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Abstract  26 

Atlantic cod is composed of multiple migratory and stationary populations widely distributed 27 

in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea 28 

undertakes annual spawning migrations to the northern Norwegian coast. Although spawning 29 

occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and 30 

genetic differences between NEAC and NCC are maintained. In this study we resolve the 31 

underlying mechanisms by demonstrating extended linkage disequilibrium (LD) and 32 

population divergence  in a 17.5 Mb region on linkage group 1 (LG1) based on genotypes of 33 

494 SNPs from 192 parents of farmed families of  NEAC,  NCC or NEAC x NCC crosses. 34 

Linkage analyses revealed two adjacent inversions within the 17.5 Mb region that repress 35 

meiotic recombination in NEAC x NCC crosses. We identified a NEAC specific haplotype 36 

consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregated 37 

under Hardy-Weinberg equilibrium in eight northern NCC stocks. Comparative genomic 38 

analyses determine the NEAC configuration of the inversions to be the derived state and date 39 

it to ~1.6-2.0 Mya. The haplotype block includes 765 genes, including candidates regulating 40 

heme synthesis, skeletal muscle organization and buoyancy conferring adaptation to long-41 

distance migrations and vertical movements down to 500 m. Our results suggest that the 42 

migratory ecotype experience strong directional selection for the two adjacent inversions on 43 

LG1. Despite interbreeding between NEAC and NCC the inversions are maintaining genetic 44 

differentiation, and we hypothesize the co-occurrence of multiple adaptive alleles forming a 45 

‘supergene’ in the NEAC population.  46 

  47 
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Introduction 48 

Atlantic cod are widely distributed on the continental shelves and banks on both sides of the 49 

North Atlantic Ocean and represent the main demersal fish resource in these regions. The 50 

success of this highly exploited fish seems to be related to the different life history strategies 51 

of the multiple migratory and stationary populations, but careful management is required as 52 

several stocks have been dramatically reduced as a result of overfishing, climate change and 53 

pollution (Myers et al. 1997; Christensen et al. 2003; Robichaud & Rose 2004; MacKenzie et 54 

al. 2004). Cod fishery dates back to the tenth century A.D. when Vikings used dried Skrei 55 

(Old Norse skríða means wandering) as a source of nutrition and currency along the European 56 

trade routes. Today Skrei are synonymous with the large Northeast Arctic cod (NEAC) 57 

population, which feeds in the Barents Sea and near Svalbard, but the adults undertake annual 58 

long-distance migrations to and from the spawning banks along the coast of North Norway, 59 

mainly offshore the Lofoten Archipelago (Bergstad et al. 1987; Sundby & Nakken 2008; 60 

Ottersen et al. 2014). During foraging and spawning migrations NEAC perform vertical 61 

movements down to depths of about 500 m with frequent descending and ascending 62 

swimming spanning up to 250 m (Godø & Michalsen 2000; Stensholt 2001). In contrast, the 63 

stationary Norwegian coastal cod (NCC) live in shallow coastal waters and fjords throughout 64 

the year and generally migrate only short distances at depths down to about 100 m (Hobson et 65 

al. 2007; Michalsen et al. 2014). The vertical divergence between NEAC and NCC is 66 

apparent at the 0-group stage when juveniles settle in deep and shallow water, respectively, in 67 

northern Norwegian fjords (Løken et al. 1994; Fevolden et al. 2012). In Iceland, similar 68 

ecotypes are represented by the frontal (migratory) and coastal (non-migratory) populations, 69 

which exploit different habitats at depths of 200-600 m and less than 200 m, respectively 70 

(Pálsson et al. 2003; Pampoulie et al. 2008; Grabowski et al. 2011).  71 
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Almost half a century ago, Møller (1966, 1968, 1969) studied the genetic diversity in Atlantic 72 

cod along the Norwegian coast and concluded that NEAC and NCC form two genetically 73 

separated populations or non-interbreeding sibling species. Although they occur sympatrically 74 

on local spawning grounds, differences in phenotypic traits, such as otolith morphology and 75 

vertebrae number, seem to be maintained between the populations, but might be influenced by 76 

environmental factors (Rollefsen 1933, 1954; Jakobsen 1987; Løken & Pedersen 1996; 77 

Nordeide 1998; Nordeide et al. 2011). Nuclear DNA analysis has identified divergent allele 78 

frequencies within pantophysin (Pan I), hemoglobin and rhodopsin, which are of potential 79 

relevance for adaptation to different ecosystems (Møller 1966, 1968; Fevolden & Pogson, 80 

1997; Pogson 2001; Andersen et al., 2015; Pampoulie et al. 2015). The genetic divergence of 81 

NEAC and NCC was recently found to be uniquely associated with a large genomic region on 82 

linkage group 1 (LG1) with absence of gene flow between the two populations (Hemmer-83 

Hansen et al. 2013; Karlsen et al. 2013; Therkildsen et al. 2013).  84 

 85 

The extreme difference between NEAC and NCC at the Pan I locus was suggested to be 86 

caused by differences in breeding structure, as selection alone would be insufficient to cause 87 

the observed levels of genetic differentiation (Fevolden & Sarvas 2001; Sarvas & Fevolden 88 

2005; Westgaard & Fevolden 2007). Accordingly, interbreeding between the populations has 89 

been proposed to be hindered by differences in courtship or spawning behavior, or by 90 

differences in spawning depths (Hutchings et al. 1999; Jeffrey et al. 1999; Nordeide & 91 

Folstad, 2000; Grabowski et al. 2011). In contrast, the mitochondrial genome revealed no 92 

reproductive isolation between NEAC and NCC (Karlsen et al. 2014), supporting the 93 

alternative hypothesis that local selection forces at some loci are strong enough to inhibit, or 94 

even override, the levelling effect of the gene flow (Mork & Sundnes 1985). We have finally 95 

resolved this controversial issue by demonstrating that the strong genetic divergence between 96 
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the two populations is not the result of reproductive barriers nor selection per se, but caused 97 

by two large inversions on LG1 that repress recombination within heterozygotes preventing 98 

introgression between co-segregating haplotypes.  99 

 100 

 101 

Materials and methods 102 

Fish material and DNA extraction 103 

Wild cod were collected from 14 locations ranging from the Irish Sea in the south to the 104 

Barents Sea in the north (see Figure 2). On average, 48 samples were collected from each 105 

location. To get a representational sampling of NEAC we collected cod from two locations in 106 

the Barents Sea. Farmed cod were sampled from 88 families of the National cod breeding 107 

program maintained by Nofima in Tromsø, Norway, and from 8 families of the 108 

CODBIOBANK at the Institute of Marine Research in Bergen, Norway.  109 

One hundred and four cod from the National cod breeding program were selected for 110 

sequencing. Out of these, 50 fish were of NEAC origin, 11 fish were of NCC origin and 43 111 

fish were offspring of NEAC x NCC crosses. All sequenced fish from the National breeding 112 

program belonged to year classes 2005 (P) and 2006 (F1) and represented the second 113 

generation of cod produced in captivity. The original broodstock in the base population were 114 

sampled from different geographical areas along the Norwegian coast and were assigned to 115 

the NCC and NEAC populations based on sampling locations and the Pan IA and IB alleles 116 

(Fevolden & Pogson 1997; Bangera et al. 2011). The Greenland cod (Gadus macrocephalus 117 

ogac) used to date the inversion was sampled at the Uummannaq Island, Northwest 118 

Greenland. 119 

DNA was extracted using either a DNeasy kit from Qiagen (Hilden, Germany) according to 120 

manufacturer’s instructions or a high salt precipitation method 121 
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(http://www.liv.ac.uk/~kempsj/IsolationofDNA.pdf). DNA quality was assessed by 122 

electrophoresis on 1% agarose gel to estimate the proportion of high molecular weight 123 

(HMW) DNA, and low quality samples with negligible levels of MMW DNA were excluded 124 

from analysis. DNA concentration was assessed fluorometrically using Qubit technologies 125 

(Thermo Fisher Scientific, Carlsbad, USA). 126 

 127 

Genotyping 128 

Farmed (n=2951) and wild fish (n=959) were genotyped for 10,913 SNPs using an Illumina 129 

custom Infinium II SNP-array (Kent et al., in prep) according to manufacturer’s instructions 130 

(Illumina, San Diego, USA). Poorly performing samples displaying call rates below 0.9 were 131 

excluded from analysis. Genotype data was pre-processed by removing low MAF (<0.05) 132 

SNPs, and Mendelian errors were set to missing and imputed along with any other failed 133 

genotypes using BEAGLE v4 (Browning & Browning, 2007). Wild populations were phased 134 

using SHAPEIT v2 (https://mathgen.stats.ox.ac.uk/shapeit) and the family material were 135 

accurately phased using linkage information. Phased data for 192 parents were used to 136 

estimate linkage disequilibrium (LD) between SNPs using Haploview 4.2 (Barrett et al. 137 

2005). All NEAC samples from the Barents Sea were homozygous for a haplotype consisting 138 

of 186 SNPs from the SNP-array (see Supplementary Table S1), and the wild fish were 139 

assigned to NEAC, NCC or a cross using this NEAC haplotype. 140 

 141 

Linkage mapping and inversion detection 142 

The construction of linkage maps for cod using 12K SNP-array is described in detail 143 

elsewhere (Grove et al., in prep), but begins with performing two-point linkage in CRIMAP 144 

(Green et al. 1990) to sort SNPs into linkage groups. In the present study we used the 494 145 

SNPs mapped to LG1 to construct separate linkage maps for pure NEAC, pure NCC, and 146 
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NEAC x NCC crosses. The sorting of family material for these analyses was determined by 147 

haplotyping parents using the 186 SNP-set described above.  148 

SNPs on the cod 12K SNP-array were carefully chosen to tag as many contigs as possible 149 

(Kent et al. in prep) and are well distributed along the linkage groups, thereby forming a good 150 

foundation for building a chromosome sequence for LG1. Scaffolds from two draft 151 

assemblies, containing at least one SNP from the linkage map, were selected and used for the 152 

construction of chromosome files. Erroneous scaffolds containing SNPs from more than one 153 

LG were broken between conflicting SNP positions. Overlapping scaffolds were identified by 154 

comparing SNPs mapping to both assemblies and were merged using coordinates from 155 

alignment with LASTZ (Harris 2007), resulting in a total of 40 scaffolds that were used to 156 

build the final chromosome sequence. Subsequently linkage maps were then updated to take 157 

into account the more precise SNP order given by individual scaffolds. Finally, all scaffolds 158 

were oriented, ordered and concatenated into a new chromosome sequence based on 159 

information from the linkage map. The size of the final chromosome sequence for LG1 was 160 

29,521,491 bp. 161 

 162 

Sequencing and variant detection 163 

Genomic DNA from the 104 breeding program fish was prepared for sequencing using the 164 

Truseq Library prep kit from Illumina (Illumina, San Diego, USA). Paired-end sequencing (2 165 

x 100nts) of three indexed samples per lane was carried out using an Illumina HiSeq 2000 166 

instrument, generating a total of 13.7 billion reads, with an average of 132 million reads per 167 

individual. This represented approximately 10x coverage of the genome for each sample.  168 

Reads were processed using default parameters in Trimmomatic version 0.32 (Bolger et al. 169 

2014) before being aligned to the unmasked reference genome based on the NCC map 170 

described above using Bowtie2 version 2.2.3 (Langmead & Salzberg 2012). Within sample 171 

variant detection was performed using GATK HaplotypeCaller version 2.8-1-g932cd3a 172 
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(McKenna et al. 2010).  SnpEff version 4.0e (Cingolani et al. 2012) was used to annotate and 173 

predict allelic variants. Individual variant calls with a quality score of <20 were excluded 174 

from further analysis, as were INDELs and genotypes with read depths below 6 or above 27. 175 

Variants not detected in >70% of the samples were removed across all samples. 176 

Genomic DNA from a single Greenland cod was prepared for sequencing using a Nextera XT 177 

library preparation kit generating a library with an average size of 650bp. Sequencing was 178 

performed using a MiSeq platform with V3 kit chemistry to generate 2 x 301 nt paired-end 179 

reads. A total of 18.7 M reads generated 11.2 Gb sequence data. Reads were mapped and 180 

variants detected as described above. 181 

Pairwise LD (measured as r2) for the whole linkage group was calculated based on 48 182 

sequenced NEAC using Plink v1.9 (https://www.cog-genomics.org/plink2) with MAF > 0.1 183 

and HWE > 0.001. 184 

 185 

Gene annotation 186 

An automated pipeline for protein coding gene annotation was used to build gene models 187 

from multiple data sources including (i) approximately 3 million transcriptome reads 188 

(http://www.ncbi.nlm.nih.gov/sra?term=SRP013269) obtained from liver, egg, brain, head, 189 

kidney, hindgut, gonad, and spleen, generated using GS-FLX 454 Titanium platform (Roche, 190 

Switzerland), (ii) ESTs from NCBI (n=257218), (iii) predicted RNAs (n=1541, 191 

http://www.codgenome.no/data/ATLCOD1_ANN/), and (iv) roughly 35 million short read 192 

mRNA sequences from whole NEAC fish at 12 and 35 days post hatching (Johnsen & 193 

Andersen 2012). To enable model building, short reads were mapped to the reference genome 194 

sequence using STAR (v2.3.1z12), while long 454 transcriptome reads were mapped using 195 

GMAP (version 2014-07-28) with “--no-chimeras” parameter in addition to default 196 

parameters. Cufflinks (v2.2.1) with “--multi-read-correct” parameter in addition to the default 197 
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parameter assembled the aligned RNA-Seq reads and transcriptome reads into transcripts. 198 

Transcript models from RNAseq and 454 transcriptome were merged using Cuffmerge. 199 

Open reading frame (ORF) prediction was carried out using TransDecoder 200 

(http://transdecoder.github.io/) (Haas et al. 2013) using the pfamA and pfamB databases for 201 

homology searches (--search_pfam) and a minimum length of 30 amino acids for ORFs 202 

without pfam support (-m 30). In addition to the pfam homology evidence we also performed 203 

BLASTP (evalue<1e-10) for all predicted proteins against zebrafish (Danio rerio) (v9.75) and 204 

three-spined stickleback (Gasterosteus aculeatus) (BROADS1.75) annotations downloaded 205 

from Ensembl. Only gene models with support from at least one type of homology search 206 

(pfam or BLASTP) were kept.  207 

In total we mapped 35 million mRNA-seq reads and 3.3 million 454 transcriptome sequences 208 

to the whole genome and used this to annotate LG1. A total of 2323 transcripts were left after 209 

merging transcript models using cuffmerge. Functional annotations of the transcripts were 210 

done using blastx against the SwissProt database. Results from TransDecoder and homology 211 

support filtering of putative protein coding loci are shown in Supplementary Table S2.  212 

 213 

Origin and dating of inversions 214 

To determine whether NEAC or NCC represents the ancestral state of the inversions we 215 

aligned LG1 sequences representing possible arrangements of the inversions with Northern 216 

pike (Esox lucius) and stickleback using LASTZ  in gap-free mode requiring >= 75% identity 217 

and match-count filtering of 100 (Harris 2007). 218 

Hierarchical clustering of the wild stocks was estimated based on genotypes from the SNP-219 

array using the R package SNPrelate (Zheng et al. 2012). Four linkage groups (LG1, LG2, 220 

LG7 and LG12) were excluded from this analysis because of the presence of extended LD 221 

blocks (own data; Bradbury et al. 2010; Hemmer-Hansen et al. 2013). Reads generated from 222 

whole genome sequencing of a single Greenland cod were compared with NEAC and NCC 223 
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variant calls to identify a set of fixed sequence differences (FSD; single nucleotides fixed 224 

within populations) along LG1. FSD counts were then used to calculate pairwise differences 225 

among Greenland cod, NEAC and NCC. Under the assumption of a constant clock we then 226 

estimated the NEAC-NCC divergence age relative to their divergence from Greenland cod by 227 

calculating the ratio between NEAC-NCC FSD-distance and the mean FSD-distance between 228 

Greenland cod-NEAC and Greenland cod-NCC (i.e. FSDNEAC-NCC/FSDmean(Greenland cod-NEAC, 229 

Greenland cod-NCC)). 230 

 231 

Protein modeling 232 

Homology modeling was performed with the MODELLER software (Sali & Blundell, 1993) 233 

to build the three-dimensional structure of the NEAC and NCC variants of Ca6 based on  the 234 

crystal structure of human Ca6 as template (PDB code 3FE4, Pilka et al. 2012). The 235 

sequences were aligned using ClustalW, and identities between targets and template of 58% 236 

(NEAC) and 56% (NCC) allowed using the standard MODELLER protocol implemented in 237 

DiscoveryStudio v4.5 (Biovia). We ascertained that no other protein with a known related 238 

structure displayed a greater sequence similarity. The best of 50 models according to the PDF 239 

(Probability Density Function) score included in MODELLER was selected. The structures 240 

were inspected with PROCHECK (Laskowski et al. 1993) for inappropriate stereochemistry. 241 

Ramachandran maps of NEAC and NCC models revealed that they contained 91.7% of non-242 

Gly-non-Pro residues in most favored, 7.8% in additional allowed, 0.5% in generously 243 

allowed and 0.0% in disallowed regions. These models were further validated for their 244 

structure quality by Verify 3D available at http://services.mbi.ucla.edu/ and 95% of the 245 

residues of the modeled proteins showed satisfactory 3D-1D score (>0.2).  DiscoveryStudio 246 

v4.5 (Biovia) software was used to visualize the generated models.  247 

 248 
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Results 249 

Linkage map and LD calculations 250 

A genetic map describing 23 linkage groups in Atlantic cod (Grove et al., in prep.) was 251 

constructed by genotyping a large family material of 2739 individuals using a 12K SNP-array 252 

(Kent et al. in prep). The map constructed for LG1 contained 494 SNPs (Figure 1a; Suppl. 253 

Table S1) and was used to integrate, order, and orientate scaffolds from two draft cod 254 

assemblies into a cohesive chromosome sequence comprising 29.52 Mb. Accurately phased 255 

genotypes from 192 parents were used to estimate LD between SNPs, and revealed a distinct 256 

block of extended LD from 10-27 Mb (Figure 1c), embracing the Pan I locus located at 17.5 257 

Mb. The parents were of known origin and classed as pure NEAC, pure NCC, or NEAC x 258 

NCC crosses. Analyses of pure NEAC cod identified a single haplotype of 186 non-259 

consecutive SNPs that were homozygous in all individuals (Supplementary Table S1). All 260 

NEAC x NCC crosses had one copy of this haplotype, while the NEAC haplotype was 261 

completely absent in pure NCC samples. 262 

 263 

Because this distinct haplotype in NEAC indicated substantial differentiation between NEAC 264 

and NCC cod, we constructed linkage maps separately for pure NEAC, pure NCC, and NEAC 265 

x NCC crosses (Supplementary Table S1). Pure NEAC and NCC showed typical 266 

recombination rates between SNPs along the length of LG1, but comparing the linkage maps 267 

disclosed a different SNP order within the block with extended LD. NEAC x NCC crosses 268 

displayed almost complete repression of recombination within this block, but showed elevated 269 

recombination outside the block (Figure 1b). NEAC and NCC linkage maps were used to 270 

order and orient scaffolds to create specific assemblies of LG1 for these two ecotypes of 271 

Atlantic cod. Alignment of these sequences revealed the presence of two adjacent inversions 272 

of 9.55 Mb and 7.82 Mb (Figure 1a). Additional evidence for two inversions, in contrast to a 273 
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single inversion, was found in the LD pattern of 48 whole genome sequenced NEAC samples. 274 

High LD was found between polymorphisms at 18 Mb and 28 Mb in the NCC version of the 275 

assembly. In contrast the proposed NEAC orientation of the inversions rearrange these two 276 

regions to be located close together (Supplemental Figure S1). 277 

 278 

Geographical distribution of NEAC haplotype 279 

To validate if the NEAC haplotype precisely identified the differing genotypes of migratory 280 

and stationary cod ecotypes we analyzed 48 cod captured in the Barents Sea and representing 281 

pure NEAC based on Pan I genotyping. All samples were homozygous for the 186 SNPs 282 

within the haplotype block, which endorses its utility as a tool to classify cod as NEAC, NCC 283 

or crosses. To explore the distribution of the NEAC haplotype we tested individuals from 14 284 

different localities across the Northeast Atlantic Ocean. In sharp contrast to the fixation in two 285 

locations in the Barents Sea, frequencies of the NEAC haplotype were low or non-existent in 286 

more southern stocks and in the White Sea, while intermediate frequencies were found among 287 

samples collected along the Norwegian coast north from Bergen (Borgund, Verrabotn, 288 

Porsanger and Balsfjord) (Figure 2a). The NEAC haplotype was in HWE in all the stocks 289 

examined. These results contrasts with the cluster analysis performed on all SNPs, excluding 290 

the LG1 inversions and other genomic regions with suspected inversions due to large LD 291 

blocks on LG2, LG7 and LG12 (Figure 2b). In this analysis NEAC from the Barents Sea are 292 

clustering together with all the other samples.  293 

 294 

Origin and age of inversions 295 

To determine whether NEAC or NCC represent the ancestral state we aligned LG1 sequences 296 

representing possible arrangements of the inversions with Northern pike and stickleback to 297 

identify conserved synteny blocks spanning breakage points defining the inversions. This 298 
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analysis revealed a large block in pike spanning the break points flanking inversion 1, and a 299 

smaller block in stickleback bridging the two inversions (Figure 3b, Supplementary Figure 300 

S2). Taken together these results suggest that NCC represents the ancestral state of the 301 

inverted structure.  302 

 303 

The relative SNP density between NEAC and NCC across LG1 was calculated using whole-304 

genome resequencing data from samples classified on the basis of the NEAC-haplotype. 305 

Analysis of homozygous NEAC (n=50), homozygous NCC (n=11) or NEAC x NCC crosses 306 

(n=43) revealed 540,685 SNPs with an average sequencing coverage of 17x. Relative 307 

heterozygosity expressed as number of SNPs per 100Kb in NEAC divided by the number in 308 

NCC revealed a dramatically reduced SNP density in NEAC samples within the LD block 309 

(Figure 3). In contrast, the diversity outside the block was comparable for NEAC and NCC 310 

samples and to the rest of the genome. 311 

 312 

The NEAC-NCC divergence relative to their divergence from Greenland cod were estimated 313 

to 0.57 and 0.13 within and outside the LG1 inversions, respectively. Assuming a divergence 314 

age of 3.5 million years between Greenland cod and Atlantic cod (Carr et al. 1999; Coulson et 315 

al. 2006), the inversion is estimated to be ~2 million years old (3.5*0.57=1.99). Although 316 

SNP data revealed no apparent genetic population structure between NEAC and NCC outside 317 

the inversion (Figure 2a), we find 1553 FSD counts on LG1 outside the inversion. These 318 

divergent FSD sites are likely caused by a sample bias within NEAC and NCC fish since they 319 

represent a narrow genetic pool of interrelated individuals from a breeding program rather 320 

than being a true random sample from both populations. Taking this background bias in FSD 321 

into account the normalized Greenland cod – Atlantic cod divergence within the inversion 322 

would be ~1.6 million years (3.5*(0.57-0.13)=1.57).  323 
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Candidate genes for adaptation to migratory behavior 324 

We annotated the LG1 sequence to search for genes involved in the adaptive divergence 325 

between migratory (NEAC) and stationary cod (NCC). The annotation resulted in the 326 

prediction of 1262 gene models for the whole chromosome, whereof 763 genes were located 327 

within the 17.37 Mb region containing the two inversions (357 and 406 genes, respectively). 328 

Variant detection within the same region revealed 19,206 SNPs that were fixed or very close 329 

to fixation for alternative alleles in NEAC and NCC and heterozygous in NEAC x NCC 330 

crosses, and included 849 plausible functional variants in 321 genes presenting good hits in 331 

the SwissProt database (Supplementary Table S4). The corresponding protein variants 332 

containing several amino acid substitutions included key enzymes in swim bladder function 333 

and heme synthesis, and important factors involved in muscle organization and behavior 334 

(Figure 3). Carbonic anhydrase catalyzes the reversible conversion of carbon dioxide and 335 

water to bicarbonate and protons of importance for blood acidification and gas secretion into 336 

the swimbladder. The predicted NEAC and NCC variants of the secretory carbonic anhydrase 337 

(Ca6) differ at five positions, and the replacement of the highly conserved Gln196 with the 338 

novel His residue was shown by 3D modelling to reduce the interactions at the dimeric 339 

surface in the NCC variant (Figure 4, Supplementary Table S5). Dimeric assembly of this 340 

enzyme confers an advantage for efficient CO2 hydration in a variable extracellular milieu, 341 

such as the strong pH fluctuations in the gas gland (Pelster 2004; Pilka et al. 2012), and we 342 

therefore predict reduced enzyme activity of the NCC variant. The inversions were found to 343 

harbor four additional genes involved in swimbladder function by regulating glucose uptake 344 

and production of acid metabolites. Glut1a facilitates glucose transport across cell membrane 345 

and is highly expressed in the gas gland cells of Atlantic cod (Hall et al. 2014). The NEAC 346 

and NCC variants of Glut1a differ at two positions that which, together with SNPs in the 347 

untranslated regions, might have functional and regulatory effects. We also noted many SNPs 348 
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in the genes encoding the three enzymes enolase 1 (Eno1), muscle-type phosphofructokinase 349 

(Pfkm) and glucose-6-phosphate dehydrogenase (G6pd) catalyzing the anaerobic conversion 350 

of glucose to the acidic metabolites lactate and CO2. 351 

  352 

The inversions also contained candidate genes associated with the strenuous migrations, such 353 

as two alas genes, which code for enzymes catalyzing the rate-limiting step in heme 354 

synthesis. Two aa substitutions were found in the erythroid-specific Alas2 of crucial 355 

importance for hemoglobin production. While no globin genes are located on LG1, the aa 356 

changes in the rhesus type B glycoprotein (Rhbg) may explain the reported differences in 357 

blood type frequencies between NEAC and NCC (Møller et al. 1966). Precise regulation of 358 

sarcomeric thin filament length is crucial for optimal force generation during muscle 359 

contraction. The muscle protein leiomodin 3 (Lmod3) is essential for the organization of thin 360 

filaments in skeletal muscle (Yuen et al. 2014; Nworu et al. 2015), and the predicted cod 361 

Lmod3 differ at four positions in NEAC and NCC. Intriguingly, the inversions contain the 362 

metabotropic glutamate receptor mglur4 and mglur7 genes, which are broadly expressed in 363 

the zebrafish brain, including olfactory bulb and retina (Haug et al. 2012). Three aa 364 

substitutions are located in a highly flexible region of cod mGlur7 (not shown), which in mice 365 

plays a significant role in hippocampus-dependent spatial learning (Goddyn et al. 2015) 366 

 367 

 368 

Discussion 369 

Population differentiation of Atlantic cod has been associated with four discrete islands of 370 

genomic divergence located on different chromosomes, and hitchhiking selection has been 371 

proposed as the underlying mechanism behind NEAC and NCC divergence (Bradbury et al. 372 

2010; Hemmer-Hansen et al. 2013; Karlsen et al. 2013). However, the fragmented nature of 373 
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the current cod genome assembly (GadMor_May2010; Star et al., 2011) has largely restricted 374 

our ability to identify genes associated with selection as well as our ability to reveal 375 

alternative mechanisms responsible for the observed patterns. To overcome these constraints 376 

we constructed a dense linkage map and integrated it with draft genome assemblies to 377 

produce a cohesive chromosome sequence for Atlantic cod LG1. Separate linkage maps were 378 

constructed for pure NEAC, pure NCC and NEAC x NCC crosses in order to study 379 

differences in recombination patterns and potentially highlight rearrangements distinguishing 380 

the two ecotypes. These analyses revealed two adjacent inversions of 9.55 Mb and 7.82 Mb 381 

(Figure 1b), which clearly differentiate NEAC from NCC, as well as revealing a mechanism 382 

resulting in almost complete suppression of homologous recombination in individuals 383 

heterozygous for the inversions (Figure 1a). The presence of two inversions rather than one 384 

have been shown to have an effect on the possibility for recombination and gene flow. While 385 

recombination in single inversions of >20 Mb have been predicted by models and 386 

documented in Drosophila, more complex inversion structures prevent double crossovers and 387 

inhibit gene flow across the inverted regions (Navarro et al. 1997; Munte´ et al. 2005; Dyer et 388 

al. 2007; Huynh et al. 2011).  389 

 390 

Chromosomal inversions have been associated with adaptive phenotypes in various plants and 391 

animals, including migratory species displaying high gene flow between the diverging 392 

populations (Rieseberg 2001; Hoffmann et al. 2004; Hoffmann & Rieseberg 2008). 393 

Polymorphic wing color mimicry in butterflies is maintained by chromosomal rearrangements 394 

in the Papilio genus and in Heliconius numata (Joron et al. 2011; Nishikawa et al. 2015), and 395 

a large inversion polymorphism in white-throated sparrow (Zonotrichia albicollis) was 396 

recently shown to harbor genes displaying expression patterns correlated with territorial song 397 

(Thomas et al. 2008; Huynh et al. 2011; Zinzow-Kramer et al. 2015). The repeated evolution 398 
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of distinct marine and freshwater ecotypes of three-spined stickleback involves three 399 

chromosomal inversions, and alternative orientations of the voltage-gated potassium channel 400 

gene kcnh4 might generate marine- and freshwater-specific isoforms (Jones et al. 2012). In 401 

rainbow trout (Oncorhynchus mykiss), different life-history strategies of anadromous 402 

(steelhead) and resident ecotypes were recently shown to be associated with multiple loci with 403 

strong LD suggesting the presence of an inversion suppressing recombination (Pearse et al. 404 

2014).  405 

 406 

The absence of genetic differentiation between NCC and NEAC populations outside the 407 

inversions on LG1 supports previous conclusions of high levels of gene flow between 408 

migratory and stationary cod ecotypes in the North Atlantic Ocean (Hemmer-Hansen et al. 409 

2013; Karlsen et al. 2013). However, the fact that the inversion is homozygous in NEAC, but 410 

polymorphic and under HWE in NCC populations, suggests that it is under strong directional 411 

selection in the migratory ecotype, while confer no fitness effects in the stationary ecotype. 412 

Gene flow between populations with divergent adaptive challenges can result in large fitness 413 

costs when recombination disrupts coinheritance of advantageous genetic variants. A genetic 414 

architecture that enforces strong LD between co-selected gene variants would therefore be 415 

highly favorable under extensive gene flow from divergent populations. Such ‘supergenes’ 416 

have been shown to maintain population specific adaptations in various organisms and is 417 

often caused by larger chromosome rearrangements (Joron et al. 2011; Thompson & Jiggins, 418 

2014; Twyford & Friedman 2015). We therefore hypothesize that the inversions on LG01 act 419 

as a supergene to efficiently maintain co-inheritance of several highly favorable genetic 420 

variants, which over time have generated the island of genomic divergence observed between 421 

migratory and stationary ecotypes of cod. 422 

 423 
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Several genes associated with gas secretion into the swimbladder were identified within the 424 

LG1 inversions. The swimbladder is a crucial organ by maintaining neutral buoyancy that 425 

allows fish to stay at their current depth without expending much energy swimming (Fänge 426 

1953; Pelster 2004). Hence, impairment of the swim bladder function was assumed to 427 

significantly threaten the success of the spawning migration in the European eel (Anguilla 428 

anguilla) (Pelster 2014). In a supergene context, this is intriguing because one of the obvious 429 

divergent adaptive challenges between NEAC and NCC populations is adaptation to high 430 

hydrostatic pressure at large depths. The foraging and spawning migrations of NEAC involve 431 

vertical movements at depths of 200-400 m along stable thermal paths (Stensholt 2001), while 432 

stationary NCC fish exploit much shallower habitats (Hobson et al. 2007; Michalsen et al. 433 

2014). This is supported by behavioral differences between juvenile NEAC and NCC settling 434 

at different depths, whereas the pelagic eggs have similar buoyancy (Løken et al. 1994; 435 

Fevolden et al. 2012; Jung et al. 2012). Frequent descents and ascents lead to negative 436 

buoyancy, because gas secretion from the gas gland lags behind gas resorption in the 437 

swimbladder (Harden Jones & Scholes 1985; Godø & Michalsen 2000). This effect is 438 

amplified at greater depths, and the migratory NEAC should therefore benefit from enhanced 439 

gas secretion by increased blood acidification in the gas gland. The important role played by 440 

carbonic anhydrase in swimbladder function was demonstrated by inhibiting the enzyme 441 

activity in the gas gland that resulted in significantly reduced proton production and gas 442 

secretion (Fänge 1953; Skinazi 1953; Pelster 1995; Wurtz et al. 1999). While the reduced 443 

carbonic anhydrase activity predicted for the NCC variant might not be critical for fish 444 

inhabiting shallow coastal water, the ability to maintain buoyancy is probably crucial for 445 

NEAC during frequent vertical movements to large depths. The energetic costs associated 446 

with the strenuous migrations may be further reduced by increased oxygen delivery and 447 
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enhanced muscular capacity involving a suite of adaptive alleles identified within the 448 

inversions.   449 

 450 

Similar to NEAC and NCC, Icelandic migratory and stationary cod populations inhabiting  451 

different depths show genetic differentiation at the same genomic region as found in the 452 

Norwegian cod populations (Grabowski et al. 2011; Pampoulie et al. 2008, 2015). This 453 

supports an old origin of the inversion polymorphism on LG1 associated with divergent 454 

migratory adaptations. We estimated that the inversion arose ~1.6-2 mill years ago during 455 

Pleistocene when glacial barriers and lowered sea level greatly influenced the abundance and 456 

distribution of marine species. This epoch probably represented the most important vicariance 457 

event in the evolution of Arctic fishes (Mecklenburg et al. 2011; Owens 2015). Atlantic cod 458 

survived in glacial refugia, but also moved southward to ice-free regions during the glacial 459 

periods (Bigg et al. 2008; Kettle et al. 2011). We propose that beneficial alleles were captured 460 

within the two inversions that occurred in an isolated refugial population and later became 461 

fixed. During interglacial periods local adapted individuals may have dispersed in the Arctic 462 

region and are today represented by the large migratory cod populations exploiting the high 463 

seasonal productivity in the most northerly environments on both sides of North Atlantic 464 

(Robichaud & Rose 2004).  465 

 466 

In conclusion, we reveal a major difference in the genomic architecture of the migratory 467 

NEAC and stationary NCC ecotypes by documenting two adjacent inversions spanning 17.5 468 

Mb on LG1 that effectively block recombination in individuals heterozygous for the 469 

inversions. Despite clear signs of interbreeding, this lack of recombination has caused a 470 

supergene comprising adaptive alleles related to the migratory ecotype to be preserved 471 

without dilution from the stationary ecotype. 472 
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Figure legends 727 

Figure 1. (a) Linkage map for LG1 created separately for pure NCC and NEAC x NCC 728 

crosses. (b) Whole chromosome alignment between the NCC and NEAC sequence. (c) 729 

Pairwise LD calculated in 192 parents from the linkage families. Two large inversions inhibit 730 

recombination in NEACxNCC crosses corresponding to a region of extended LD on LG1. 731 

 732 

Figure 2. Genomic divergence between NEAC and NCC. (a) Proportion of fish containing 733 

two (black), one (mid-grey) or no (light grey) copies of the NEAC-haplotype in different 734 

Northeast Atlantic stocks. (b) Hierarchical clustering of SNP variation excluding genomic 735 

regions with suspected inversions due to large LD blocks (LG1, LG2, LG7, LG12). NEAC 736 

and NCC were represented by red and black tips, respectively. The genetic distance was 737 

calculated as identity by state across 7238 SNP loci. 738 

 739 

Figure 3.  Graphical representation of two adjacent inversions on LG1 present in NEAC and 740 

NCC. The upper part show the relative difference in heterozygosity, measured as number of 741 

polymorphisms per 100kb in NEAC divided by the corresponding values in NCC. Conserved 742 

synteny blocks bridging inversion breakage points 1 and 2 suggest that NCC is holding the 743 

ancestral state of the inversions. Putative adaptive genes within the inversions are indicated. 744 

 745 

Figure 4. Ribbon plots of the modelled carbonic anhydrase (Ca6) dimer interface in a) NEAC 746 

and b) NCC. The monomer subunits and key interacting residues (Supplementary Table S5) 747 

are given in different colors. The enlarged sections show the dimeric interactions of Gln(Q) 748 

and His(H) at position 196.  749 

 750 

  751 

Page 26 of 32Molecular Ecology



For Review
 O

nly

27 

 

Supporting Information 752 

 753 

 754 

Table S1. Linkage maps generated from 96 families of farmed cod. Maps and map distances 755 

were calculated separately for NEAC, NCC and NEACxNCC crosses, and also split between 756 

males and females. 757 

 758 

Table S2. Predicted function of open reading frames were found with TransDecoder and 759 

homology search using BLASTP against zebrafish and stickleback protein databases. 760 

 761 

Table S3. Reads from a Greenland cod and a NCC where aligned to the NEAC reference. 762 

Fixed sequence differences were counted for LG1, both inside the inversions (top right) and 763 

outside (bottom left). 764 

 765 

Table S4. Genes with non-synonymous SNPs within the inversions. Number of individuals 766 

with reference or alternative alleles from NEAC, NCC and NEACxNCC cross are indicated 767 

together with transcript identities. 768 

 769 

Table S5. Interdimeric contacts in carbonic anhydrase (Ca6) of NEAC (Gln196) and NCC 770 

(His196). Protein contacts (within 4.5 Å) in the interfaces between A- and B-monomers of the 771 

homology models are reported. 772 

  773 
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Figure S1. Figure S1. Pairwise LD for 48 NEAC, measured as r2, between all SNPs 774 

(MAF>0.1) detected by re-sequencing on LG1. Left figure is the NCC map while right figure 775 

is the NEAC map. Only values above r2=0.7 are shown. Circle indicates a region within the 776 

second inversion being in high LD with a region at the end of the chromosome. The NEAC 777 

map minimizes the distance between these two regions. 778 

 779 

Figure S2. Comparative map using whole chromosome alignment between the NCC version 780 

of LG1 and stickleback LGXIII (a) and pike LG12 (b). 781 
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Figure 2. Genomic divergence between NEAC and NCC. (a) Proportion of fish containing two (black), one 
(mid-grey) or no (light grey) copies of the NEAC-haplotype in different Northeast Atlantic stocks. (b) 

Hierarchical clustering of SNP variation excluding genomic regions with suspected inversions due to large LD 

blocks (LG1, LG2, LG7, LG12). NEAC and NCC were represented by red and black tips, respectively. The 
genetic distance was calculated as identity by state across 7238 SNP loci.  
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Figure 3.  Graphical representation of two adjacent inversions on LG1 present in NEAC and NCC. The upper 
part show the relative difference in heterozygosity, measured as number of polymorphisms per 100kb in 
NEAC divided by the corresponding values in NCC. Conserved synteny blocks bridging inversion breakage 

points 1 and 2 suggest that NCC is holding the ancestral state of the inversions. Putative adaptive genes 
within the inversions are indicated.  
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Figure 4. Ribbon plots of the modelled carbonic anhydrase (Ca6) dimer interface in a) NEAC and b) NCC. The 
monomer subunits and key interacting residues (Supplementary Table S5) are given in different colors. The 

enlarged sections show the dimeric interactions of Gln(Q) and His(H) at position 196.  
484x350mm (96 x 96 DPI)  
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