ready state, respectively).

4 Analysis

We now describe the analyses we performed on the model. The modelling activity
led to some issues in both the implementation and the model, which were all
fixed (we remark that an already existing application was modelled). Other
formal checks on the model were performed to ensure the properties described
in this section (e.g., absence of deadlocks, absence of orphan messages). We have
used Uppaal version 4.1.26-1, February 2022.

Validation through modelling The first validation was performed during the
modelling phase. Indeed, formal modelling requires an accurate analysis and
review of the source code. Interactive simulation is used during modelling to
animate and analyse the portion of the model designed so far, similarly to how
the source code is debugged interactively (e.g., by choosing the next step). We
note that in many model-based engineering tools, behavioural models (e.g., state
charts) are validated by only relying on graphical interactive simulations [23].
Issues can be detected during this phase in particular if the source code has not
been thoroughly tested, as was the case for CARE.

We report an issue detected in the source code during the modelling of the
automaton in Figure 1, and more specifically during the modelling of the loop
in which the orchestrator is reading the SERVICE CHOICE messages sent by the
involved services. In the implementation the orchestrator was waiting for a choice
from all services, also comprehending those who received a SKIP message. This
means that a deadlock could occur in case there was a service not involved in
a choice. Initially, this issue was undetected because the tests had all services
involved in all choices. It was fixed thanks to the activity described in this paper.

On a side note, thorough testing is generally more time-consuming than
designing a formal model similar to the one in this paper. This is a further benefit
derived from the usage of formal methods. For example, the library implementing
contract automata operations (CATLib) [4] has been tested up to 100% coverage
of all lines and branches, also using mutation testing [4]. In CATLib, the lines of
code of the tests are more than three times those of its source code [4]. A similar
effort for CARE is more demanding than the one needed for designing the models
in Figures 1 and 2. Moreover, Uppaal has been used to automatically generate
tests from the formal model.
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Formal Verification We discuss the formal verification performed on the
model, encompassing both exhaustive and statistical model checking. In the ini-
tial phase, we employ a model variant that guarantees consistent configurations
between the services and the orchestrator. Subsequently, we move to another
variant where the configurations are treated as parameters. In this case, we for-
mally prove that when configurations do not match, an error state is reached.

Performances Statistical model checking has been used to scale to larger systems,
and the verification has been performed in a few seconds on a standard laptop.
Conversely, exhaustive model checking necessitated more resources and has been
limited to smaller configurations generating hundreds of millions of states (see
below). In this case, the verification has been performed on a machine with
Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz equipped with 32GB of RAM.
Uppaal has been configured for maximising the state space optimization and
reusing the generated state space. Logs of the experiments are available in [3].

Parameters Tuning The verification process involves employing specific
parameter configurations within the model. This encompasses various as-
pects, such as setting the delays in reading and writing, setting socket time-
out thresholds, adjusting buffer sizes, assigning probability weights, and de-
termining the number of services involved (i.e., the instantiations of the
RunnableOrchestratedContract template). For deriving the desired set-up of
parameters, we employ statistical model checking. If not stated otherwise, the
parameters α and ε of the statistical model checker are set to 0.05 and 0.005,
respectively (see Section 2).

It is crucial to note that we do not employ statistical model checking to
determine values (such as buffers size) for use in the concrete implementation.
Instead, these quantified values are used solely within the model. For instance,
in the actual implementation, the size of Java TCP/IP socket buffers is fixed
(more below). Our objective is to employ parameter configurations that ensure
realistic modelling and improve the performances of the exhaustive model check-
ing. Realistic modeling entails accurately representing the behavior of the real
system, by reducing the probability of filling the buffers, timeouts, or excessive
communication delays. Failure to maintain these conditions could potentially
invalidate the results of the formal verification. Improving performances, on the
other hand, entails reducing the state space of the model.

Firstly, the values of the probabilities weights pstop, pchoice, pnochoice,
and paction (see Figure 1) can be tuned based on average values extracted
from the orchestrations subject of the analysis. Indeed, as stated in Section 3,
the underlying orchestration automaton is abstracted away. Note that, e.g., in
location Start the probability of performing a choice is pchoice

pchoice+pnochoice
. For

example, the orchestration in Figure 3 (right) can be modelled by tuning the
probabilities to pstop=25, pchoice=1, pnochoice=0, and paction=75.

Next, we address the buffer size (denoted as variable queueSize). It is im-
portant to note that the buffers in the model are represented by global arrays
utilized by the automata for enqueuing and dequeuing values. These global ar-
rays serve as models of the actual buffers found in Java TCP/IP sockets, where
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[Init, Init] [Computing, Computing]

[?quit, !quit]

[?create, !create]

[?update, !update]

Fig. 3. On the left side, the SocketTimeout automaton. On the right side, the orches-
tration automaton taken from the composition service example in [5]

the default size is typically 8 KB. Our objective is to prevent unnecessary growth
in the model’s state space while ensuring a low probability of the buffers filling
up, similar to the behavior observed in the real application. The formula:
E[<=500; 10000](max: sum(i:int[0,N-1]) (sum(j:int[0,queueSize-1])(orc2services[i][j]!=nil)))

computes, using 10000 simulations of 500 time units, the expected maximum
number of non-empty positions of the buffers used by the orchestrator to send
messages to the services (called orc2services). For all statistical evaluations,
we set the number of services to 10. With buffer size set to 10, this formula
evaluates to 4.5± 0.019. This indicates that, on average, the maximum number
of utilized buffer positions is between 4 and 5. Consequently, in order to reduce
the state space, it is safe to decrease the value of queueSize to less than 10 for
the exhaustive model checking phase. This observation is further supported by
the following formula: Pr[<=500] (<>(exists (i:id t) ror.isFull(i))) ,which measures
the probability that, within 500 time units, one of the arrays orc2services[i]
becomes full (ror is the orchestrator automaton). In three separate experiments
where queueSize was varied between 3, 4, and 5, this formula yielded the respec-
tive evaluation intervals of [0.990031, 1], [0.00632077, 0.0163207] (with α=0.005),
and [0, 0.00996915]. Based on these results, if not stated otherwise, queueSize
is set to 5 for the subsequent experiments.

Next, we consider the real-time behavior of the model and focus on determin-
ing appropriate values for the rates write and read, which represent the delays
in writing to and reading from a buffer, respectively. The average message de-
lay in Java TCP/IP sockets is affected by multiple factors, such as network
conditions and server load. Delays can be sampled using tools like tcpdump,
and the rate can be estimated by calculating the inverse of the sample mean.
Additionally, we consider the variable timeout, which represents the timeout
threshold. Our aim is to achieve three objectives. First, we strive to main-
tain a low probability of encountering timeouts. Second, we seek to ensure a
high probability of terminating within a specific timeframe, which we have set
to be 500 time units, corresponding to the duration used in our experimen-
tal setup. Third, we aim to keep the timeout threshold at a lower value in
order to decrease the state space and facilitate model checking. The formula
Pr[<=500] (<> ror.Timeout) measures the likelihood of one or more service sock-

ets experiencing a timeout (recall that in this case a failure signal is broad-
casted and all automata enter their respective Timeout location). The probabil-
ity of all services and the orchestrator successfully concluding their operations
is evaluated with Pr[<=500](<>ror.Terminated&&(forall (i:id t) ROC(i).Terminated)) (ROC
is used as an abbreviation of RunnableOrchestratedContract). In different
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experiments where we varied the values of the pair (rate,timeout), specifi-
cally in (5, 14), (4, 15), (5, 15), respectively, the first formula (timeout probabil-
ity) yielded the respective evaluation intervals [3.06006e−06, 0.00999494] (with
α = 0.005), [0.0433422, 0.053341], and [0, 0.00996915], while the second for-
mula (probability of termination) yielded [0.990005, 0.999997] (with α=0.005),
[0.948625, 0.958625] (with α=0.005), and [0.990031, 1]. Therefore, to fulfill the
aforementioned three objectives, we have set the values of write and read to 5,
while the value of timeout has been set to 15 for the subsequent experiments.

Concerning the instances of the templates, in all experiments there is one
instance of the orchestrator template and either 4 or 5 instances of the service
template. For the exhaustive model checking phase, we used two small config-
urations of (number of services, buffers size). The first is c1=(4,5), the second
is c2=(5,3). In fact, the configuration (5,4) remained inconclusive in the ex-
periments due to the need for generating billions of states and the inadequate
memory capacity of the utilized machine. The verification of larger configurations
necessitates either relying exclusively on statistical model checking or employing
more powerful machines.

Verification Once the model’s parameter configuration is determined, our next
step involves verifying additional formal properties.

Termination We have already assessed the probability of non-termination and
found it to be nearly zero (i.e., the probability lies within the interval [0, 0 + ε]
with probability 1−α). However, it may be worthwhile to conduct an exhaustive
verification specifically for this property. The property that in all executions
eventually all services and the orchestrator terminate is not valid. Indeed, as
described in Section 3, the orchestration contract automaton is abstracted away
and at each iteration, a choice is performed to decide whether to terminate or
not. Hence, there exists an execution in which the orchestration never terminates.
A milder property does hold:

ror.Stop-->((ror.Terminated&&(forall(i:id t)ROC(i).Terminated))
||(exists(i:id t)SocketTimeout(i).Timeout))

i.e., if the orchestrator decides to terminate then eventually all services and
the orchestrator terminate. The formula p-->q is a shortcut for A[](p imply A<>q).
Thus, this formula states that for all executions and for all states either the
orchestrator is not in the location ror.Stop or all executions passing through
that location will eventually lead to a state where all services and the orchestrator
have terminated or a timeout failure is experienced. The formula holds in both
configurations c1 and c2. The first (resp. second) configuration required roughly
3 (resp. 30) minutes, 1.5 (resp. 12) Giga of memory, and explored 52 (resp. 426)
million states.

Absence of deadlocks The likelihood of non-termination being very low also im-
plies an almost negligible probability of encountering deadlocks. While it may be
of interest to exhaustively prove the absence of deadlocks, the previous formula
is insufficient for this purpose. Hence, to prove that there is no deadlock, we
perform exhaustive model checking of the formula:

A[](not deadlock || (exists(i:id t) SocketTimeout(i).Timeout) || (ror.Terminated
&& (forall (i:id t) RunnableOrchestratedContract(i).Terminated)))
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the formula states that for all executions and for all states of the composed
system, either there is always at least one enabled transition or either a time-
out failure has been experienced or all services and the orchestrator are in the
Terminated location. In the formula, not deadlock is a special predicate pro-
vided by Uppaal. As expected, this property is satisfied in both configurations.
The first (resp. second) configuration required roughly 3 (resp. 40) minutes,
1.5 (resp. 13) Giga of memory, and explored 25 (resp. 189) million states. This
also proves that in a correct configuration the Error location is never reached,
because this would result in a deadlock and the above property would not be
satisfied. This property is also satisfied when the size of the buffers is 3. How-
ever, if we further reduce the size, then a deadlock occurs. This is because from
location CheckCompatibility the orchestrator requires to insert three messages
in the buffer of the receiver in one step. By dividing these three send operations
in three non-committed transitions it is possible to further reduce the buffer size.

We report a modelling issue detected during model checking the above for-
mula. In an earlier version, it was assumed that the socket mode was non-blocking
(i.e., sending to a recipient with a full buffer would cause an error). This was
modelled by making committed (C) all source states of transitions with sending
operations. In this way, if the buffer of the receiver would not have enough free
space then an attempt to send to the receiver would cause a deadlock. In fact,
in this earlier version of the model the above formula (absence of deadlocks)
was not satisfied, for any possible size of the buffer. The counterexample trace
of the model checker helped to understand and eventually fix this issue. Basi-
cally, in the model configured with a majoritarian choice there exists a loop in
which the orchestrator alternates choices and actions, and enqueues a sequence
of ORC CHOICE and SKIP messages to a service that never consumes them and
is never involved in neither choices nor actions, thus eventually filling its buffer
and deadlocking. A similar issue also exists in the case of a dictatorial choice.

Note that this kind of problems are hard to detect without model checking.
Indeed, the counterexample trace was generated automatically, and the coun-
terexample trace is composed of hundreds of steps. Without model checking this
would require to manually execute each step of this trace, and the longer the
trace the less chance to discover it. After we detected this issue, we analysed the
underlying Java TCP/IP socket semantics [19] and fixed the model as described
in Section 3 (i.e., by modelling these sockets with default blocking mode). An-
other fix could be to include an ack after the reception of a SKIP message (this
would however require to modify also the implementation).

Absence of orphan messages We now prove that upon termination of an or-
chestration no messages are left in any buffer, i.e., all messages are consumed.
To expedite the verification process, we begin by conducting statistical model
checking of the following property:

Pr[<=500](<>!allEmpty()&&ror.Terminated&&(forall(i:id t)ROC(i).Terminated))

this property quantifies the probability of termination with at least one message
remaining in any buffer. To verify whether all buffers are empty, we utilize the



16 D. Basile

predicate allEmpty(). As expected, the probability is found to be nearly zero.
We proceed with an exhaustive verification by employing the property

A[]((ror.Terminated && (forall (i:id t) ROC(i).Terminated)) imply allEmpty())

the above formula can be read as follows: in all states of all executions either
all buffers are empty or someone has not terminated yet. The above property
is valid in both configurations, as expected. The first (resp. second) configura-
tion required roughly 2 (resp. 27) minutes, 1.5 (resp. 12.5) Giga of memory, and
explored 25 (resp. 189) million states. It is also possible to verify that there is
no dummy execution in which the services and the orchestrator never interact
(and thus all buffers are trivially empty). This can be verified with the for-
mula E[] (allEmpty() && !ror.Timeout) that, as stated above, checks if there exists

an execution where all states have empty buffers (excluding the dummy exe-
cution scenario in which the timeout occurs at the beginning,). As expected,
this property is not valid in the model, for both configurations. The first (resp.
second) configuration required roughly 3 (resp. 24) seconds, 1.4 (resp. 10) Giga
of memory, and explored 24 (resp. 28) states.

No interference When discussing the distributed match action in Section 3, we
stated that it is never the case that some service interferes in a match in which
it is not involved. This guarantees that it is safe to use two one-position buffers
for all communications between any two services involved in a match. To verify
this, we perform statistical model checking of the following formula

Pr[<=500](<>exists(i:id t)(i<N-1&&(ROC(i).d1==TYPEMATCH||ROC(i).d1==ADDRESS||ROC(i).d1==PORT))
&&((ROC(i+1).d1==TYPEMATCH|| ROC(i+1).d1==ADDRESS||ROC(i+1).d1==PORT))&&

(exists(j:id t)(j!=i&&j!=i+1&&(ROC(j).d1==TYPEMATCH||ROC(j).d1==ADDRESS||ROC(j).d1==PORT))))

the formula measures the probability of reaching a state where one service (in-
dex j) is interfering on a match between two other services (indexes i and i+1).
We recall that in the model two matching services have consecutive indexes. We
detect a service to be involved in a distributed match when its temporary vari-
able d1 has one of the three values (TYPEMATCH, ADDRESS, PORT) (see Figure 2).
The probability is found to be nearly zero.

We also include in the repository [3] a version of the model where each pair
of services has its own buffers. All results in this section also hold in that model.

Compatibility check Next, we formally prove that if some service is not matching
the configuration of the orchestrator, then the orchestration will not start and
an Error location will always eventually be reached. Indeed, the possibility of
mismatching configurations is allowed in the real system. However, in the model
discussed in Section 3 this scenario is not possible because, by construction, all
services and the orchestrator share the same configuration. The configuration
is selected non-deterministically. In this way, for each formula being verified all
possible configurations are checked automatically.

Only for this check the model has been slightly modified by adding two
parameters action and choice to the templates and by updating accordingly
the model. For this verification, the set-up of the system is of an orchestrator
ror and three services alice, bob and carl and the size of each buffer is 4:
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ror = RunnableOrchestration(MAJORITARIAN CHOICE,DISTRIBUTED ACTION);
alice = RunnableOrchestratedContract(0,MAJORITARIAN CHOICE,DISTRIBUTED ACTION);
bob = RunnableOrchestratedContract(1,MAJORITARIAN CHOICE,DISTRIBUTED ACTION);
carl = RunnableOrchestratedContract(2,DICTATORIAL CHOICE,DISTRIBUTED ACTION);
ast = SocketTimeout(0);bst = SocketTimeout(1);cst = SocketTimeout(2);
system ror,alice,bob,carl,ast,bst,cst;

Note that the configurations of choice and action are now parameters
assigned to each automaton. This allows us to assign a mismatching con-
figuration to verify that the Error location will be reached. Indeed, in
the above set-up carl has a different configuration. We use the formula
A<>((ror.Error && carl.Error)||ror.Timeout) stating that in all executions eventually
the orchestrator and the service with a wrong configuration reach an Error loca-
tion or a timeout is experienced. Alternatively, the formula A[](!ror.Start) states
that in all executions the Start location of the orchestrator is never traversed
(i.e., the orchestration never starts). Both properties are satisfied in this setup,
thus verifying the correctness of the compatibility check. The first (resp. second)
formula required visiting 19 (resp. 79) states. Both formulae used roughly 48
Megabytes of memory and a few milliseconds of CPU. We have proved that in
case of mismatching configurations, the orchestration will not start.

5 Conclusion and Future Work

We have presented the formal modeling and verification of the Contract Au-
tomata Runtime Environment (CARE). This paper witnesses the utility of formal
modeling in identifying and addressing issues within the source code of a dis-
tributed application. Notably, CARE is an open-source platform. The adequacy
of the abstract model has been described, and the transitions of the formal
model have been linked to the corresponding lines of source code. The tests
generated from the formal model have been employed to test the source code.
Both statistical and exhaustive model checking techniques have played a crucial
role in formally verifying numerous desired properties of the modeled system,
such as the absence of deadlocks, while also enhancing the accuracy of the formal
model. Statistical model checking has been employed to fine-tune parameter set-
tings within the formal model, such as the buffer size. The methodology utilized
for modeling CARE can be applied to other Java-based distributed applications
that communicate over TCP/IP sockets, enabling their formal verification with
similar rigor and precision. At present, the different artifacts such as the model,
source code, tests, and tracing information are manually kept aligned. This pro-
cess demands substantial effort whenever a new version of CARE is introduced,
as each artifact needs to be updated accordingly. Exploring techniques for auto-
matic alignment of these artifacts is a subject of future research.
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