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Abstract: As new as very promising technique, breath analysis allows for monitoring the biochemical processes 
that occur in human body in a non-invasive way. Nevertheless, the high costs for standard analytical 
instrumentation (i.e., gas chromatograph, mass spectrometer), the need for specialized personnel able to read the 
results and the lack of protocols to collect breath samples, set limit to the exploitation of breath analysis in clinical 
practice.  

Here, we describe the development of a device, named Wize Sniffer, which is portable and entirely based on 
low cost technology: it uses an array of commercial, semiconductor gas sensors and a widely employed open 
source controller, an Arduino Mega2560 with Ethernet module. In addition, it is very easy-to-use also for non-
specialized personnel and able to analyze in real time the composition of the breath. The Wize Sniffer is composed 
of three modules: signal measurement module, signal conditioning module and signal processing module. The 
idea was born in the framework of European SEMEiotic Oriented Technology for Individual's CardiOmetabolic 
risk self-assessmeNt and Self-monitoring (SEMEOTICONS) Project, in order to monitor individual's lifestyle by 
detecting in the breath those molecules related to the noxious habits for cardio-metabolic risk (alcohol intake, 
smoking, wrong diet). Nonetheless, the modular configuration of the device allows for changing the sensors 
according to the molecules to be detected, thus fully exploiting the potential of breath analysis. 
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1. Introduction 

 
Its un-obtrusiveness and its inherent safety make 

breath analysis a very promising technique in 
healthcare diagnostics. On one hand, it enables the 
monitoring of biochemical processes: the volatile 
organic compounds (VOCs) from the metabolic 
processes are generated within the body, travel via the 
blood, participate to the alveolar exchanges and appear 
in exhaled breath; on the other hand, breath is easily 
and non-invasively accessible [1-3]. In human breath, 
more than 200 volatile molecules have been identified 

and assessed. Some of such molecules were correlated 
to various diseases such as diabetes, oxidative stress, 
lung cancer, gastrointestinal diseases, etc. [2], [4-5]. 
For instance, exhaled pentane and ethane were 
investigated as lipid per-oxygenation product in case 
of oxidative stress [6]; isoprene (the major 
hydrocarbon present in human breath) was suggested 
to be linked with cholesterol synthesis [7] and cardiac 
output [8]; breath ammonia may be a useful 
biomarkers both for the evaluation of clinical 
treatments in case of renal diseases [9-10] and for 
monitoring the level of severity in case of liver 
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diseases [11]. Nonetheless, despite its great potential, 
the use of breath analysis in clinical diagnostic is 
limited because of the costs of the specific, high 
accurate standard instrumentation (i.e., gas 
chromatograph, mass spectrometer) and the need of 
expert personnel to perform the analysis, which also 
are very time consuming [9].  

Formerly designed for broader applications 
(environmental gases monitoring, for instance), in 
recent years the idea of exploiting e-noses also for 
clinical applications has been arisen [12]. Since they 
are able to perform breath gas analysis in real time, in 
many studies they have been employed in different 
fields of medicine: in oncology, for instance, to 
monitor volatile biomarkers related to cancer [13], in 
infectiology [14], in respiratory medicine to evaluate 
asthma [15]. Nevertheless, the majority of such  
e-noses exploit very expensive technology [16-17] or 
requires complex circuitry [18-19]. 

By developing the Wize Sniffer (WS) [20-22], here 
presented, we aimed to overcome all  
these limitations:  
• it is a portable device for the real time monitoring 

of a set of breath molecules; 
• it is based on low cost technology: the employed 

gas sensors are commercial, semiconductor-based 
and easily embeddable in the circuitry; a widely 
employed open source controller, an Arduino 
Mega2560, reads and processes raw data; 

• the WS is very easy to use, also for non-specialized 
personnel. In addition, it is designed in order to 
send breath analysis results also to a remote care 
center. 
The WS was conceived in the framework of 

SEMEOTICONS European Project [23]. It aimed to 
develop the Wize Mirror, an interactive platform 
having the appearance of a mirror, able to assess 
individual’s well-being state by detecting in the human 
face all those signs related to cardio-metabolic risk 
[24-25]. The WS was designed to be a Wize Mirror’s 
tool for detecting in human breath the molecules 
related to those noxious habits for cardio-metabolic 
risk: alcohol intake, wrong diet and smoking. 
Nonetheless, we aimed to design a device which could 
work also in a stand-alone configuration. Not only: 
thanks to the modular architecture, the WS can detect 
other volatile compounds simply by changing the gas 
sensor array. 

In the paper, Section 2 lists the VOCs detected by 
the WS and describes the device’s general 
architecture; Section 3 reports the WS functionality 
tests and the different data analysis approaches.  
 

 

2. The Wize Sniffer, How it Works 
 

By developing the WS, we aimed to design a 
portable, easy to use device which could be useful for 
user’s health self-monitoring and self- surveillance, 
also in home environment. In addition, we exploited 
low-cost technology in order to promote its purchase 
and use. 

2.1. Harmful Molecules for Cardio-metabolic 
Risk  

 
Within the WS, an array of semiconductor-based 

gas sensors is able to detect those breath VOCs 
considered as indices of noxious habits for cardio-
metabolic risk: 
• Carbon monoxide (CO). More than 5000 

compounds in cigarette smoke are dangerous. CO, 
in particular, decreases the amount of oxygen that 
is carried in the red blood cells. It also increases the 
amount of cholesterol that is deposited into the 
arteries; 

• Ethanol (C2H6O). Moderate ethanol consumption, 
in healthy subjects, reduces stress and increases 
feelings of happiness and well-being, and may 
reduce the risk of coronary heart disease. Heavy 
consumption of alcohol, instead, causes addiction 
and leads to an accumulation of free radicals into 
the cells, causing oxidative stress. 
In addition, the device can also provide useful 

information about metabolism, carbohydrates 
adsorption and vascular status by detecting: 
• Oxygen and carbon dioxide (O2 and CO2): the 

amount of O2 which is retained in the body, and the 
one of CO2 which is produced as a by-product, can 
be considered as a measure of the metabolism; 

• Hydrogen (H2): it is related to the carbohydrates 
breakdown in the intestine and in the oral cavity by 
anaerobic bacteria; 

• Hydrogen sulfide (H2S): it is a vascular relax 
agent; it has a therapeutic effect in hypertension. 

 
 
2.2. Wize Sniffer, Hardware and Software 
 

In Fig. 1, WS’ hardware is shown. The user blows 
once into a disposable mouthpiece, placed at the 
beginning of a corrugated tube. A flowmeter allows 
for calculating the volume of the exhaled gases. A heat 
and moisture exchanger (HME) filter absorbs the 
water vapor present in exhaled breath, reducing the 
humidity which affects semiconductor gas sensors’ 
behavior. The core of the WS is the signal 
measurement module that is the sensor array, 
composed of six semiconductor-based gas sensors, 
placed within the gas sampling box (made up of ABS 
and Delrin and whose capacity is 600 ml according to 
the tidal volume [26]). Other two gas sensors work in 
flowing regime by means of a sampling pump, which 
injects the gases from the sampling box at a fixed rate 
(120 ml/sec). Within the gas sampling box also a 
sensor for temperature and humidity (Sensirion 
SHT11) is placed. Sensors’ outputs are pre-processed 
by a signal conditioning module: a series of voltage 
buffer amplifiers transfers sensors’ signal from the 
measurement module to the micro-controller board, an 
Arduino Mega2560 with Ethernet module (which is 
low cost, widely employed and has an open source 
integrated development environment).  
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Fig. 1. Wize Sniffer's hardware: a) External configuration; 
b) Internal configuration. 

 
 

At the end of a breath test, a flushing pump 
“purges” the sampling box to recovery the sensors’ 
steady state. 

In Table 1, all the gas sensors are listed. Our choice 
was to employ metal oxide semiconductor (MOS)-
based gas sensors, manufactured by Figaro 
Engineering. If, on one hand, humidity strongly affects 
their behavior, and cross-sensitivity makes these 
sensors be non-selective [27], on the other hand they 
have long life, strong sensitivity and rapid recovery; in 
addition, they are low cost (20-30 Euro on average) 
and easy to be integrated in the circuitry.  

 
 

Table 1. MOS-based gas sensors integrated in the Wize 
Sniffer’s measurement module. 

 
Detected 
molecule 

Sensor 
Best detection 

range 

Carbon monoxide 
MQ7 

TGS2620 
20-20 ppm 

50-5000 ppm 

Ethanol 
TGS2602 
TGS2620 

1-10 ppm 
50-5000 ppm 

Carbon dioxide TGS4161 0-40000 ppm 

Oxygen MOX20 0-16 % 

Hydrogen sulfide TGS2602 1-10 ppm 

Hydrogen 

TGS821 
TGS2602 
TGS2620 

MQ7 

10-5000 ppm 
1-10 ppm 

50-5000 ppm 
20-200 ppm 

Ammonia 
TGS2444 
TGS2602 

1-100 ppm 
1-50 ppm 

 
 

The aim of developing a device which could be 
useful as a stand-alone device for user’s health self-
monitoring, also in home environment, is evident 
about software implementation. We implemented a 
client-server architecture in order to send breath data 
also to a remote personal computer. It means that, after 
performing a test and processing the results, the 
device, thanks to an internet connection and a 
communication protocol, can send the results to the 
family doctor, for instance. For this purpose, Arduino 
is programmed to process sensors’ raw data and to 
execute a daemon on port 23. By implementing a 
Telnet server, it waits a command line from the remote 
personal computer and provides the data. 

Finally, in Fig. 2, WS’ operation modes are shown. 
In the smaller picture, the WS is working as a Wize 
Mirror’s tool. In the other picture, the WS is working 
as a stand-alone device.  

 
 

 
 

Fig. 2. The two Wize Sniffer's operation modes: as a Wize 
Mirror’s tool (on the left) and as a stand-alone device  

(on the right). 
 
 

3. Wize Sniffer Functionality Tests and 
Data Analysis 

 
Breath analysis performed by low-cost technology 

based gas sensors is a great challenge. If, on one hand, 
semiconductor-based gas sensors are low cost, robust 
and very simple to integrate in the circuitry, on the 
other hand, their behavior is strongly affected by 
humidity and cross-sensitivity. 

Indeed, often each sensor may be not selective for 
one volatile compound only, but it may be sensitive to 
a broader set VOCs. As a consequence, the estimation 
of the breath molecules’ concentration is an arduous 
challenge.  

Moreover, breath gases are something extremely 
variable: breath composition may vary according to 
heart rate, breath flow rate [28], posture [29], ambient 
air [30], lung volume [31], breath sampling mode [32]. 
Exhaled breath is affected by a strong inter-variability 
(among different subjects), and also by a marked intra-
variability (relative to the same subject). 

As summarized in Fig. 3, we have to face first with 
an uncertainty of measure relative to those factors that 
affect the gas sensors’ behavior; then, we have also an 
uncertainty due to all the physiological conditions that 
influence breath composition. For instance, in our 
case, also factors such as BMI [33], sex, age may 
influence ethanol’s concentration in breath. 
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Fig. 3. All the influencing factors (in the circles) related 
to breath analysis performed by semiconductor-based 

gas sensors. 
 
 

3.1. Sensitivity Tests on Gas Sensors 
 

In order to better understand and assess MOS-
based gas sensors’ behavior we  

1) Investigated their response to a variation  
in humidity;  

2) Investigated their sensitivity in precise 
measurement conditions (3 °C+/-7 %, 70 % RH+/-5 %, 
that are the ones that occur in the sampling box during 
a breath test, as shown in Fig. 4);  

3) Investigated how the several breath molecules 
influence each other in the chemical interaction with 
the sensors’ sensing element. 

 
 

 
 

Fig. 4. Temperature and relative humidity in the gas 
sampling box when a breath test is performed. 

 
 

Calculating the sensors’ humidity drift is useful to 
potentially compensate it during the data processing. 
Fig. 5 shows how the humidity strongly affects 
sensors’ output (in this case the one of MQ7 gas 
sensor). The relationship between humidity and 
sensors’ output generally can be modeled by means of 
a power law (Eq. (1): 

, (1) 
 
where a, b and c are the constants. We considered the 
entire range of humidity variation (for instance, 50 %-
55 %RH in the case of MQ7, as shown in Fig. 5) and 
then we calculated the slope of the curves. Based on 
the slope, drift coefficients were assessed (see  
Table 2) as the decrease in sensors’ output (Volt) per 
unit decrease in humidity, as given in Eq. (2): 
 

 (2) 
 
 

 
 

Fig. 5. MQ7 output when a rise in humidity occurs. 
 
 

Table 2. Sensors’ drift due to humidity. 
 

Sensor 
ΔV/Δ hum 

(mV) 
MQ7 296 

TGS2620 60 
TGS2602 82 
TGS821 120 
TGS244 84 

 
 

By keeping the humidity constant, sensors’ output 
will depend on the gas concentration only. For this 
purpose, we investigated the sensors’ output in 
response to a well-known gases concentration. The 
sensors were put into a vial. The humidity into the vial 
was kept at 70 % RH+/-5 % by means of a saturated 
solution of NaCl placed on the bottom; then, we 
injected well-known gases concentration and 
registered sensors’ output. The raw sensors’ output 
were read by an Arduino Mega2560 connected via 
serial port to a personal computer. The experimental 
data were displayed in real time on the computer 
screen and stored as text files for later processing.  

Just as example, in Fig. 6, we can see TGS2620 
output when well-known concentration of carbon 
monoxide (CO), ethanol (C2H6O) and hydrogen (H2) 
were separately injected into the vial. Also in this case, 
the relationship between sensors’ output and gases 
concentration can be modeled by means of an equation 
similar to Eq. (1).  

Nevertheless, when a breath analysis is performed, 
a mixture of gases spreads into the gas sampling box 

cbhumahumfVout +== )^(*)(

humVSd ΔΔ= /
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and chemically interacts with the sensors. In this case, 
the phenomenon known as cross sensitivity makes 
these sensors non selective. In Fig. 7, we can see 
TGS2620 response when well-known mixed 
concentrations of the same three gases (carbon 
monoxide, ethanol and hydrogen) were injected into 
the vial at the same time.  

 
 

 
 

Fig. 6. TGS2620 output when well-known concentrations 
of CO, H2 and C2H6O were separately injected into the vial. 

 
 

 
 

Fig. 7. TGS2620 output when well-known mixed 
concentrations of CO (blue plot), C2H6O (green plot) 

and H2 (red plot) were injected into the vial. 
 
 

In this way, how the different VOCs add together 
and influence gas sensors’ output can be understood. 
The single gas contribution can be modeled by a power 
law (Eq. (1) but each of them has its “weight” on the 
overall output. 
 
 

3.2. WS Functionality Test: the Clinical 
Validation 

 

The aim of the functionality tests was to assess 
WS’ performances, that means, if it was able to 

monitor and evaluate the individuals’ noxious habits 
for cardio-metabolic risk (smoke and alcohol intake in 
particular). 

For this purpose, as described in [22], the WS 
underwent a clinical validation in three research 
centers: CNR in Pisa and Milan, CRNH (Centre de 
Recherche en Nutrition Humaine) in Lyon. The 
campaign involved 77 volunteers overall, male and 
female, between 30-65 years of age, with different 
habits and lifestyles. People answered Audit and 
Fagerstrom tests, which respectively assessed their 
alcohol and smoke dependence, and other 
questionnaires about lifestyle in general. 

Considering the methodological issues about 
breath sampling [32], we drafted a protocol which 
considered the mixed expiratory air sampling, since 
our interest was focused on both endogenous and 
exogenous biomarkers. The subjects took a deep 
breath in, held the breath for 10 s, and then exhaled 
once into the corrugated tube trying to keep the 
expiratory flow constant and to completely empty their 
lungs.  

The study was approved by the Ethical Committee 
of the Azienda Ospedaliera Universitaria Pisana, 
protocol n.213/2014 approved on September 25th, 
2014; all patients provided a signed informed consent 
before enrollment. 

As mentioned before, MOS-based gas sensors 
are strongly affected by cross-sensitivity. Such 
characteristic makes the quantitative analysis of the 
detected VOCs very difficult.  

As a consequence, a more classical data analysis 
approach was used, based on multivariate methods of 
pattern recognition. Pattern recognition exploits 
sensors’ cross-correlation and helps to extract 
qualitative information contained in sensors’ outputs 
ensemble. Then, first Principal Component Analysis 
(PCA) was performed, in order to provide a 
representation of the data in a space of dimensions 
lower than the original sensors’ space. From an 
exploratory analysis of the data, the presence of 
clusters (see Fig. 8) can be observed. Then, a K-
nearest neighbor (KNN) classification algorithm, 
previously trained with the data collected during 
another acquisition campaign, was adopted to classify 
the subjects according to their habits: Healthy (that 
means, not in danger of cardio-metabolic diseases), 
Light Smoker, Heavy Smoker, Social Drinker, Heavy 
Drinker, LsSd (Light smoker and Social drinker), 
LsHd (Light smoker and Heavy drinker), HsSd 
(Heavy smoker and Social drinker), HsHd (Heavy 
smoker and Heavy drinker).  

The outcomes of the Audit and Fagerstrom 
questionnaires were our ground truth. The KNN 
classifier was able to correctly classify in 89.61 % of 
cases. Errors were probably due to TGS2602 and 
TGS2620 cross-sensitivity for hydrogen. In fact, for 
instance, three no-risk subjects were classified as 
social drinker probably because of high presence of 
hydrogen in their breath, which caused a rise in these 
sensors voltage output. 
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Fig. 8. First three principal components. 
The presence of several clusters can be observed. 

 
 

Then, the number of volunteers increased up to  
169 subjects. Such subjects were classified by 
clinicians into “low risk population”, “medium risk 
population”, “high risk population” and “very high 
risk population”, basing on the Risk Score (RS), that 
is, the sum of the scores relative to Audit (AS), 
Fagerstrom (FS) and lifestyle questionnaires, which 
were our ground truth also in this case.  

Also in this case, mixed expiratory air sampling 
method was used.  

Given the significant number of subjects, we tried 
to implement a method of data analysis which was able 
to predict subjects’ RS on the base of breath data. First, 
we extracted the value at the plateau from raw breath 
curves, which corresponds to the chemical equilibrium 
between the sensor’s sensing element and the volatile 
compounds. Then, sensors’ raw data were zero-
centered and normalized, thus putting in evidence their 
qualitative aspects. Then, also in this case, the 
principal components were extracted and the PC 
scores were plotted against the subjects’ RS, as shown 
in Fig. 9. 

As can be deduced from the colours (green points 
derive from no-risk subjects, the blue ones from low-
risk subjects, the yellow ones from medium risk 
subjects, the red ones from high risk subjects, the 
magenta ones from very high risk subjects), subjects’ 
RS are arranged in ascending order. Except for PC3, 
from a visual, exploratory analysis, we saw that the PC 
scores did not have a sharp increasing or decreasing 
linear trend with respect to RS, thus not having enough 
information to contribute to any prediction model. 
Such result matches the one reported in [34]. Being 
inspired by this study, we also implemented an 
Independent Component Analysis (ICA) on our data. 
ICA is a high-order transformation method for data 
representation which extracts independent component 
from the data set. If, on one hand, PCA exploits the 
real sensors’ cross-correlation, ICA originates from 
the assumption that the data has a non-Gaussian 

distribution, which often is a property of the gas 
sensors’ array measurement data [35]. 

 
 

 
 

Fig. 9. PC scores against subjects’ risk scores arranged 
in ascending order. 

 
 

In our case, breath signals and the environmental 
ones (noise) get mixed with each other before the 
chemical interaction with the sensor array. As a 
consequence, each sensor’s output is the result of a 
combination of different gaseous contributions. We 
applied FastICA algorithm to our data set, and plotted 
individual independent components (IC) against 
subjects’ RS. As shown in Fig. 10, in this case sharper 
linear trends emerge. 

Then, the data set was split into two data-set (train 
data set and validation data set) to build the prediction 
model, which was developed by means of the Matlab 
LinearModel Tool. Indeed, by using the independent 
components, a linear regression model was built to 
establish a relationship between the RS and the breath 
data pre-processed by ICA. Then, such model was 
validated by using the validation data set. In Fig. 11 
we can see that the correlation coefficient (r) between 
actual and estimated risk scores is 0.8976. 

 
 

4. Conclusions 
 

In this paper, we describe how breath analysis 
could be exploited for a simple self-monitoring by 
using a portable, low cost, very easy to use device that 
we developed and called Wize Sniffer. In the 
presented use case, the WS can provide the user with 
him/her risk score, thus helping to monitor his/her 
habits and potentially prevent his/her cardio-metabolic 
risk.  

The safety and the unobtrusiveness of the device 
allow for a daily monitoring which, even if without a 
real diagnostic meaning yet, could represent a pre-
screening, useful for an optimal selection of more 
standard medical analysis. 
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Fig. 10. IC scores against subjects’ risk scores arranged 
in ascending order. 

 
 

 
 

Fig. 11. Actual risk scores versus predicted ones. 
 
 

The core of our device is the array of MOS-based 
gas sensors. They are low cost, easy to be integrated in 
the circuitry, they have long life and rapid recovery 
time. Nonetheless, their use entails a very robust data 
processing because of the difficulty of discriminating 
the molecules’ contribution due to sensors’ cross 
sensitivity. Pattern recognition algorithms turn out the 
best way to overcome such problem.  

In addition, the WS modular configuration allows 
for changing the gas sensors according to the 
molecules (and then, to the related diseases) to be 
monitored. Such characteristic allows for using such 
device in broader applications. For instance, in future 
we will evaluate WS performances in the case of 
cirrhotic patients. In particular, we will exploit 
TGS2444 MOS-based sensor, selective to ammonia, 

to discriminate and monitor patients with acute  
liver diseases.  

In conclusion, we highlight the cooperation among 
scientists (clinicians, engineers, chemists, physicists, 
etc.) and big effort that should be encouraged in order 
to introduce breath analysis in clinical practice. 
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