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We consider games of strategic substitutes and complements on networks and introduce two evolutionary dynamics in order to
refine their multiplicity of equilibria. Within mean field, we find that for the best-shot game, taken as a representative example
of strategic substitutes, replicator-like dynamics does not lead to Nash equilibria, whereas it leads to a unique equilibrium for
complements, represented by a coordination game. On the other hand, when the dynamics becomes more cognitively demanding,
predictions are always Nash equilibria: for the best-shot game we find a reduced set of equilibria with a definite value of the fraction
of contributors, whereas, for the coordination game, symmetric equilibria arise only for low or high initial fractions of cooperators.
We further extend our study by considering complex topologies through heterogeneous mean field and show that the nature of the
selected equilibria does not change for the best-shot game. However, for coordination games, we reveal an important difference: on
infinitely large scale-free networks, cooperative equilibria arise for any value of the incentive to cooperate. Our analytical results are
confirmed by numerical simulations and open the question of whether there can be dynamics that consistently leads to stringent
equilibria refinements for both classes of games.

1. Introduction

Strategic interactions among individuals located on a net-
work, be it geographical, social, or of any other nature, are
becoming increasingly relevant in many economic contexts.
Decisions made by our neighbors on the network influence
ours and are in turn influenced by their other neighbors to
whom we may or may not be connected. Such a framework
makes finding the best strategy a very complex problem,
almost always plagued by a very large multiplicity of equi-
libria. Researchers are devoting much effort to this problem,
and an increasing body of knowledge is being consolidated
[1–3]. In this work we consider games of strategic substitutes
and strategic complements on networks, as discussed in [4].
In this paper, Galeotti et al. obtained an important reduction
in the number of game equilibria by going from a complete
information setting to an incomplete one. They introduced
incomplete information by assuming that each player is only
aware of the number of neighbors he/she has, but not of their

identity nor of the number of neighbors they have in turn.We
here aim at providing an alternative equilibrium refinement
by looking at network games from an evolutionary viewpoint.
In particular, we look for the set of equilibria which can
be accessed according to two different dynamics for players’
strategies and discuss the implications of such reduction.
Furthermore, we go beyond the state-of-the-art mean field
approach and consider the role of complex topologies with
a heterogeneous mean field technique.

Our work belongs to the literature on strategic interac-
tions in networks and its applications to economics [5–13].
In particular, one of the games we study is a discrete version
of a public goods game proposed by Bramoullé and Kranton
[14], who opened the way to the problem of equilibrium
selection in this kind of games under complete information.
Bramoullé further considered this problem [15] for the case of
anticoordination games on networks, showing that network
effects are much stronger than for coordination games. As
already stated, our paper originates from Galeotti et al. [4],
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for they considered one-shot games with strategic comple-
ments and substitutes and model equilibria resulting from
incomplete information. Our approach is instead based on
evolutionary selection of equilibria—pertaining to the large
body of work emanating from the Nash programme [16–
19]—and is thus complementary to theirs. In particular we
focus on the analysis of two evolutionary dynamics (see Roca
et al. [20] for a review of the literature) in two representative
games and on how this dynamics leads to a refinement of
the Nash equilibria or to other final states. The dynamics we
consider are Proportional Imitation [21, 22], which does not
lead in general to Nash equilibria, and best response [23, 24],
which instead allows for convergence to Nash equilibria—an
issue about which there are a number of interesting results
in the case of a well-mixed population [25–27]. As we are
working on a network setup, our specific perspective is close
to that of Boncinelli and Pin [28]. They elaborate on the
literature on stochastic stability [19, 29] (see [24, 30] for an
early example of related dynamics on lattices) as a device
that selects the equilibria that are more likely to be observed
in the long run, in the presence of small errors occurring
with a vanishing probability.They work from the observation
[31] that different equilibria can be selected depending on
assumptions on the relative likelihood of different types of
errors. Thus, Boncinelli and Pin work with a best response
dynamics and by means of a Markov Chain analysis find,
counterintuitively, that when contributors are the most per-
turbed players, the selected equilibrium is the one with the
highest contribution.The techniqueswe use here are based on
differential equations and have a more dynamical character,
and we do not incorporate the possibility of having special
distributions of errors—although we do consider random
mistakes. Particularly relevant to our work is the paper by
López-Pintado [32] (see [33] for an extension to the case of
directed networks) where a mean field dynamical approach
involving a random subsample of players is proposed.Within
this framework, the network is dynamic, as if at each period
the networkwere generated randomly.Then a unique globally
stable state of the dynamics is found, although the identities
of free riders might change from one period to another. The
difference with our work is that we do not deal with a time-
dependent subsample of the population, but we use a global
mean field approach (possibly depending on the connectivity
of individuals) to describe the behavior of a static network.

In the remainder of this introduction we present the
games we study and the dynamics we apply for equilibrium
refinement in detail, discuss the implications of such a
framework on the informational settings we are considering,
and summarize our main contributions.

1.1. Framework

1.1.1. Games. We consider a finite set of agents 𝐼 of cardinality𝑛, linked together in a fixed, undirected, exogenous network.
The links between agents reflect social interactions, and
connected agents are said to be “neighbors.” The network
is defined through a 𝑛 × 𝑛 symmetric matrix 𝐺 with null
diagonal, where 𝐺𝑖𝑗 = 1 means that agents 𝑖 and 𝑗 are
neighbors, while𝐺𝑖𝑗 = 0means that they are not. We indicate

with𝑁𝑖 the set of 𝑖’s neighbors; that is,𝑁𝑖 = {𝑗 ∈ 𝐼 : 𝐺𝑖𝑗 = 1},
where the number of such neighbors |𝑁𝑖| = 𝑘𝑖 is the degree of
the node.

Each player can take one of two actions 𝑋 = {0, 1},
with 𝑥𝑖 ∈ 𝑋 denoting 𝑖’s action. Hence, only pure strategies
are considered. In our context (particularly for the case of
substitutes), action 1 may be interpreted as cooperating and
action 0 as not doing so—or defecting. Thus, the two actions
are labeled in the rest of the paper as 𝐶 and 𝐷, respectively.
There is a cost 𝑐, where 0 < 𝑐 < 1, for choosing action 𝑥 = 1,
while action 𝑥 = 0 bears no cost.

In what follows we concentrate on two games, the
best-shot game and a coordination game, as representative
instances of strategic substitutes and strategic complements,
respectively. We choose specific examples for the sake of
being able to study analytically their dynamics. To define the
payoffs we introduce the following notation: 𝑥𝑁𝑖 = ∑𝑗∈𝑁𝑖 𝑥𝑗
is the aggregate action in𝑁𝑖 and 𝑦𝑖 = 𝑥𝑖 + 𝑥𝑁𝑖 .
(a) Strategic Substitutes: Best-Shot Game. This game was first
considered by Bramoullé and Kranton [14] as a model of
the local provision of a public good. As stated above, we
consider the discrete version,where there are only two actions
available, as in [4, 28]. The corresponding payoff function
takes the form

𝜋𝑖 = Θ𝐻 (𝑦𝑖 − 1) − 𝑐𝑥𝑖, (1)

whereΘ𝐻(⋅) is theHeaviside step functionΘ𝐻(𝑥) = 1 if 𝑥 ≥ 0
and Θ𝐻(𝑥) = 0 otherwise.
(b) Strategic Complements: Coordination Game. For our
second example, we follow Galeotti et al. [4] and consider
again a discrete version of the game, but now let the payoffs
of any particular agent 𝑖 be given by

𝜋𝑖 = (𝛼𝑥𝑁𝑖 − 𝑐) 𝑥𝑖. (2)

Assuming that 𝑐 > 𝛼 > 0, we are faced with a coordination
gamewhere, as discussed in [4], depending on the underlying
network and the information conditions, there can generally
be multiple equilibria.

1.1.2. Dynamics. Within the two games we have presented
above, we now consider evolutionary dynamics for players’
strategies. Starting at 𝑡 = 0 with a certain fraction 𝜌(0) =∑𝑖 𝑥𝑖(0)/𝑛 of players randomly chosen to undertake action𝑥 = 1, at each round 𝑡 of the game players collect their
payoff 𝜋(𝑡) according to their neighbors’ actions and the
kind of game under consideration. Subsequently, a fraction𝑞 of players update their strategy. We consider two different
mechanisms for strategy updating.

(a) Proportional Imitation (PI) [21, 22]. It represents a rule of
imitative nature in which player 𝑖 may copy the strategy of
a selected counterpart 𝑗, which is chosen randomly among
the 𝑘𝑖 neighbors of 𝑖. The probability that 𝑖 copies 𝑗’s strategy
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depends on the difference between the payoffs they obtained
in the previous round of the game:

P {𝑥𝑗 (𝑡) 󳨀→ 𝑥𝑖 (𝑡 + 1)}

= {{{{{
[𝜋𝑗 (𝑡) − 𝜋𝑖 (𝑡)]Φ if 𝜋𝑗 (𝑡) > 𝜋𝑖 (𝑡)
𝜖 otherwise,

(3)

whereΦ is a normalization constant that ensuresP{⋅} ∈ [0, 1]
and 0 ≤ 𝜖 < 1 allows for mistakes (i.e., copying an action that
yielded less payoff in the previous round). Note that because
of the imitation mechanism of PI, the configurations 𝑥𝑖 =1 ∀𝑖 and 𝑥𝑖 = 0 ∀𝑖 are absorbing states: the system cannot
escape from them and not even mistakes can reintroduce
strategies, as they always involve imitation. On the other
hand, it can be shown that PI is equivalent to the well-known
replicator dynamics in the limit of an infinitely large, well-
mixed population (equivalently, on a complete graph) [34,
35]. Aswas first put by Schlag [22], the assumption that agents
play a random-matching game in a large population and learn
the actual payoff of another randomly chosen agent, along
with a rule of action that increases their expected payoff, leads
to a probability of switching to the other agent’s strategy that is
proportional to the difference in payoffs. The corresponding
aggregate dynamics is like the replicator dynamics. See also
[36] for another interpretation of these dynamics in terms of
learning.

(b) Best Response (BR). This rule was introduced in [23, 24]
and has been widely used in the economics literature. BR
describes players that are rational and choose their strategy
(myopically) in order to maximize their payoff, assuming
that their neighbors will again do what they did in the last
round.This means that each player 𝑖, given the past actions of
their partners 𝑥𝑁𝑖(𝑡), computes the payoffs that he/she would
obtain by choosing action 1 (cooperating) or 0 (defecting) at
time 𝑡, respectively, 𝜋̃𝐶(𝑡) and 𝜋̃𝐷(𝑡).Then actions are updated
as follows:

P {𝑥𝑖 (𝑡 + 1) = 1} = {{{
1 − 𝜖 if 𝜋̃𝐶 (𝑡) > 𝜋̃𝐷 (𝑡)
𝜖 if 𝜋̃𝐶 (𝑡) < 𝜋̃𝐷 (𝑡) ;

P {𝑥𝑖 (𝑡 + 1) = 0} = {{{
𝜖 if 𝜋̃𝐶 (𝑡) > 𝜋̃𝐷 (𝑡)
1 − 𝜖 if 𝜋̃𝐶 (𝑡) < 𝜋̃𝐷 (𝑡)

(4)

and 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) if 𝜋̃𝐶(𝑡) = 𝜋̃𝐷(𝑡). Here again 0 ≤ 𝜖 < 1
represents the probability of making a mistake, with 𝜖 = 0
indicating fully rational players.

The reason to study these two dynamics is because they
may lead to different results as they represent very different
evolutions of the players’ strategies. In this respect, it is
important to mention that, in the case 𝜖 = 0, Nash equilibria
are stable by definition under BR dynamics and, vice versa,
any stationary state found by BR is necessarily a Nash
equilibrium. On the contrary, with PI this is not always true:
even in the absence of mistakes, players can change action

by copying better-performing neighbors, also if such change
leads to a decreasing of their payoffs in the next round.
Another difference between the two dynamics is the amount
of cognitive capability they assume for the players: whereas
PI refers to agents with very limited rationality, which imitate
a randomly chosen neighbor on the only condition that
he/she does better, BR requires agents with a much more
developed analytic ability.

1.1.3. Analytical and Informational Settings. Westudy how the
system evolves by either of these two dynamics, starting from
an initial random distribution of strategies. In particular, we
are interested in the global fraction of cooperators 𝜌(𝑡) =∑𝑖 𝑥𝑖(𝑡)/𝑛 and its possible stationary value 𝜌𝑠. We carry
out our calculations in the framework of a homogeneous
mean field (MF) approximation, which ismost appropriate to
study networks with homogeneous degree distribution 𝑃(𝑘)
like Erdös-Rényi random graphs [37]. The basic assumption
underlying this approach is that every player interacts with
an “average player” that represents the actions of his/her
neighbors. More formally, the MF approximation consists in
assuming that when a player interacts with a neighbor of
theirs, the action of such a neighbor is 𝑥 = 1 with probability𝜌 (and 𝑥 = 0 otherwise), independently of the particular pair
of players considered [38]. Loosely speaking, this amounts to
having a very incomplete information setting, in which all
players know only how many other players they will engage
with, and is reminiscent of that used by Galeotti et al. [4] for
their refinement of equilibria. However, the analogy is not
perfect and therefore, for the sake of accuracy, we donot dwell
any further on the matter. In any case, MF represents our
setup for most of the paper.

As an extension of the results obtained in the above con-
text, we also study the case of highly heterogeneous networks,
that is, networks with broad degree distribution 𝑃(𝑘), such
as scale-free ones [39]. In these cases in fact there are a
number of players with many neighbors (“hubs”) and many
players with only a few neighbors, and this heterogeneitymay
give rise to very different behaviors as compared to Erdös-
Rényi systems. Analytically, this can be done by means of
the heterogeneous mean field technique (HMF) [40] which
generalizes, for the case of networks with arbitrary degree
distribution, the equations describing the dynamical process
by considering degree-block variables grouping nodes within
the same degree. More formally, now when a player interacts
with a neighbor of theirs, the action of such a neighbor is𝑥 = 1 with probability 𝜌𝑘 (and 𝑥 = 0 otherwise) if 𝑘 is
the neighbor’s degree (𝜌𝑘 is the density of cooperators within
players of degree 𝑘). By resorting to this second perspective
we are able to gain insights on the effects of heterogeneity on
the evolutionary dynamics of our games.

1.2. Our Contribution. Within this framework, our main
contribution can be summarized as follows. In our basic
setup of homogeneous networks (described by themean field
approximation): for the best-shot game, PI leads to a station-
ary state in which all players play 𝑥𝑖 = 0, that is, to full
defection, which is however non-Nash as any player sur-
rounded by defectors would obtain higher payoff by choosing
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cooperation (at odds with the standard version of the public
goods game). This is the result also in the presence of
mistakes, unless the probability of errors becomes large, in
which case the stationary state is the opposite, 𝑥𝑖 = 1,
that is, full cooperation, also non-Nash. Hence, PI does not
lead to any refinement of the Nash equilibrium structure.
On the contrary, BR leads to Nash equilibria characterized
by a finite fraction of cooperators 𝜌𝑠, whereas, in the case
when players are affected by errors, this fraction coincides
with the probability of making an error as the mean degree
of the network goes to infinity. The picture is different for
the coordination game. In this case, PI does lead to Nash
equilibria, selecting the coordination in 0 below a threshold
value of 𝛼 and the opposite state otherwise. This threshold
is found to depend on the initial fraction 𝜌(0) of players
choosing 𝑥 = 1. Mistakes lead to the appearance of a
new possibility, an intermediate value of the fraction of
players choosing 1, and as before the initial value of this
fraction governs which equilibrium is selected. BR gives
similar results, albeit for the fact that a finite fraction of
1 actions can also be found even without mistakes, and
with mistakes the equilibria are not full 0 or 1 but there
is always a fraction of mistaken players. Finally, changing
the analytical setting by proceeding to the heterogeneous
mean field approach does not lead to any dramatic change
in the structure of the equilibria for the best-shot game.
Interestingly, things change significantly for coordination
games—when played on infinitely large scale-free networks.
In this case, which is the one where the heterogeneous mean
field should make a difference, equilibria with nonvanishing
cooperation are obtained for any value of the incentive to
cooperate (represented by the parameter 𝛼).

The paper is organized in seven sections including this
introduction. Section 2 presents our analysis and results for
the best-shot game. Section 3 deals with the coordination
game. In both cases, the analytical framework is that of the
mean field technique. After an overall analysis of global wel-
fare performed in Section 4, Section 5 presents the extensions
of the results for both games within the heterogeneous mean
field approach, including some background on the formalism
itself. Finally, Section 6 contains an assessment of the validity
of all these analytical findings in light of the results of
recent numerical simulations of the system described above,
and Section 7 concludes the paper summarizing our most
important findings concerning the refinement of equilibria
in network games and pointing to relevant open questions.

2. Best-Shot Game

2.1. Proportional Imitation. We begin by considering the case
of strategic substitutes when imitation of a neighbor is only
possible if he/she has obtained better payoff than the focal
player; that is, 𝜖 = 0 in (3). In that case, the main result is
the following.

Proposition 1. Within the mean field formalism, under PI
dynamics, when 𝜖 = 0 the final state for the population is
the absorbing state with a density of cooperators 𝜌 = 0 (full
defection) except if the initial state is full cooperation.

Proof. Working in a mean field context means that individu-
als are well-mixed, that is, every player interacts with average
players. In this case the differential equation for the density
of cooperators 𝜌 is

̇𝜌𝑞 = (1 − 𝜌) 𝜌P𝐷→𝐶 − 𝜌 (1 − 𝜌)P𝐶→𝐷. (5)

The first term is the probability (1 − 𝜌)𝜌 of picking a
defector with a neighboring cooperator, times the probability
of imitationP𝐷→𝐶. The second term is the probability 𝜌(1 −𝜌) of picking a cooperator with a neighboring defector,
times the probability of imitation P𝐶→𝐷. In the best-shot
game a defector cannot copy a neighboring cooperator (who
has lower payoff by construction), whereas, a cooperator
eventually copies one of his/her neighboring defectors (who
has higher payoff). Hence P𝐷→𝐶 = 0 and P𝐶→𝐷 is equal to
the payoff difference 1 − (1 − 𝑐) = 𝑐. Since the normalization
constant Φ = 1 for strategic substitutes, (5) becomes

̇𝜌𝑞 = −𝑐𝜌 (1 − 𝜌) . (6)

The solution, for any initial condition 0 < 𝜌(0) < 1, is
𝜌 (𝑡) = {1 + [𝜌 (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 , (7)

hence 𝜌(𝑡) → 0 for 𝑡 → ∞: the only stationary state is full
defection unless 𝜌(0) = 1.
Remark 2. As discussed above, PI does not necessarily lead to
Nash equilibria as asymptotic, stationary states. This is clear
in this case. For any 𝜌(0) < 1 the population ends up in full
defection, even if every individual player would be better off
by switching to cooperation. This phenomenon is likely to
arise from the substitutes or anticoordination character of the
game: in a context in which it is best to do the opposite of the
other players, imitation does not seem the best way for players
to decide on their actions.

Proposition 3. Within the mean field formalism, under PI
dynamics, when 𝜖 ∈ (0, 1) the final state for the population is
the absorbing state 𝜌 = 0 (full defection) when 𝜖 < 𝑐, 𝜌 = 𝜌(0)
when 𝜖 = 𝑐, and 𝜌 = 1 when 𝜖 > 𝑐. When the initial state is𝜌(0) = 0 or 𝜌(0) = 1, it remains unchanged.

Proof. Equation (5) is still valid, with P𝐶→𝐷 unchanged,
whereas,P𝐷→𝐶 = 𝜖. By introducing the effective cost 𝑐 = 𝑐−𝜖
we can rewrite (7) as

𝜌 (𝑡) = {1 + [𝜌 (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 . (8)

Hence 𝜌(𝑡) → 0 for 𝑡 → ∞ only for 𝑐 > 0 (𝜖 < 𝑐) and instead
for 𝑐 = 0 (𝜖 = 𝑐) then 𝜌(𝑡) ≡ 𝜌(0) ∀𝑡, and for 𝑐 < 0 (𝜖 > 𝑐)
then 𝜌(𝑡) → 1 for 𝑡 → ∞ (cooperation is favored now).

Remark 4. As before, PI does not drive the population to a
Nash equilibrium, independently of the probability ofmaking
a mistake. However, mistakes do introduce a bias towards
cooperation and thus a new scenario: when their probability
exceeds the cost of cooperating, the whole population ends
up cooperating.
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2.2. Best Response. We now turn to the case of the best
response dynamics, which (at least for 𝜖 = 0) is guaranteed
to drive the system towards Nash equilibria. In this scenario,
we have not been able to find a rigorous proof of our main
result, but we canmake some approximations in the equation
that support it. As we will see, our main conclusion is that,
within the mean field formalism under BR dynamics, when𝜖 = 0 the final state for the population is a mixed state 𝜌 = 𝜌𝑠,0 < 𝜌𝑠 < 1, for any initial condition.

Indeed, for BR dynamics without mistakes, the homoge-
neous mean field equation for ̇𝜌 is

̇𝜌𝑞 = −𝜌𝑄 [𝜋𝐶 < 𝜋𝐷] + (1 − 𝜌)𝑄 [𝜋𝐶 > 𝜋𝐷] , (9)

where the first term is the probability of picking a cooperator
who would do better by defecting, and the second term is
the probability of picking a defector who would do better
by cooperating. This far, no approximation has been made;
however, these two probabilities cannot be exactly computed
and we need to estimate them.

To evaluate the two probabilities, we can recall that 𝜋𝐶 =1 − 𝑐 always, whereas 𝜋𝐷 = 0 when none of the neighbors
cooperates and 𝜋𝐷 = 1 otherwise. Therefore, for an average
player of degree 𝑘 we have that 𝑄𝑘[𝜋𝐶 > 𝜋𝐷] = (1 − 𝜌)𝑘.
Consistently with the mean field framework we are working
on, as a rough approximation, we can assume that every
player has degree 𝑘 (the average degree of the network), so
that𝑄[𝜋𝐶 > 𝜋𝐷] = 1 −𝑄[𝜋𝐶 < 𝜋𝐷] = (1 − 𝜌)𝑘. Thus, we have

̇𝜌𝑞 = (1 − 𝜌)𝑘 − 𝜌. (10)

To go beyond this simple estimation, we can work out a
better approximation by integrating 𝑄𝑘[𝜋𝐶 > 𝜋𝐷] over the
probability distribution of players’ degrees 𝑃(𝑘). For Erdös-
Rényi random graphs, in the limit of large populations (𝑛 →
∞), it is 𝑃(𝑘) ≃ 𝑘𝑘𝑒−𝑘/𝑘!. This leads to 𝑄[𝜋𝐶 > 𝜋𝐷] = 𝑒−𝑘𝜌
and, subsequently,

̇𝜌𝑞 = 𝑒−𝑘𝜌 − 𝜌. (11)

Remark 5. The precise asymptotic value for the density of
cooperators, 𝜌𝑠, depends on the approximation considered
above. However, at least for networks that are not too inho-
mogeneous, the approximations turn out to be very good,
and therefore the corresponding picture for the evolution of
the population is quite accurate. It is interesting to note that,
whatever its exact value, in both cases 𝜌𝑠 is such that the right-
hand sides of (10) and (11) vanish and, furthermore, 𝜌𝑠 is an
attractor of the dynamics, because 𝑑( ̇𝜌)/𝑑𝜌|𝜌𝑠 < 0.

How is the above result modified by mistakes? When 𝜖 ∈(0, 1), (9) becomes

̇𝜌𝑞 = 𝑄 [𝜋𝐶 < 𝜋𝐷] {−𝜌 (1 − 𝜖) + (1 − 𝜌) 𝜖}
+ 𝑄 [𝜋𝐶 > 𝜋𝐷] {(1 − 𝜌) (1 − 𝜖) − 𝜌𝜖}

= 𝑄 [𝜋𝐶 < 𝜋𝐷] (−𝜌 + 𝜖)
+ 𝑄 [𝜋𝐶 > 𝜋𝐷] (1 − 𝜌 − 𝜖) ,

(12)

where the first term accounts for cooperators rightfully
switching to defection and defectors wrongly selecting coop-
eration, while the second term accounts for defectors cor-
rectly choosing cooperation and cooperators mistaken to
defection. Proceeding as before, and again in the limit 𝑛 →
∞, we approximate 𝑄[𝜋𝐶 > 𝜋𝐷] = 𝑒−𝑘𝜌, thus arriving at

̇𝜌𝑞 = (1 − 2𝜖) 𝑒−𝑘𝜌 − (𝜌 − 𝜖) (13)

from which it is possible to find the attractor of the dynamics𝜌𝑠. Such attractor in turn exists if

𝜖 < (1 + 𝑘−1𝑒𝑘𝜌𝑠)
2 , (14)

a threshold that is bounded below by 1/2, which would
be tantamount to players choosing their action at random.
Therefore, all reasonable values for the probability of errors
allow for equilibria.

Remark 6. To gain some insight on the cooperation levels
arising from BR dynamics in the Nash equilibria, we have
numerically solved (13). The values for 𝜌𝑠 are plotted in
Figure 1 for different values of 𝜖, as a function of 𝑘. We
observe that the larger the 𝑘, the lower the cooperation
level. The intuition behind such result is that the more the
connections that every player has, the lower the need to
play 1 to ensure obtaining a positive payoff. It could then be
thought that this conclusion is reminiscent of the equilibria
found for best-shot games in [4], which are nonincreasing
in the degree. However, this is not the case, as in our work
we are considering an iterated game that can perfectly lead
to high degree nodes having to cooperate. Note also that
this approach leads to a definite value for the density of
cooperators in the Nash equilibrium, but there can be many
action profiles for the player compatible with that value, so
multiplicity of equilibria is reduced but not suppressed.

Remark 7. From Figure 1 it is also apparent that as the
likelihood of mistakes increases, the density of cooperators
at equilibrium increases. Note that for very large values of the
connectivity 𝑘, (13) has solution 𝜌(𝑡) = 𝜌(0)𝑒−𝑞𝑡 + 𝜖, and thus𝜌𝑠 ≡ 𝜖, in agreementwith the fact that when a player hasmany
neighbors he/she can assume that a fraction 𝜖 of them will
cooperate, thus turning defection into his/her BR.

3. Coordination Game

We now turn to the case of strategic complements, exem-
plified by our coordination game. As above, we start from
the case without mistakes, and we subsequently see how they
affect the results.
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Figure 1: Best-shot game under BR dynamics in the mean field
framework. Shown are the asymptotic cooperation values 𝜌𝑠 versus
the average degree 𝑘 for different values of the probability of making
a mistake 𝜖. Values are obtained by numerically solving (13).

3.1. Proportional Imitation

Proposition 8. Within the mean field formalism, under PI
dynamics, when 𝜖 = 0 the final state for the population is
the absorbing state with a density of cooperators 𝜌 = 0 (full
defection) when 𝛼 < 𝛼𝑐 ≡ 𝑐/[𝑘𝜌(0)], and the absorbing state
with 𝜌 = 1 when 𝛼 > 𝛼𝑐. In the case 𝛼 = 𝛼𝑐 both outcomes are
possible.

Proof. Still within our homogeneous mean field context, the
differential equation for the density of cooperators 𝜌 is again
(5). As we are in the case in which 𝜖 = 0, we have that
P𝐷→𝐶 = (𝜋𝐶 − 𝜋𝐷)𝑄[𝜋𝐶 > 𝜋𝐷]/Φ and P𝐶→𝐷 = (𝜋𝐷 −𝜋𝐶)𝑄[𝜋𝐶 < 𝜋𝐷]/Φ = −(𝜋𝐶 − 𝜋𝐷)(1 − 𝑄[𝜋𝐶 > 𝜋𝐷])/Φ, where
for strategic complementsΦ = 𝛼𝑘max. Given that 𝜋𝐷 = 0 and
that, consistently with our MF framework, 𝜋𝐶 = 𝛼𝑘𝜌 − 𝑐, we
find

̇𝜌𝑞 = 𝜌 (1 − 𝜌) (𝛼𝑘𝜌 − 𝑐)
Φ = 𝑐𝜌 (1 − 𝜌) (𝜌/𝜌𝑐 − 1)

Φ , (15)

where we have introduced the values 𝜌𝑐 = 𝜌(0)[𝛼𝑐/𝛼] and𝛼𝑐 ≡ 𝑐/[𝑘𝜌(0)].
It is easy to see that 𝜌 = 𝜌𝑐 is an unstable equilibrium, aṡ𝜌 < 0 for 𝜌 < 𝜌𝑐 and ̇𝜌 > 0 for 𝜌 > 𝜌𝑐. Therefore, we have

two different cases: when 𝛼 > 𝛼𝑐 then 𝜌𝑐 < 𝜌(0) and the final
state is full cooperation (𝜌 = 1), whereas when 𝛼 < 𝛼𝑐 then𝜌𝑐 > 𝜌(0) and the outcome is full defection (𝜌 = 0). When𝛼 ≡ 𝛼𝑐 then 𝜌𝑐 ≡ 𝜌(0), so both outcomes are in principle
possible.

Remark 9. The same (but opposite) intuition we discussed
in Remark 2 about the outcome of PI on substitute games
suggests that imitation is indeed a good procedure to choose

actions in a coordination setup. In fact, contrary to the case
of the best-shot game, in the coordination game PI does
lead to Nash equilibria, and indeed it makes a very precise
prediction: a unique equilibrium that depends on the initial
density. Turning around the condition for the separatrix, we
have 𝜌(0) < 𝑐/(𝑘𝛼); that is, when few people cooperate
initially then evolution leads to everybody defecting, and
vice versa. In any event, having a unique equilibrium (except
exactly at the separatrix) is a remarkable achievement.

Remark 10. In a system where players may have different
degrees, while full defection is always a Nash equilibrium
for the coordination game, full cooperation becomes a Nash
equilibrium only when 𝛼 > 𝑐/𝑘min, where 𝑘min is the smallest
degree in the network—whichmeans that only networkswith𝑘min > 𝑐/𝛼 > 1 feature a fully cooperative Nash equilibrium.

When 𝜖 ∈ (0, 1), the problem becomes much more
involved and we have not been able to prove rigorously our
main result. In fact, now we haveP𝐷→𝐶 = (𝜋𝐶 − 𝜋𝐷)𝑄[𝜋𝐶 >𝜋𝐷]/Φ + 𝜖𝑄[𝜋𝐶 < 𝜋𝐷] and P𝐶→𝐷 = (𝜋𝐷 − 𝜋𝐶)𝑄[𝜋𝐶 <𝜋𝐷]/Φ + 𝜖𝑄[𝜋𝐶 > 𝜋𝐷]. Equation (15) thus becomes

̇𝜌𝑞 = 𝜌 (1 − 𝜌){𝑐 (𝜌/𝜌𝑐 − 1)
Φ + 𝜖 (1 − 2𝑄 [𝜌 > 𝜌𝑐])} , (16)

where we have used 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝛼𝑘𝜌 > 𝑐] = 𝑄[𝜌 >𝜌𝑐]. We then have three different cases which we can treat
approximately:

(i) When 𝜌 ≃ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1/2 and (16) reduces
to (15); that is, we would recover the result for the case
with no mistakes.

(ii) When 𝜌 ≫ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1 and (16) can be
rewritten as

̇𝜌𝑞 = 𝜌 (1 − 𝜌) ( 𝑐Φ + 𝜖)( 𝜌𝜌+ − 1) (17)

with 𝜌+ = 𝜌𝑐(1 + Φ𝜖/𝑐) > 𝜌𝑠. This value 𝜌+ leads to an
unstable equilibrium; in particular, ̇𝜌 < 0 for 𝜌 < 𝜌+
so that 𝜌 → 𝜌𝑐 and hence (16) holds.

(iii) Finally when 𝜌 ≪ 𝜌𝑐, then𝑄[𝜌 > 𝜌𝑐] ≃ 0 and (16) can
be rewritten as

̇𝜌𝑞 = 𝜌 (1 − 𝜌) ( 𝑐Φ − 𝜖)( 𝜌𝜌− − 1) (18)

with 𝜌− = 𝜌𝑐(1 − Φ𝜖/𝑐) < 𝜌𝑠. As before, 𝜌− gives an
unstable equilibrium, because ̇𝜌 < 0 for 𝜌 > 𝜌− so that
again 𝜌 → 𝜌𝑐 where (16) holds.

Remark 11. In summary, the region 𝜌− < 𝜌 < 𝜌+ becomes a
finite basin of attraction for the dynamics. Note that when𝜖 > 𝑐/(𝛼𝑐𝑘max), then 𝜌+ = 𝜌(0) has no solution and 𝜌𝑐
becomes the attractor in the whole 𝛼 space. Our analysis thus
shows that, for a range of initial densities of cooperators, there
is a dynamical equilibrium characterized by an intermediate
value of 𝜌, which is neither full defection nor full cooperation.
Instead, for small enough or large enough values of 𝜌(0), the
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system evolves towards the fully defective or fully cooperative
Nash equilibrium, respectively.

Remark 12. The intuition behind the result above could be
that mistakes can take a number of people away from the
equilibrium, be it full defection or full cooperation, and that
this takes place in a range of initial conditions that grows with
the likelihood of mistakes.

3.2. Best Response. Considering now the case of BR dynam-
ics, the case of the coordination game is no different from that
of the best-shot game and we cannot find rigorous proofs for
our results, althoughwe believe that we can substantiate them
on firm grounds. To proceed, for this case, (9) becomes

̇𝜌𝑞 = −𝜌 + 𝑄 [𝜋𝐶 > 0] , (19)

where we have taken into account that 𝜋𝐷 = 0 and 𝑄[𝜋𝐶 <𝜋𝐷] = 1 −𝑄[𝜋𝐶 > 𝜋𝐷]. Assuming that every node has degree𝑘, that is, a regular random network, it is clear that theremust
be at least [𝑐/𝛼] + 1 neighboring cooperators in order to have𝜋𝐶 > 𝜋𝐷. Thus

𝑄 [𝜋𝐶 > 𝜋𝐷] = 𝑄 [𝜋𝐶 > 0]
= 𝑘∑
𝑙=[𝑐/𝛼]+1

(𝑘
𝑙)𝜌𝑙 (1 − 𝜌)𝑘−𝑙 ,

̇𝜌𝑞 = −𝜌 + 𝑘∑
𝑙=[𝑐/𝛼]+1

(𝑘
𝑙)𝜌𝑙 (1 − 𝜌)𝑘−𝑙 .

(20)

Once again, the difficulty is to show that 𝜌𝑐 = 𝜌(0)(𝛼𝑐/𝛼) is
the unstable equilibrium. However, we can follow the same
approach used with PI and write 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝛼𝑘𝜌 > 𝑐] =𝑄[𝜌 > 𝜌𝑐]; that is, we approximate 𝑄[𝜋𝐶 > 0] as a Heaviside
step function with threshold in 𝜌𝑐. We then again have three
different cases as follows:

(i) If 𝜌 ≃ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1/2: we have ̇𝜌/𝑞 = −𝜌 +1/2 and the attractor becomes 𝜌 ≡ 1/2.
(ii) If 𝜌 ≫ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 1: we have ̇𝜌/𝑞 = −𝜌 + 1

and a stable equilibrium at 𝜌 ≡ 1.
(iii) Finally if 𝜌 ≪ 𝜌𝑐, then 𝑄[𝜌 > 𝜌𝑐] ≃ 0: we have ̇𝜌/𝑞 =−𝜌 and a stable equilibrium at 𝜌 ≡ 0.

Remark 13. As one can see, even without mistakes, BR equi-
libria with intermediate values of the density of cooperators
can be obtained in a range of initial densities. Compared to
the situation with PI, in which we only found the absorbing
states as equilibria, this points to the fact that more rational
players would eventually converge to equilibria with higher
payoffs. It is interesting to note that such equilibria could
be related to those found by Galeotti et al. [4] in the sense
that not everybody in the network chooses the same action;
however, we cannot make a more specific connection as
we cannot detect which players choose which action—see,
however, Section 5.2.2.

A similar approach allows some insight on the situation𝜖 > 0. We start again from (12), which now reduces to

̇𝜌𝑞 = − (𝜌 − 𝜖) + 𝑄 [𝜋𝐶 > 0] (1 − 2𝜖) . (21)

Approximating as before 𝑄[𝜋𝐶 > 0] ≃ 𝑄[𝜌 > 𝜌𝑐] we again
have the same three different cases.

(i) If 𝜌 ≃ 𝜌𝑐, then the attractor 𝜌 ≡ 1/2 is unaffected by
the particular value of 𝜖.

(ii) If 𝜌 ≫ 𝜌𝑐, then the stable equilibrium lies at 𝜌 ≡ 1− 𝜖.
(iii) If 𝜌 ≪ 𝜌𝑐, then the stable equilibrium is at 𝜌 ≡ 𝜖.

Remark 14. Adding mistakes to BR does not change dra-
matically the results, as it did occur with PI. The only
relevant change is that equilibria for low or high densities of
cooperators are never homogeneous, as there is a percentage
of the population that chooses the wrong action. Other than
that, in this case the situation is basically the same with a
range of densities converging to an intermediate amount of
cooperators.

4. Analysis of Global Welfare

Having found the equilibria selected by different evolutionary
dynamics, it is interesting to inspect their corresponding
welfare (measured in terms of average payoffs). We can again
resort to the mean field approximation to approach this
problem.

Best-Shot Game. In this case the payoff of player 𝑖 is given
by (1): 𝜋𝑖 = Θ𝐻(𝑦𝑖 − 1) − 𝑐𝑥𝑖. Within the mean field
approximation, for a generic player 𝑖 with degree 𝑘𝑖, we can
approximate the theta function asΘ𝐻(𝑦𝑖−1) ≃ 𝜌+(1−𝜌)[1−(1 − 𝜌)𝑘𝑖], where the first term is the contribution given by
player 𝑖 cooperating (𝑥𝑖 = 1), whereas the second term is the
contribution of player 𝑖 defecting (𝑥𝑖 = 0) and at least one of𝑖’s neighbors cooperating (𝑥𝑗 = 1 for at least one 𝑗 ∈ 𝑁𝑖). It
follows easily that

⟨𝜋⟩ = ∑
𝑘

𝑃 (𝑘) {𝜌 + (1 − 𝜌) [1 − (1 − 𝜌)𝑘] − 𝑐𝜌} . (22)

If 𝑃(𝑘) = 𝛿(𝑘 − 𝑘) (where 𝛿(⋅) stands for the Dirac delta
function), then ⟨𝜋⟩ = 1 − 𝑐𝜌 − (1 − 𝜌)𝑘+1, whereas, if
𝑃(𝑘) = 𝑘𝑘𝑒−𝑘/𝑘!, then ⟨𝜋⟩ = 1 − 𝑐𝜌 − (1 − 𝜌)𝑒−𝜌𝑘. We recall
that in the simple case where players do not make mistakes
(𝜖 = 0), PI leads to a stationary cooperation level 𝜌 ≡ 0,
which corresponds to ⟨𝜋⟩ = 0. On the other hand, with BR
the stationary value of 𝜌𝑠 is given by (10) or (11), both leading
to ⟨𝜋𝑠⟩ = 1−𝑐𝜌𝑠−𝜌𝑠(1−𝜌𝑠). As long as 𝜌𝑠 < 𝑐, it is ⟨𝜋𝑠⟩ > 1−𝑐
(the payoff of full cooperation). We thus see that under BR
players are indeed able to self-organize into states with high
values of welfare in a nontrivial manner: defectors are not too
many and are placed on the network to allow any of them to
be connected to at least one cooperator (and thus to get the
payoff 𝜋 = 1); this, together with cooperators having 𝜋 = 1−𝑐
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by construction, results in a state of higher welfare than full
cooperation.

Coordination Game. Now player 𝑖’s payoff is given by (2):𝜋𝑖 = (𝛼𝑥𝑁𝑖 −𝑐) 𝑥𝑖. Again within themean field framework we
approximate the term 𝑥𝑁𝑖 as 𝜌𝑘𝑖, and we immediately obtain

⟨𝜋⟩ = ∑
𝑘

𝑃 (𝑘) 𝜌 {𝛼𝜌𝑘 − 𝑐} = 𝜌 (𝛼𝜌𝑘 − 𝑐) . (23)

⟨𝜋⟩ is thus a convex function of 𝜌, which (considering that0 ≤ 𝜌 ≤ 1) attains its maximum value at 𝜌 = 0 when 𝛼 <𝛼𝜋 fl 𝑐/𝑘, and at 𝜌 = 1 for 𝛼 > 𝛼𝜋. Recalling that, in the
simple case 𝜖 = 0, with both PI and BR there are two different
stationary regimes (𝜌 → 0 for 𝛼 ≪ 𝛼𝑐 = 𝑐/[𝜌(0)𝑘] and 𝜌 →1 for 𝛼 ≫ 𝛼𝑐), we immediately see that for 𝛼 > 𝛼𝑐 > 𝛼𝜋
the stationary state 𝜌 = 1 maximizes welfare, and the same
happens for 𝛼 < 𝛼𝜋 with 𝜌 = 0. However, in the intermediate
region 𝛼𝜋 < 𝛼 < 𝛼𝑐, the stationary state is 𝜌 = 0 but payoffs
are not optimal.

5. Extension: Higher Heterogeneity
of the Network

In the two previous sections we have confined ourselves to
the case in which the only information about the network we
use is the mean degree, that is, how many neighbors players
do interact with on average. However, in many cases, we may
consider information on details of the network, such as the
degree distribution, and this is relevant as most networks
of a given nature (e.g., social) are usually more complex
and heterogeneous than Erdös-Rényi random graphs. The
heterogeneous mean field (HMF) [40] technique is a very
common theoretical tool [41] to deal with the intrinsic
heterogeneity of networks. It is the natural generalization
of the usual mean field (homogeneous mixing) approach
to networks characterized by a broad distribution of the
connectivity. The fundamental assumption underlying HMF
is that the dynamical state of a vertex depends only on its
degree 𝑘. In other words, all vertices having the same number
of connections have exactly the same dynamical properties.
HMF theory can be interpreted also as assuming that the
dynamical process takes place on an annealed network
[41], that is, a network where connections are completely
reshuffled at each time step,with the sole constraints that both
the degree distribution 𝑃(𝑘) and the conditional probability𝑃(𝑘 | 𝑘󸀠) (i.e., the probability that a node of degree 𝑘󸀠 has a
neighbor of degree 𝑘, thus encoding topological correlations)
remain constant.

Note that in the following HMF calculations we always
assume that our network is uncorrelated; that is, 𝑃(𝑘󸀠 |𝑘) = 𝑘󸀠𝑃(𝑘󸀠)/𝑘. This is consistent with our minimal infor-
mational setting, meaning that it represents the most natural
assumption we can make.

5.1. Best-Shot Game

5.1.1. Proportional Imitation. In this framework, considering
more complex network topologies does not change the results

we found before, and we again find a final state that is not a
Nash equilibrium, namely, full defection.

Proposition 15. In the HMF setting, under PI dynamics, when𝜖 = 0 the final state for the population is the absorbing state
with a density of cooperators 𝜌 = 0 (full defection) except if the
initial state is full cooperation.

Proof. TheHMF technique proceeds by building the 𝑘-block
variables: we denote by 𝜌𝑘 the density of cooperators among
players of degree 𝑘. The differential equation for the density
of cooperators 𝜌𝑘 is

̇𝜌𝑘𝑞 = (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠𝑃 (𝑘󸀠 | 𝑘)P𝑘𝑘󸀠𝐷→𝐶
− 𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑃 (𝑘󸀠 | 𝑘)P𝑘𝑘󸀠𝐶→𝐷.
(24)

The first term is the probability of picking a defector of
degree 𝑘 with a neighboring cooperator of degree 𝑘󸀠 times
the probability of imitation (all summed over 𝑘󸀠), whereas
the second term is the probability of picking a cooperator of
degree 𝑘 with a neighboring defector of degree 𝑘󸀠 times the
probability of imitation (again, all summed over 𝑘󸀠). For the
best-shot game when 𝜖 = 0, we have

P
𝑘𝑘󸀠

𝐶→𝐷 = 𝑐
P
𝑘𝑘󸀠

𝐷→𝐶 = 0
∀𝑘, 𝑘󸀠.

(25)

We now introduce these values in (24) and, using the
uncorrelated network assumption, we arrive at

̇𝜌𝑘𝑞 = −𝑐𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 = −𝑐 (1 − Θ) 𝜌𝑘, (26)

wherewe have introduced the probability to find a cooperator
following a randomly chosen link:

Θ fl ∑
𝑘󸀠

𝑘󸀠𝑃 (𝑘󸀠) 𝜌𝑘󸀠
𝑘 . (27)

The corresponding differential equation for Θ reads

Θ̇ = ∑
𝑘

𝑘𝑃 (𝑘) ̇𝜌𝑘𝑘 = −𝑞𝑐Θ (1 − Θ) , (28)

and its solution has the same form of (7):

Θ (𝑡) = {1 + [Θ (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 (29)

with Θ(0) ≡ 𝜌(0) as 𝜌𝑘(0) = 𝜌(0) ∀𝑘. Hence Θ(𝑡) → 0 for𝑡 → ∞ which implies 𝜌𝑘(𝑡) → 0 for 𝑡 → ∞ and ∀𝑘.
Remark 16. For the best-shot game with PI, the particular
formof the degree distribution does not change anything.The
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outcome of evolution still is full defection, thus indicating
that the failure to find a Nash equilibrium arises from the
(bounded rational) dynamics and not from the underlying
population structure. Again, this suggests that imitation is
not a good procedure for the players to decide in this kind
of games.

Proposition 17. In theHMF setting, under PI dynamics, when𝜖 ∈ (0, 1) the final state for the population is the absorbing state𝜌 = 0 (full defection) when 𝜖 < 𝑐, 𝜌 = 𝜌(0) when 𝜖 = 𝑐, and𝜌 = 1when 𝜖 > 𝑐.When the initial state is𝜌(0) = 0 or𝜌(0) = 1,
it remains unchanged.

Proof. Equation (24) is still valid, but now P𝑘𝑘
󸀠

𝐶→𝐷 = 𝑐 and
P𝑘𝑘

󸀠

𝐷→𝐶 = 𝜖 ∀𝑘, 𝑘󸀠. Again, using the uncorrelated network
assumption, and introducing the effective cost 𝑐 = 𝑐 − 𝜖, we
arrive at

̇𝜌𝑘𝑞 = −𝑐 (1 − Θ) 𝜌𝑘 + 𝜖Θ (1 − 𝜌𝑘) ,
Θ̇ = −𝑞𝑐Θ (1 − Θ) ,

(30)

and at the end at a solution of the same form of (29):

Θ (𝑡) = {1 + [Θ (0)−1 − 1] 𝑒𝑐𝑞𝑡}−1 (31)

withΘ(0) ≡ 𝜌(0). HenceΘ(𝑡) → 0 for 𝑡 → ∞ (which implies𝜌𝑘(𝑡) → 0) only for 𝑐 > 0 (𝜖 < 𝑐) and instead for 𝑐 = 0 (𝜖 = 𝑐)
then Θ(𝑡) ≡ Θ(0) (𝜌(𝑡) ≡ 𝜌(0)) ∀𝑡, and for 𝑐 < 0 (𝜖 > 𝑐) thenΘ(𝑡) → 1 for 𝑡 → ∞ (which implies 𝜌𝑘(𝑡) → 1).
5.1.2. Best Response. Always within the deterministic sce-
nario with 𝜖 = 0, for the case of best response dynamics the
differential equation for each of the 𝑘-block variables 𝜌𝑘 has
the same form as (9) above, where now to evaluate 𝑄𝑘[𝜋𝐶 >𝜋𝐷] we have to consider the particular values of neighbors’
degrees. As before, we consider the uncorrelated network case
and introduce the variable Θ from (27). We thus have

𝑄𝑘 [𝜋𝐶 > 𝜋𝐷] = [∑
𝑘󸀠

(1 − 𝜌󸀠𝑘) 𝑃 (𝑘󸀠 | 𝑘)]
𝑘

= (1 − Θ)𝑘 ,
̇𝜌𝑘𝑞 = −𝜌𝑘𝑄𝑘 [𝜋𝐶 < 𝜋𝐷]

+ (1 − 𝜌𝑘) 𝑄𝑘 [𝜋𝐶 > 𝜋𝐷]
= (1 − Θ)𝑘 − 𝜌𝑘.

(32)

The differential equation for Θ is thus

Θ̇𝑞 = −Θ + ∑
𝑘

(1 − Θ)𝑘 𝑘𝑃 (𝑘)
𝑘 (33)

whose solution depends on the form of degree distribution𝑃(𝑘). Nevertheless, the critical value Θ𝑠 such that the right-
hand side of (33) equals zero is also in this case the attractor
of the dynamics.
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Figure 2: Asymptotic value of the cooperator density for the best-
shot gamewith BR dynamics for Erdös-Rényi and scale-free random
graphs (with 𝑘min = 3 and varying 𝛾):Θ𝑠 (main panel) and 𝜌𝑠 (inset)
versus the average degree 𝑘, obtained by numerically solving (33).

Remark 18. In order to assess the effect of degree heterogene-
ity, we have plotted in Figure 2 the numerical solution for two
random graphs, an Erdös-Rényi graph with a homogeneous
degree distribution and a scale-free graph with a much more
heterogeneous distribution 𝑃(𝑘) = (𝛾 − 1)𝑘(𝛾−1)min /𝑘𝛾. In
both cases, the networks are uncorrelated so our framework
applies. As we can see from the plot, the results are not very
different, and they becomemore similar as the average degree
increases. This is related on one hand to the particular form
of Nash equilibria for strategic substitutes, where cooperators
are generally the nodeswith lowdegree and on the other hand
to the fact that the main difference between a homogeneous
and a scale-free 𝑃(𝑘) lies in the tail of the distribution. In this
sense, the nodes with the highest degrees (that can make a
difference) do not contribute to Θ𝑠 and thus their effects on
the system are negligible.

If we allow for the possibility of mistakes, the starting
point of the analysis is—for each of the 𝑘-block variables𝜌𝑘—the differential equation given by (9). Recalling that𝑄𝑘[𝜋𝐶 > 𝜋𝐷] = (1 − Θ)𝑘, we easily arrive at

̇𝜌𝑘𝑞 = 𝜖 − 𝜌𝑘 + (1 − 2𝜖) (1 − Θ)𝑘
Θ̇𝑞 = 𝜖 − Θ + (1 − 2𝜖)∑

𝑘

(1 − Θ)𝑘 𝑘𝑃 (𝑘)
𝑘 . (34)

A sufficient condition for the existence of a dynamical
attractor Θ𝑠 is 𝜖 < 1/2: also, in heterogeneous networks, all
reasonable values for the probability of errors allow for the
existence of stable equilibria.

5.2. Coordination Game. Unfortunately, for the coordina-
tion game, working in the HMF framework is much more
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complicated, and we have been able to gain only qualitative
but important insights on the system’s features. For the sake
of clarity, we illustrate only the deterministic case in which no
mistakes are made (𝜖 = 0).
5.2.1. Proportional Imitation. The average payoffs of cooper-
ating and defecting for players with degree 𝑘 are

𝜋𝑘𝐷 = 0 ∀𝑘;
𝜋𝑘𝐶 = 𝛼𝑘[∑

𝑘󸀠

𝑃 (𝑘󸀠 | 𝑘) 𝜌𝑘󸀠] − 𝑐 = 𝛼𝑘Θ − 𝑐, (35)

where Θ is the same as defined in (27).
We then use our starting point for the HMF formalism,

(24), where now the probabilities of imitation are

P
𝑘𝑘󸀠

𝐷→𝐶 = (𝜋𝑘󸀠𝐶 − 𝜋𝑘𝐷)𝑄 [𝜋𝑘󸀠𝐶 > 𝜋𝑘𝐷]
Φ

= (𝛼𝑘󸀠Θ − 𝑐)𝑄𝑘󸀠 [𝜋𝐶 > 0]
Φ

P
𝑘𝑘󸀠

𝐶→𝐷 = (𝜋𝑘󸀠𝐷 − 𝜋𝑘𝐶)𝑄 [𝜋𝑘󸀠𝐷 > 𝜋𝑘𝐶]
Φ

= −(𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]}
Φ .

(36)

Once again within the assumption of an uncorrelated net-
work, we find

Φ ̇𝜌𝑘𝑞 = (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠 𝑘
󸀠𝑃 (𝑘󸀠)

𝑘 (𝛼𝑘󸀠Θ − 𝑐)

⋅ 𝑄𝑘󸀠 [𝜋𝐶 > 0] + 𝜌𝑘∑
𝑘󸀠

(1 − 𝜌𝑘󸀠) 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 (𝛼𝑘Θ − 𝑐)

⋅ {1 − 𝑄𝑘 (𝜋𝐶 > 0)} .

(37)

In the second term we can carry out the sum over 𝑘󸀠, which
yields ∑𝑘󸀠(1 − 𝜌𝑘󸀠)𝑘󸀠𝑃(𝑘󸀠)/𝑘 = 1 − Θ. We are now ready to
write the differential equation for Θ:

Φ𝑘Θ̇𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) ̇𝜌𝑘𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) (1 − 𝜌𝑘)∑
𝑘󸀠

𝜌𝑘󸀠

⋅ 𝑘󸀠𝑃 (𝑘󸀠)
𝑘 (𝛼𝑘󸀠Θ − 𝑐)𝑄𝑘󸀠 [𝜋𝐶 > 0] + ∑

𝑘

𝑘𝑃 (𝑘)
⋅ 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]} .

(38)

Carrying out the summation over 𝑘 in the first term (which
results again in 1 − Θ), and relabeling 𝑘󸀠 as 𝑘, we are left with

Φ𝑘Θ̇𝑞 = ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐)𝑄𝑘 [𝜋𝐶 > 0]
+ ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) {1 − 𝑄𝑘 [𝜋𝐶 > 0]}

= ∑
𝑘

𝑘𝑃 (𝑘) 𝜌𝑘 (1 − Θ) (𝛼𝑘Θ − 𝑐) = (1 − Θ)

⋅ Θ[𝛼∑
𝑘

𝑘2𝑃 (𝑘) 𝜌𝑘 − 𝑐𝑘] .
(39)

Finally, introducing the new variable

Θ2 fl ∑
𝑘󸀠

(𝑘󸀠)2 𝑃 (𝑘󸀠) 𝜌𝑘󸀠
𝑘 (40)

we arrive at

ΦΘ̇𝑞 = (1 − Θ)Θ (𝛼Θ2 − 𝑐) . (41)

Remark 19. While is it difficult to solve (41) in a self-
consistent way, qualitative insights can be gained by defining𝛼𝑐(𝑡) = 𝑐/Θ2(𝑡), and by rewriting (41) as Θ̇(𝑡) ≃ 𝛼/𝛼𝑐(𝑡) − 1
(the term (1 − Θ)Θ ≥ 0 always and thus can be discarded).
Now, starting from the beginning of the game at 𝑡 = 0, the
initial conditions {𝜌𝑘(0)} univocally determine the value ofΘ2(0) and thus of 𝛼𝑐(0). For 𝛼 < 𝛼𝑐(0), Θ̇(0) < 0 and𝜌 decreases. Because of this, in the next time step 𝑡 = 1
we have on average that Θ2(1) < Θ2(0), meaning 𝛼𝑐(1) >𝛼𝑐(0) > 𝛼: Θ̇(1) < 0 again and 𝜌 keeps decreasing. By
iterating such a reasoning, we conclude that in this case the
stable equilibrium is Θ = 0. Symmetrically, for 𝛼 > 𝛼𝑐(0),
the attractor becomes Θ = 1, and the transition between
the two regimes lies at 𝛼 ≡ 𝛼𝑐(0). Note that Θ2 is basically
the second momentum of the degree distribution, where
each degree 𝑘 is weighted with the density 𝜌𝑘. Recalling that𝑘2 may diverge for highly heterogeneous networks (e.g., it
diverges for scale-free networks with 𝛾 < 3), and that for
the coordination game cooperation is more favorable for
players with many neighbors (hence 𝜌𝑘 ≃ 1 for high 𝑘), we
immediately see that in these casesΘ2 diverges as well (as the
divergence is given by nodes with high degree). Thus, while
at the transition point the product 𝛼𝑐Θ2 remains finite (and
equal to 𝑐), 𝛼𝑐 → 0 to compensate for the divergence of Θ2
(Figure 3).We can conclude that, in networkswith broad𝑃(𝑘)
and in the limit 𝑛 → ∞, cooperation emerges also when the
incentive to cooperate (𝛼) vanishes.This is likely to be related
to the fact that as the system size goes to infinity, so does
the number of neighbors of the largest degree nodes. This
drives hubs to cooperate, thus triggering a nonzero level of
global cooperation. However, if the network is homogeneous,
neither 𝑘2 nor Θ2 diverge, so that 𝛼𝑐 remains finite and the
fully defective state appears also in the limit 𝑛 → ∞.

5.2.2. Best Response. For BR dynamics, we would have to
begin again from the fact that the differential equation for
each of the 𝑘-block variables 𝜌𝑘 has the same form of
(19). We would then need to evaluate 𝑄𝑘[𝜋𝐶 > 0] =∑𝑘𝑙=[𝑐/𝛼]+1 ( 𝑘𝑙 ) [∑𝑘󸀠 𝜌𝑘󸀠𝑃(𝑘󸀠 | 𝑘)]𝑙[1 − ∑𝑘󸀠 𝜌𝑘󸀠𝑃(𝑘󸀠 | 𝑘)]𝑘−𝑙 =
∑𝑘𝑙=[𝑐/𝛼]+1 ( 𝑘𝑙 )Θ𝑙(1−Θ)𝑘−𝑙. As in the homogeneous case, such
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Figure 3: Coordination game with PI dynamics for scale-free
networks (with 𝛾 = 2.5, 𝑘min = 3, and 𝑘max = √𝑛): stationary
cooperation levels 𝜌∞ versus 𝛼Θ2 for various system sizes 𝑛. The
vertical solid line identifies the critical value of 𝛼𝑐Θ2 = 𝑐.

expression is difficult to treat analytically. Alternatively, we
can perform the approximation of setting 𝑄𝑘[𝜋𝐶 > 0] =𝑄[𝛼𝑘Θ > 𝑐]; that is, we approximate 𝑄𝑘[𝜋𝐶 > 0] with a
Heaviside step function with threshold in Θ = 𝑐/(𝛼𝑘). This
leads to

̇𝜌𝑘𝑞 = −𝜌𝑘 for 𝑘 < 𝑐(𝛼Θ) (42)

̇𝜌𝑘𝑞 = −𝜌𝑘 + 1 for 𝑘 > 𝑐(𝛼Θ) (43)

Θ̇𝑞 = −Θ + ∑
𝑘>𝑐/(𝛼Θ)

𝑘𝑃 (𝑘)
𝑘 (44)

and to the following self-consistent equation for the equilib-
rium Θ𝑠:

Θ𝑠 = ∑
𝑘>𝑐/(𝛼Θ𝑠)

𝑘𝑃 (𝑘)
𝑘 (45)

whose solution strongly depends on the form of degree dis-
tribution𝑃(𝑘). Indeed, if the network is highly heterogeneous
(e.g., a scale-free network with 2 < 𝛾 < 3), it can be shown
that Θ𝑠 is a stable equilibrium whose dependence on 𝛼 is of
the formΘ𝑠 ∼ 𝛼(𝛾−2)/(3−𝛾); that is, there exists a nonvanishing
cooperation level Θ𝑠 no matter how small the value of 𝛼.
However, if the network is more homogeneous (e.g., 𝛾 > 3),Θ𝑠 becomes unstable and for 𝛼 → 0 the system always
falls in the fully defective Nash equilibria. Another important
characterization of such system comes from considering (42)
and (43): we have 𝜌𝑘(𝑡) → 0when 𝑘 < 𝑐/(𝛼Θ𝑠) and 𝜌𝑘(𝑡) → 1
for 𝑘 > 𝑐/(𝛼Θ𝑠). In this sense, we find a qualitative agreement

between the features of our equilibria and those found by
Galeotti et al. [4], inwhich players’ actions show amonotonic,
nondecreasing dependence on their degrees.

6. Comparison with Numerical Simulations

Before discussing and summarizing our results, one ques-
tion that arises naturally is whether, given that mean field
approaches are approximations in so far as they assume
interactions with a typical individual (or classes of typical
individuals), our results are accurate descriptions of the real
dynamics of the system.Therefore, in this section, we present
a brief comparison of the analytical results we obtained above
with those arising from a complete program of numerical
simulations of the system recently carried out by us, whose
details can be found in [42] (along with many additional
findings on issues that cannot be analytically studied). In this
comparison, we focus on the scenario in which mistakes are
not allowed (𝜖 = 0) as it, being deterministic, allows for a
meaningful comparison of theory and simulations without
extra effects arising perhaps from poor sampling.

Concerning the best-shot game, numerical simulations
fully confirm our analytical results. With PI, the dynamical
evolution is in perfect agreement with that predicted by both
MF and HMF theory—which indeed coincide when (as in
our case) 𝜌𝑘(𝑡 = 0) does not depend on 𝑘. Simulations
and analytics agree well also when the dynamics is BR:
The final state of the system is, for any initial condition, a
Nash equilibrium with cooperators ratio 𝜌𝑠 (which decreases
for increasing network connectivity). Yet, the 𝜌𝑠 solution oḟ𝜌 = 0 from (13) slightly underestimates the one found in
simulations—probably because of the approximation made
in computing the probabilities𝑄 of (9). Notwithstanding this
minor quantitative disagreement, we can safely confirm the
validity of our analytical results.

On the other hand, the agreement between theory and
simulations is also good for coordination games with PI
dynamics. On homogeneous networks, numerical simula-
tions show an abrupt transition from full defection to full
cooperation as 𝛼 crosses a critical value 𝛼𝑇. The MF theory
is thus able to qualitatively predict the behavior of the
system; furthermore, while 𝛼𝑇 is somewhat smaller than
the 𝛼𝑐 predicted by the theory, simulations also show that𝛼𝑇 → 𝛼𝑐 in the infinite network size, which implies that
for reasonably large systems our analytical predictions are
accurately fulfilled. Finally, simulations cannot find other
Nash equilibrium (with intermediate cooperation levels) than
full defection, again as predicted by the MF calculations. On
heterogeneous networks instead, simulations show a smooth
crossover between full defection and full cooperation, and
the point at which the transition starts (𝛼𝑇) tends to zero
as the system size grows. Therefore, the most important
prediction of HMF theory, namely, that the fully defective
state disappears in the large size limit (a phenomenon not
captured by the simple MF approach), is fully confirmed
by simulations. Finally, concerning BR dynamics for coordi-
nation games, we have a similar scenario: in homogeneous
networks, simulations allow finding a sharp transition at𝛼𝑇 from full defection to full cooperation, featuring many
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nontrivial Nash equilibria (all characterized by intermediate
cooperation levels) in the transient region. This behavior,
together with𝛼𝑇 → 𝛼𝑐 in the infinite network size, agrees well
with the approximate theoretical results. Heterogeneous net-
works instead feature a continuous transition, and it appears
from numerical simulations that—in the infinite network
size—a Nash equilibrium with nonvanishing cooperation
level exists no matter how small the value of 𝛼, exactly as
predicted by the HMF calculations.

We can conclude that the set of analytical results we are
presenting in this paper provides, in spite of its approximate
character, a very good description of the evolutionary equi-
libria of our two prototypical games, particularly so when
considering the more accurate HMF approach.

7. Conclusion

In this paper, we have presented two evolutionary approaches
to two paradigmatic games on networks, namely, the best-
shot game and the coordination game as representatives,
respectively, of the wider classes of strategic substitutes and
complements. As we have seen, using the MF approximation
we have been able to prove a number of rigorous results
and otherwise to get good insights on the outcome of the
evolution. Importantly, numerical simulations support all
our conclusions and confirm the validity of our analytical
approach to the problem.

Proceeding in order of increasing cognitive demand, we
first summarize what we have learned about PI dynamics,
equivalent to replicator dynamics in awell-mixed population.
For the case of the best-shot game, this dynamics has proven
unable to refine the set of Nash equilibria, as it always leads
to outcomes that are not Nash. On the other hand, the
asymptotic states obtained for the coordination game are
Nash equilibria and constitute indeed a drastic refinement,
selecting a restricted set of values for the average cooperation.
We believe that the difference between these results arises
from the fact that PI is imitative dynamics and in a context
such as the best-shot game, in which equilibria are not
symmetric, this leads to players imitating others who are
playing “correctly” in their own context but whose action
is not appropriate for the imitator. In the coordination
game, where the equilibria should be symmetric, this is
not a problem and we find equilibria characterized by a
homogeneous action. Note that imitation is quite difficult
to justify for rational players (as humans are supposed to
act), because it assumes bounded rationality or lack of
information leaving players no choice but copying others’
strategies [22]. Indeed, imitation is much more apt to model
contexts as biological evolution, where payoffs are interpreted
as reproductive successeswithin natural selection [43].Under
this interpretation, in the best-shot game, for instance, it is
clear that a cooperator surrounded by defectors would die
out and be replaced by the offspring of one of its neighboring
defectors.

When going to a more demanding evolutionary rule,
BR does lead by construction to Nash equilibria—when
players are fully rational and do not make mistakes. We
are then able to obtain predictions on the average level of

cooperation for the best-shot game but still many possible
equilibria are compatible with that value. Predictions are less
specific for the coordination game, due to the fact that—in an
intermediate range of initial conditions—different equilibria
with finite densities of cooperators are found. The general
picture remains the same in terms of finding full defection or
full cooperation for low or high initial cooperation, but the
intermediate region is much more difficult to study.

Besides, we have probed into the issue of degree hetero-
geneity by considering more complex network topologies.
Generally speaking, the results do not change much, at least
qualitatively, for any of the dynamics applied to the best-shot
game.The coordination game is more difficult to deal with in
this context but we were able to show that when the number
of connections is very heterogeneous, cooperation may be
obtained even if the incentive for cooperation vanishes. This
vanishing of the transition point is reminiscent of what
occurs for other processes on scale-free networks, such as
percolation of epidemic spreading [41]. Interestingly, our
results are in contrast with [15], in the sense that—for our
dynamical approach—coordination games are more affected
by the network (and are henceforth more difficult to tackle)
than anticoordination ones.

Finally, a comment is in order about the generality of our
results.We believe that the insight on howPI dynamics drives
the two types of games studied here should be applicable in
general; that is, PI should lead to dramatic reductions of the
set of equilibria for strategic complements, but is likely to be
off and produce spurious results for strategic substitutes, due
to imitation of inappropriate choices of action. On the other
hand, BR must produce Nash equilibria, as already stated,
leading to significant refinements for strategic substitutes
but to only moderate ones for strategic complements. This
conclusion hints that different types of dynamics should be
considered when refining the equilibria of the two types
of games, and raises the question of whether a consistently
better refinement could be found with only one dynamics. In
addition, our findings also hint to the possible little relevance
of the particular network considered on the ability of the
dynamics to cut down the number of equilibria. In this
respect, it is important to clarify that while our results should
apply to a wide class of networks going from homogeneous
to extremely heterogeneous, networks with correlations,
clustering, or other nontrivial structural properties might
behave differently. These are relevant questions for network
games that we hope will attract more research in the near
future.

Abbreviations

PI: Proportional imitation
BR: Best response
MF: Homogeneous mean field
HMF: Heterogeneous mean field.
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[33] D. López-Pintado, “Public goods in directed networks,” Eco-
nomics Letters, vol. 121, no. 2, pp. 160–162, 2013.

[34] H. Gintis, Game Theory Evolving, Princeton University Press,
Princeton, NJ, USA, 2009.

[35] D. K. Levine andW. Pesendorfer, “The evolution of cooperation
through imitation,” Games and Economic Behavior, vol. 58, no.
2, pp. 293–315, 2007.

[36] T. Börgers and R. Sarin, “Learning through reinforcement and
replicator dynamics,” Journal of Economic Theory, vol. 77, no. 1,
pp. 1–14, 1997.
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