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ABSTRACT
Tor hidden services allow offering and accessing various Internet

resources while guaranteeing a high degree of provider and user

anonymity. So far, most research work on the Tor network aimed

at discovering protocol vulnerabilities to de-anonymize users and

services. Other work aimed at estimating the number of available

hidden services and classifying them. Something that still remains

largely unknown is the structure of the graph defined by the net-

work of Tor services. In this paper, we describe the topology of the

Tor graph (aggregated at the hidden service level) measuring both

global and local properties by means of well-known metrics. We

consider three different snapshots obtained by extensively crawling

Tor three times over a 5 months time frame. We separately study

these three graphs and their shared “stable” core. In doing so, other

than assessing the renowned volatility of Tor hidden services, we

make it possible to distinguish time dependent and structural as-

pects of the Tor graph. Our findings show that, among other things,

the graph of Tor hidden services presents some of the character-

istics of social and surface web graphs, along with a few unique

peculiarities, such as a very high percentage of nodes having no

outbound links.
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1 INTRODUCTION
Research efforts on The Onion Router network (Tor) have recently

flourished, focusing on evaluating its security [8], understanding

its evolution [24], and discussing its thematic organization [38].

Nevertheless, the limited number of entry points to Tor on the

surface Web makes it difficult to fully uncover many of Tor’s char-

acteristics. In particular, despite some insights provided over the

last years [6, 15, 23, 36], few information are available regards the

topology and the volatility of the Tor network. In this study we ex-

ploit three sets of crawling data collected over three different time

frames to present a thorough analysis of the structural properties

of the graph of Tor Hidden Services (HS) that makes it possible to

tell apart persistent from variable characteristics.

Similarly to the surface WWW [12], the structure of the Tor HS

Web graph can be seen as an indicator of intrinsic characteristics

of the Tor network and of latent patterns of interactions among

Tor users. Since the work of Watts & Strogats [40] and Barabasi &

Albert [5] it has been widely recognized that the in-depth study of

the properties of the underlying graph is crucial for determining

behavioral and structural aspects of a complex system, and for

understanding and possibly explaining the emergence of specific

features in real world networks. Our efforts for identifying the

distinguishing traits of the topology of the Tor Web can therefore

be of great help to shed light on the usage patterns, the dynamics

and the vulnerabilities of the Tor network.

The paper also addresses the evolution of the Tor Web graph

showing the actual changes that take place in the quality and

quantity of available services and in the persistence of their inter-

connections over time. In particular, we provide a rich set of results

and discussions on deltas over time that allow for detailed reason-

ing on Tor Web connection/topological trends. To the best of our

knowledge there are no similar studies on the Tor Web. Our present

study, albeit limited as regards its timeframe, therefore provides

useful information and hints to foster further research in the area.

The rest of the paper is organized as follows: Section 2 reviews

background information and related work; Section 3 describes the

methodology used for collecting data, extracting the graphs and

studying their properties; Section 4 analyzes the obtained graphs

and details on results; Section 5 discusses in depth our findings,

in comparison with well-known graph models; finally, Section 6

draws conclusions and suggests directions for future work.
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2 BACKGROUND AND RELATEDWORK
Past research work on Tor has mainly been devoted to assess its

vulnerabilities. However, as a positive side effect, novel data and

insights on Tor services and network have been obtained.

Biryukov et. al. [8] in 2013 exploited a Tor vulnerability to collect

all hidden service descriptors in approximately 2 days using a mod-

est amount of resources. They found out that, while the contents

of Tor hidden services is rather varied, the most popular hidden

services were related to botnets. It is worth noticing that their ap-

proach cannot be reproduced, because they exploited a Tor bug

that was fixed in recent versions of the software.

In a previous work [6], we leveraged automated Tor network

exploration to the purpose of relating semantic content similarity

with Tor topology at the page, host, and service level. The present

work largely extends on both data collection and analysis over [6].

Also Ghosh et. al. [22] developed an automated tool to explore

the Tor network and analyze the contents of onion sites. Their

classification framework maps onion site content to a set of cate-

gories, and clusters services to categorize onion content. The main

difference with respect to our work is that they focus on page con-

tent/semantics, and do not consider network topology. Owen et.
al. [35], by operating 40 relays over a 6 month time frame, reported

over hidden services persistence, contents, and popularity. Their

aim was classifying services based on their content.

Similarly to our present work, Christin et. al. [15] collected crawl-
ing data on Tor hidden services over an 8 month lifespan. They

evaluated the evolution/persistence of such services over time, and

performed a study on the content and topology of the explored

network. The main difference with our present work is that the

Tor graph we explore is much larger, not being limited to a single

marketplace. In addition, we present here a more in depth evalua-

tion of the graph topology. De Domenico et. al. [17], used the data

collected in [4] to study the topology of the Tor network . They gave

a characterization of the topology of the Darknet and proposed a

generative model for the Tor network to study its resilience. Their

viewpoint is quite different from our own here, as they consider

the network at the autonomous system (AS) level.

Very recently Griffith et. al. [23] performed a topological analysis

of the Tor hidden services graph. They crawled the Tor network

using the commercial service scrapinghub.com, through the tor2web
proxy onion link. Interestingly, they reported that more than the

87% of Darkweb sites never link to another site. The main differ-

ence with our present work lies in both the extent of the explored

network (we collected a much more extensive dataset than that

accessible through tor2web) and the depth of the analysis of the

network itself (we evaluate a larger set of network characteristics).

Differently from the Literature on the Tor network, the topology

of the WWW has been the subject of a large number of studies

in the past. In this paper we also aim at comparing Tor network

characteristics with those of the surface Web, briefly surveyed

below.

Among randomgraphmodels suitable for the surfaceWeb [28],[10]

Kleinberg in particular [26] introduced algorithms for improved

Web search and automatic community discovery, thus providing

one of the first publicly known portraits of the Web graph. Klein-

berg also stressed that traditional random graph models, such as the

well-known Erdős-Rényi model [19] do not exhibit many properties

of the Web graph. Among other studies on the WWW, Broder et.
al. [12] discovered the heavy-tailed distribution of node degrees,

claiming a power-law distribution, and the presence of large hubs

along with a peculiar structure of the graph they called bow-tie.
Bearing in mind that the adopted crawling technique affects the

structure of the results, subsequent studies have somewhat reached

different results, [1, 18, 37]. In a recent work Meusel et. al. [30]
analyzed the structure of the WWW at different levels: pages, hosts

and pay-level domain. The last aggregation level can be seen as the

Tor service level and we will discuss similarities and differences of

their results compared to our findings on the Tor HS graph.

3 METHODOLOGY
In this Section we describe the methodology used for collecting

data, building the graphs and studying their properties.

3.1 Data Collection
We aim at characterizing the portion of the Tor Web that can be

accessed by using a customweb scraping procedure. Specifically, we

assembled a large root set by merging onion urls advertised on well-

known Tor wikis and link directories (e.g., “The Hidden Wiki”
1
), or

obtained from standard (e.g., Google) and Tor-specific (e.g., Ahmia)

search engines. Then, in the 5-month time frame between January

2017 and May 2017, we launched our customized crawler three

times and let each execution run for about six weeks. Thus, we

obtained three different “snapshots” of the Tor Web, denoted SNP1,

SNP2, and SNP3, respectively.

The numbers of our datasets, reported in Table 1, are comparable

to – and, as a matter of fact, greater than – similar studies in the

Literature [7, 23, 38]. Yet, if we refer to the statistics provided by

the Tor Project for the corresponding time window
2
, our crawls

only reached 25% to 35% of the total number of daily published

hidden services. It is not clear to which extent those estimates

are inflated by the existence of Tor-specific messaging services in

which each user is identified by a unique onion domain [23] and by

hidden services that do not host websites. In any case, reaching all

active onion urls is not arguably possible with ordinary resources
3

and, to the best of our knowledge, the present study is the widest

exploration of the Tor Web performed so far.

To access the Tor network and to collect data from hidden ser-

vices we evaluated different crawlers. In particular, we evaluated

the following alternatives: Apache Nutch
4
[25], Heritrix

5
[31]

and BUbiNG [9]. By considering criteria such as performance, con-

figurability and extensibility, we found BUbiNG to be the most

appropriate choice for our goals. BUbiNG is a high-performance,

scalable, distributed, open-source crawler, written in Java, and de-

veloped by the Laboratory for Web Algorithmics (LAW) part of the

Computer Science Department of the University of Milan. To allow

1
wikitjerrta4qgz4.onion

2
https://metrics.torproject.org/hidserv-dir-onions-seen.html?start=2017-01-

01&end=2017-05-01

3
Tor’s working principles make it possible to run a hidden service whose existence

is only known to the relays where the introductory points of that service are pub-

lished [34].

4
http://nutch.apache.org

5
https://webarchive.jira.com/wiki/display/Heritrix

106



Table 1: Outcomes of the three crawling processes.

Crawl End Date

# records per response type

2xx 3xx 4xx 5xx Total

SNP1 22/02/17 1821842 277813 197128 141205 2437989

SNP2 10/04/17 2339718 471519 262403 324552 3398192

SNP3 22/05/17 765876 393018 105406 67115 1331415

A status code 3xx is related to Web redirection

(https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Status codes 4xx and 5xx are error codes.

BUbiNG to operate in the Tor network (instead of the surface Web),

we used a HTTP Proxy configured with the SOCKS Proxy provided

by Tor. After testing some alternatives we chose privoxy
6
. In partic-

ular, we decided not to use polipo
7
that is often used in combination

with Tor, because it is no longer maintained and seemed unable to

correctly manage the format of some HTTP responses. During the

crawling phase we observed that some hidden services check the

user-agent of the requester and, if it does not match the last version

of the Tor Web browser, they reply with an error. This behavior had

to be taken into account when collecting data, to allow the crawler

to reach the largest possible portion of hidden services. Another

issue that raised during the crawling is the load of the Tor client, i.e.,
the software used to access Tor. We noticed that under stress (i.e.,
when too many requests are performed in parallel), the Tor client,

quite often, does not respond correctly, i.e., it maymistakenly report

that a hidden service is not available, even if the service is actually

up and running. The maximum load depends on the specifications

of the machine where the software runs, and we assessed it for our

configuration during the experimental phase.

3.2 Graph Extraction
For each one of the three snapshots we extracted the associated

directed Tor Service Graph (SG) aggregating pages at the service

level. To extract the graph we used the Graph Builder module of the

toolkit presented in [14]. In the SG, each node represents the set of

pages belonging to a hidden service, i.e., a Tor domain identified by

a sequence of 16 characters (base32 encoded).
8
In the SG an edge

connecting one hidden service to another represents the existence

of at least one page of the first service that contains a hypertextual

link to any page of the second service. Since we only analyzed onion

links, all surface web services and all edges from/to the surface web

have been ignored and have not been included in the graphs. We

believe including surface web nodes/links would have introduced

a bias in the Tor network analysis, due to the large difference in

scale between the two underlying graphs. Even just introducing

surface border nodes would have affected the analysis and it would

not have added relevant information.

6
https://www.privoxy.org

7
https://www.irif.fr/ jch/software/polipo/

8
In October/November 2017 a new generation of hidden services was introduced and

supported by the Tor browser. They are identified by character sequences of length 56

instead of the usual 16 (https://blog.torproject.org/tors-fall-harvest-next-generation-

onion-services). This change was introduced after our data collection period ended in

May 2017.

To further clarify how we built the graphs, let us consider the

following example, depicted in Figure 1. We found the hidden ser-

vice:

duskgytldkxiuqc6.onion

to host three pages:

duskgytldkxiuqc6.onion/comsense.html;

duskgytldkxiuqc6.onion/fedpapers/;

duskgytldkxiuqc6.onion/fedpapers/federa02.htm.

To represent these resources we use a single node in the SG.

duskgytldkxiuqc6.onion

duskgytldkxiuqc6.onion/comsense.html

duskgytldkxiuqc6.onion/fedpapers/

duskgytldkxiuqc6.onion/fedpapers/federa02.htm

Hidden Service

Pages

Figure 1: An example of graph construction

Besides the SGs of the three snapshots acquired with our crawls,

we considered a fourth graph representing Tor’s “stable core”. It

corresponds to the communal subgraph of SNP1, SNP2 and SNP3

induced by the edges that appear in all the three graphs.

3.3 Graph Analysis
As a first step towards the understanding of Tor dynamics, we

compare macroscopic features of the four graphs to assess the

persistence of Tor hidden services and of their connections. Next,

we characterize the four graphs on both a global and on a local

scale. Specifically, for each graph:

• We compute a set of global metrics, including measures of

centralization, transitivity and efficiency.

• We extract the in- and out-degree distribution and assess

whether these distributions follow a power law.

• We count the number of strongly connected components

and characterize the giant strongly connected component

(LSCC in the following).

• We consider several centrality measures, draw their distri-

bution and match them with one another.

• We provide and analyze a bow-tie decomposition of the

graphs under study.

Based on all gained pieces of information, we infer the general

structure of the four graphs, spotting differences and highlighting

common aspects that may be assumed to define the topology of

Tor hidden services. Additionally, we identify a small set of hidden

services that seem to play an especially important role in the graph

and, through direct examination, we aimed at explaining why. All

symbols and metrics used in the paper are summarized in Table 2.

4 RESULTS
In this Section we report and briefly comment the results of our

analysis.

4.1 Services Persistence
As showed by other studies [7, 8, 35], there is a huge variability in

the persistence of Tor hidden services. This must be carefully taken
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Table 2: Notations and definitions used throughout the
present paper.

Symbol Definition

G = (V ,E) Graph with vertex set V and edge set E
N Number of nodes: N = |V |
M Number of edges:M = |E |

D Density:
M

N (N−1)
δin Minimum in-degree

∆in Maximum in-degree

δout Minimum out-degree

∆out Maximum out-degree

⟨deg⟩ Average in/out-degree

ρ Assortativity: see (26) in [33]

Cin
In-degree centralization:

N ∗∆in−
∑
v∈V degin (v )

(N−1)2

Cout
Out-degree centralization:

N ∗∆out−
∑
v∈V degout (v )

(N−1)2

C
Global clustering coefficient:

# closed triplets

# all triplets

T1
Global transitivity of type 1:

#(u,v,w ): u→v∧v→w∧w→u
#(u,v,w ): u→v∧v→w

T2
Global transitivity of type 2:

#(u,v,w ): u→v∧u→w∧(v→w∨w→v )
#(u,v,w ): u→v∧u→w

σvu Number of shortest paths from v to u
σvu (t ) Number of shortest paths from v to u including t
dist (v,u) Shortest path length from v to u
d Diameter: maxv ∈V maxu ∈V dist (v,u)
rin Radius with in-paths: minv ∈V maxu ∈V dist (u,v )
rout Radius with out-paths: minv ∈V maxu ∈V dist (v,u)
⟨dist⟩ Average shortest path length

Ein
Global efficiency with in-paths:

1

N (N−1)
∑
u<v ∈V

1

d (v,u )

Eout
Global efficiency with out-paths:

1

N (N−1)
∑
u<v ∈V

1

d (u,v )

B Betweenness centrality: B(v ) =
∑
s,v,t ∈V

σst (v )
σst

PR PageRank: see [21]

into consideration in any attempt of characterizing the topology of

the Tor Web graph, because by scraping the Tor network we only

obtain a snapshot of the hidden services that were active at the

time the crawler issued a connection request. More generally, even

for the surface Web there is evidence that the crawling process may

affect the structure of the extracted graph, leading to incomplete

or wrong conclusions [29]. We therefore repeated the entire data

collection phase three times over five months in an effort to reduce

variance and guarantee the consistency of our results. As a side

benefit, we are able to further assess the renowned volatility of Tor

hidden services, other than possibly telling apart time dependent

from structural features of the Tor web graph.

As a starting point, Figure 2 shows how the total body of ac-

cessed hidden services is distributed across the three snapshots.

SNP2 clearly emerges as the largest dataset, but this is not surpris-

ing if we compare our results with the statistics provided by the

Tor Project
9
, that show a spike of published hidden services in the

second half of March 2017. We note that 10685 hidden services were

found by all three crawling runs, suggesting that these services

were durably present over the considered five month time frame.

This core set represents the 83.3% of services reached during SNP1,

the 42.2% of services reached during SNP2 and the 61.2% of services

reached during SNP3. We also see that all pairwise intersections

are not empty, meaning that during our data harvesting process

(at least) 1612 hidden services disappeared, 3066 new hidden ser-

vices appeared, and most notably, 76 hidden services reappeared

after having gone inactive at some point in time. There is also the

possibility that some of the hidden services that disappeared in

a snapshot were actually active but not reachable by our crawler,

for instance due to all paths to those services being temporarily

unavailable.

Figure 2: Services persistance over time: inner disc is SNP1,
middle disc is SNP2, outer disc is SNP3.

The question now arises of whether hidden services found in

two or more snapshots induce the same subgraph in the corre-

sponding snapshots. The answer, summarized in Table 3 by look-

ing at edge density, is no. As a consequence, if we aim at iden-

tifying the stable core of our dataset we should not just look at

durable hidden services, but we must refer to durable edges. The

total amount of durable edges turns out to be 28914, but some-

what surprisingly, one of these edges is isolated from the rest. The

common subgraph induced by the set of stable edges consists of

two weakly connected components: (i) a giant one, denoted CORE

graph in the following, composed of 7669 vertices and 28913 edges,

and (ii) a tiny one composed of a single edge connecting the hid-

den service violet77pvqdmsiy.onion to the hidden service type-

facew3ijwkgg.onion.

9
https://metrics.torproject.org/hidserv-dir-onions-seen.html?start=2017-01-

01&end=2017-05-01
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Table 3: Density of the subgraphs induced by different node-
sets intersections in different graphs.

Nodeset Density

in SNP1 in SNP2 in SNP3

SNP1 ∩ SNP2 0.000474 0.000461 nd

SNP1 ∩ SNP3 0.000588 nd 0.000507

SNP2 ∩ SNP3 nd 0.000516 0.000435

SNP1 ∩ SNP2 ∩ SNP3 0.000595 0.000584 0.000511

4.2 Global Metrics
The global properties of our four graphs (the three snapshots plus

the CORE graph) are summarized in Table 4 and in Table 5. As

already mentioned, there is a significant variance in the sizes N
and M of the three snapshots, which is however consistent with

publicly available aggregated statistics. A common aspect is the

lack of a very large hub gathering most of the connections, opposed

to the presence of a single vertex that links to, respectively, 44%,

51% and 61% of the whole network. By manual inspection, we found

that these onion urls are Tor link directories, not surprisingly. We

also checked that the hidden services with greater in- and/or out-

degree are generally persistent over the three snapshots, although

their rank in the top-degree chart may change. Yet, stability is not

a common property of all high-degree hidden services, in fact: (i)

SNP3 is the only graph including a vertex with in-degree 1464

(which explains the larger Cin of that graph), (ii) in the CORE

graph the ratios ∆in/N and ∆out /N are comparably smaller with

respect to the snapshots, and (iii) in general all parameters strictly

related to the presence of hidden services with large in- and/or out-

degree (D, ∆in , ∆out , ⟨deg⟩, ρ, Cin and Cout ) appear to be variable

over time. The vertex with in-degree 1464 is the hidden service

dhosting4okcs22v.onion that is a hosting service named Daniel’s
Hosting. Tor users can get a hosting account on the server of

the hidden service. The website specifies few rules regarding the

contents that can be hosted for the purpose of avoiding illegal

or offensive material. The same hidden service contains several

sections including a link directory, but each section is registered

with a different onion address, i.e., a different hidden service.

Transitivity and clustering coefficients are also variable across

time, but in this case the corresponding values for the CORE graph

are close to the average of the three snapshots, suggesting that the

variance is due to statistical fluctuations in the composition of a

network with many volatile nodes. In general the overall frequency

of triangles C is substantially in line with the average degree ⟨deg⟩

(as we will better discuss in Section 5), with cycles (T1) being more

frequent than other types of triangles (T2). The diameter d is stable

and logarithmic in N for all graphs, and the ratio of r and d suggests

a certain level of symmetry in the graph. The average shortest path

length ⟨dist⟩ is instead consistently smaller than log(N ), an im-

portant factor in determining to what extent the graph resembles

a random graph (again, more details will be given in Section 5).

Finally, the global efficiencies Ein and Eout , which should be com-

parable to 1/⟨dist⟩ in uniformly connected networks, are instead

diluted by the fact that many pairs of nodes are disconnected (i.e.,
have no paths connecting each other).

Table 4: Global metrics computed for the services graph of
each snapshot

metrics

Graph

SNP1 SNP2 SNP3 CORE

|V | 12829 25308 17460 7669

|E | 72556 113014 103402 28913

D 0.00044 0.00018 0.00034 0.00049

δin 1 1 1 0

∆in 204 262 1464 55

δout 0 0 0 0

∆out 5603 12852 10664 2670

⟨deg⟩ 5.65562 4.46554 5.92222 3.77011

ρ -0.319 -0.32655 -0.16206 -0.37393

Cin 0.01546 0.01018 0.08352 0.00668

Cout 0.43637 0.50769 0.6105 0.34775

C 0.00943 0.00407 0.00492 0.00873

T1 0.00617 0.00779 0.00253 0.00535

T2 0.0039 0.0016 0.00197 0.00356

d 10 12 10 10

rin 5 7 5 0

rout 0 0 0 0

⟨dist⟩ 3.79316 4.96028 3.66455 3.98291

Ein 0.00549 0.00386 0.02095 0.00371

Eout 0.00531 0.00366 0.01965 0.00318

Table 5: Snapshot Data Details

snp #scc LSCC size out-degree 0 in-degree 1

SNP1 12305 466 90.77% 17.478%

SNP2 24433 820 94.74% 43.15%

SNP3 15029 2371 83.32% 24.43%

CORE 7477 169 95.5% 25.09%

4.3 Degree and Centralities
To deepen our understanding of the structure of the Tor Web graph,

we now analyze the distribution of a few metrics that quantify the

importance of single vertices in the topology of the network and that

can be used to gain an insight into the dynamics and the information

flow in the graph. Many measures have been introduced in the last

50 years to understand who occupies critical, or central, positions
in a network [11]. We chose to focus on the in- and out-degree, the

PageRank and the betweenness centrality, which are among the

most commonly used to describe real-world graphs because they

respond to semantically different notions of “vertex centrality”. The

definition of PageRank and betweenness centrality is reported in

Table 2.

Figures 3a and 3b show the distributions of, respectively, in-

degree and out-degree for all four graphs on a log-log scale. Based

on Figure 3a, the in-degree distribution seems to follow a power law

decay at least for degrees lying in some intermediate range between

∼ 10 and∼ 60. This is not surprising: power law degree distributions

are typical in social and web networks, as we will better discuss
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in Section 5. To confirm this intuition, we fitted a power law to

the distribution using the statistical methods developed in [16].

In particular, we relied on the implementation provided by the

powerlaw python package [3]. powerlaw autonomously finds

a lower-bound kmin for degrees to be fitted, and tries to fit the

whole tail unless a context-driven upper-bound kmax is explicitly

provided by the user. We also used Fibonacci binning [39], as done

in a previous work about the surface WWW [29], to show how the

distribution looks like if a logarithmic binning is used to smoothen

the tail. Two aspects of the obtained fit must be underlined: (i) for

SNP2 and SNP3 the α exponent is greater than the threshold 3 that

is known to control the variance of the distribution, whereas for

SNP1 α is close to 2.9 and for the CORE graph it is 2.7; (ii) the kmin

returned by powerlaw is, respectively, 11, 16, 17 and 5, but the

vertices with in-degree greater than or equal to this kmin are only

1624 (∼ 12.67%) in SNP1, 1155 (∼ 4.56%) in SNP2 and 964 (∼ 5.52%)

in SNP3, whereas they are 1779 (∼ 23.20%) in the CORE graph,

which also has a shorter tail. Summing up, the in-degree provides a

further element in support of the intuition that the structure of the

CORE graph differs significantly from the snapshots.

Figure 3b makes apparent that the out-degree distribution does

not follow a power law. Yet, there are at least two remarkable

aspects in this distribution. On the one hand, vertices of out-degree

0 weight 83% up to 95%, according to the graph (this number is

reported only in the legend since k = 0 is cut-off by the log scale ).

In other words, a vast majority of Tor’s hidden services do not link

to any other hidden service. On the other hand, the distribution

has a long tail, meaning that the large value of ∆out observed

in Section 4.2 is not an isolated case, but rather an evidence of a

general trend. To better understand how easily the whole graph

can be explored from just a few starting points, in Figure 4 we plot

the cumulative percentage of the network that is at distance one

from the top out-degree vertices. We see that the top-3 and top-6

out-degree hidden services suffice to reach more than 90% of the

graph in just one click in SNP3 and SNP2 respectively. In SNP1

we need the top-20 out-degree hidden services to reach the same

percentage of the graph, whereas with the top-6 out-degree services

we reach 80% of the nodes. This phenomenon is less evident for the

CORE graph, albeit 10 hidden services still contain direct links to

more than 80% of the network.

Figures 3c and 3d show the distributions of, respectively, the

PageRank and the betweenness centrality for all four graphs on a

log-log scale. We opted for a log-log scale in order to make these

distributions directy comparable with the in- and out-degree, other

thanwith one another. This is especially important for the PageRank

because it has been shown that in many real-world networks (e.g.,
in scale-free networks) the PageRank distribution “mimics” the

in-degree distribution, following a power law with very similar

exponent [29]. According to the data points plotted in Figure 3c,

this may not seem to be the case for the Tor Web: although it has a

heavy tail the decay looks much faster than a power law. However,

since PageRank is a continuous metrics, a power law decay can

only be appreciated graphically when using a suitable binning. We

therefore proceeded exactly as for the in-degree by using powerlaw

to fit the distribution and by applying Fibonacci binning to have

a more reliable visual perspective. Unfortunately, the apparently

good fit plotted in Figure 3c only regards a minimal portion of

the graph: it is only valid for 723 vertices (∼ 5.64%) of SNP1, 772

vertices (∼ 3.05%) of SNP2, 298 vertices (∼ 1.71%) of SNP3 and just

113 vertices (∼ 1.47%) of the CORE graph. For what concerns the

betweenness centrality, in all four graphs the long tail and the fast

decay are accompanied by more than 90% of the vertices having

B (V ) = 0. This is not surprising since, by definition, all vertices

having out-degree 0 must have betweennes 0. Figure 3d partially

resembles Figure 3b, suggesting that due to the huge percentage of

sinks and to the greater imbalance of the out-degree with respect

to the in-degree, in the Tor Web the out-degree impacts on the

betweenness of a hidden service more that its in-degree. To confirm

or deny this intuition, and more generally to assess the level of

correlation between different centrality measures, in Figure 5 we

plot the pairwise comparison of (normalized) in-degree, out-degree,

PageRank and betweenness centrality.

4.4 Bow-Tie Structure
As commonly done to describe Web graphs [12], in Table 6 we

provide a bow-tie decomposition of our graphs compared with

previous results from the literature. Our findings broadly confirm

what emerged in [23], i.e., that the difference between the Tor Web

and the WWW is huge and well synthetized by two facts: the LSSC

is very small and it lies “on top” of everything else. However, with

respect to [23]we implemented amore thorough data collection that

brings to the light three novel features of the Tor Web. First, there

exists a nonempty set of active hidden services that are completely

disconnected from the rest of the graph. Second, the share of the

LSCC in the total size of the graph is significantly variable over

time, to the point that in SNP3 it is ∼ 4× larger than in the other

two snapshots. Finally, the structure of the CORE graph has a

few peculiarities: the IN component is non-empty, but instead it

is composed of a tiny set of 9 hidden services; the LSCC is even

smaller than in the snapshots; the DISCONNECTED component

is significanly larger, meaning that in general hyperlinks are more

volatile than hidden services.

4.5 Top Hidden Services by Centralities
Considering the pairwise comparison of in-degree, out-degree,

PageRank and betweenness of each hidden service shown in Fig-

ure 5, we observed that the most interesting services are usually

link directories. In SNP1 we find fhostingesps6bly,, the service with
the top in-degree and PageRank values, that contains an URL redi-

rection
10

to the Hidden Wiki whose current onion address is zqk-
tlwi4i34kbat3. The Hidden Wiki is a Tor link directory, probably

the most famous. In SNP1 we find also underdj5ziov3ic7 that is the

service with the top betweenness and out-degree values. This ser-

vice contains a Tor link directory named UnderDir - The Undernet
Directory. The last service in SNP1 is blockchainbdgpzk that is the

service with the second PageRank and in-degree values. This ser-

vice contains an URL redirection to a surface website of a company

named Blockchain Luxembourg S.A.R.L. that offers services related
to digital currencies.

In SNP2 we find tt3j2x4k5ycaa5zt that is the service with the

top PageRank and second in-degree values; it contains a personal

10
The HTTP Status Code used for an URL redirection/URL forwarding is a 3XX status

code
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(a) In-degree distribution (b) Out-degree distribution

(c) PageRank distribution (d) Betweenness distribution

Figure 3: Probability distribution of centrality measures.

website named Daniel’s Home. In the website a section is dedicated

to a collection of Tor links. In SNP2 we find also zlal32teyptf4tvi
that is the top betweenness and second out-degree service. This

service is a Tor link directory named Fresh Onions. The last service
in SNP2 is vj5wxqmjaes2bae5 that has the top out-degree value, it

contains a Tor link directory.

In SNP3 we find dhosting4okcs22v that is the service with top

PageRank, betweenness and in-degree values; it contains a hosting

service named Daniel’s Hosting. This is a section of the website

we found in SNP2 named Daniel’s Home. It uses a different onion

address, but it is actually the same website. The last service in SNP2

is zlal32teyptf4tvi that is the service with the top out-degree value

containing the Tor link directory named Fresh Onions, that we
found in SNP2.

Finally in CORE we find blockchainbdgpzk and underdj5ziov3ic7
that are respectively the services with the top PageRank, second

in-degree service and the top betweenness, out-degree values. We

already discussed these two onion addresses for SNP1. In CORE we

find also grams7enufi7jmdl that is the service with the second in-

degree value. This service contains a Tor search engine focused on
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Table 6: Bow-Tie structure

Component

WWW from [29] Tor from [23] SNP1 SNP2 SNP3 CORE

# nodes % # nodes % # nodes % # nodes % # nodes % # nodes %

LSCC 22.3M 51.94% 297 4.14% 466 3.63% 820 3.24% 2371 13.58% 169 2.2%

IN 3.3M 7.65% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 9 0.12%

OUT 13.3M 30.98% 6881 95.86% 12312 95.94% 24468 96.68% 15057 86.24% 7353 95.88%

TUBES 17K 0.04% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

TENDRILS 514k 1.2% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

DISCONNECTED 3.5M 8.2% 0 0.0% 55 0.43% 20 0.08% 32 0.18% 138 1.8%

LSCC is the largest strongly connected component.

IN is the set of nodes v ∈ V \ LSCC such that there is a path from v to LSCC.

OUT is the set of nodes v ∈ V \ LSCC such that there is a path from LSCC to v .
TUBES is the set of nodes v ∈ V \ (LSCC ∪ IN ∪ OUT) such that there is a path from IN to v as well as a path from v to OUT.

TENDRILS is the set of nodes v ∈ V \ (LSCC ∪ IN ∪ OUT) such that there is either a path from IN to v or a path from v to OUT, but not both.

DISCONNECTED is the set of all other nodes v ∈ V \ (LSCC ∪ IN ∪ OUT ∪ TUBES ∪ TENDRILS).

Figure 4: Cumulative percentage of the graph linked by the
top out-degree vertices.

Tor marketplaces. The last service in CORE is zqktlwi4fecvo6ri that
is the service with the second betweenness value and it contains

an URL redirection to the Hidden Wiki.

5 DISCUSSION
In this Section we read and discuss our findings in the light of the

body of work on real world complex networks. Aiming at assessing

to which extent the Tor Web graph fits the three most-known

generative models for random graphs – Erdos-Renyi (ER) [20],

Watts-Strogatz (WS) [40], Barabasi-Albert (BA) [5] – we focus on

three properties that are especially informative: the average shortest

path length (or average distance), the clustering coefficient (or

transitivity) and the shape of the degree distribution. Notably, these

three characteristics are also known to be discriminatory in many

practical settings, such as: for predicting the growth dynamics of a

network [2], for controlling the spreading of viruses/rumors [32], or

for determining the robustness against random node failures [13].

For what concerns the average distance, the question is whether

the Tor graph looks like a small world or even an ultra-small world
network. In small world networks the average distance satisfies

⟨dist⟩ ∝ ln(N ), whereas in ultra-small networks ⟨dist⟩ ∝ ln ln(N ).
Although the latter are asymptotic estimates, our numbers suggest

that Tor belongs, at least, to the class of small world networks:

for all four graphs considered (the three snapshots and the CORE)

⟨dist⟩ satisfies 3.5 < ⟨dist⟩ < 5, whereas 2 < ln ln(N ) < 2.5 and

8.5 < ln(N ) < 10.5.

The global clustering coefficientmeasures the frequency of closed

triangles in the graph, thus representing an indicator of the exis-

tence of some level of correlation in the adjacency patterns of

neighboring vertices. If edges occur independently and uniformly

at random, the clustering coefficient C satisfies C ∝
⟨deg⟩

N , where

⟨deg⟩ is the average degree of the network. Again, although the

latter is only an asymptotic estimate, our findings speak in favor of

the existence of a positive correlation for Tor edges. For directed

graphs, other than the global (undirected) clustering coefficient

it is possible to consider a few types of directed transitivities: we

chose two such metrics, denoted T1 and T2 and defined in Table 2.

Similarly, the average degree can be computed both ignoring or con-

sidering edge directions, and the value reported in Table 4 for ⟨deg⟩

is the average number of in-bound or (equivalently) out-bound

edges, thus C should be compared with
2⟨deg⟩

N in our case. In all

four Tor graphs, C is one order of magnitude greater than
2⟨deg⟩

N ,

and both T1 and T2 are one order of magnitude greater than
⟨deg⟩

N .

Finally, when looking at the degree distribution of a network,

the first aspect to consider is whether it has a heavy tail, which is

symptomatic of the tendency of nodes to connect to “authoritative”

hubs. By looking at Figures 3a and 3b it is clear that this is the

case for the Tor Web. However, while the in-degree distribution

seems to follow a power law for all four graphs, albeit with different
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(a) In-degree vs. out-degree (b) In-degree vs. PageRank (c) In-degree vs. betweenness

(d) Out-degree vs. PageRank (e) Out-degree vs. betweenness (f) PageRank vs. betweenness

Figure 5: Pairwise comparison between centrality measures.

exponents, the out-degree shows an even slower decay and an even

longer tail.

Our findings make it clear that the Tor Web is not an ER graph.

In the ER random graph model with N vertices and with expected

degree ⟨deg⟩, the expected average distance satisfies ⟨dist⟩ ∝ ln(N ),

but the expected global clustering coefficient is C ∝
⟨deg⟩

N and the

degree distribution has no heavy tail. The WS model predicts that

⟨dist⟩ ∝ ln(N ) and that C ≫
⟨deg⟩

N , thus suiting our findings quite

well. Yet, the values of C measured in our four graphs are not

as large as in other real-world small world networks [5, 32, 40].

Additionally, the WS model alone does not predict the observed

power law distribution of the in-degree. The power law degree

distribution is the defining property of the BA model. However,

the BA model theoretically predicts the existence of two regimes

according to whether the power law exponent α satisfies 2 < α < 3

orα > 3. In the former case, the variance of the distribution diverges

and the network is ultra-small. In the latter, the variance of the

distribution is finite and the network is small. The existence of

this threshold is not visible in our findings: SNP1 and CORE have

2 < α < 3, whereas SNP2 and SNP3 have α > 3, but all four

graphs have very similar average distance and degree distribution.

Although real networks cannot have an infinite variance, if N is

large enough, node degrees should span several orders of magnitude

if and only if 2 < α < 3, but this seems not be the case for the

out-degree in Tor.

Summing up, Tor shows a blend of different features and a deeper

analysis is needed to understand whether any existing generative

model matches its characteristics. Among Tor’s unique features,

we observe that the overall structure is clearly dominated by the

presence of a small number of out-hubs, which connect both central

and peripheral nodes. It is also worth noting that the sizes of the

LSCCs are relatively small compared to those reported by other

studies on the surface WWW or social networks [5, 27, 32]. It is

interesting that the nodes in the LSCC core are persistent in the

three snapshots, suggesting that some subnet inside Tor could have

specific properties and even a different structure with respect to

the whole network.

Many questions that are still open require further analysis. Tor

is built with anonymity in mind thus many hidden services are

supposedly not interested in having visibility, yet some of its topo-

logical features, e.g. the radius and diameter, suggest the existence

of a peculiar mechanism that leads to the growth of the network. On

the practical side, one may be especially interested in understand-

ing how the existence of large out-hubs impacts on the topological
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properties of the network, and whether topologically similar nodes

host analogous contents. To provide a few insights in this regards,

we removed from the CORE set the 10 services with maximum

out-degree and analyzed the LSCC of the obtained graph, depicted

in Figure 6. The most remarkable finding is that, albeit the average

shortest path remains almost unchanged, the obtained network has

a clustering coefficient more than 20 times larger than that of a

random graph of equal size. We also found that out-hubs are almost

all hidden directories and we have some evidence that other central-

ity measures can be related to the content of the hidden services.

In particular, as reported in Table 7, 4 out of the top 5 PageRank

services are related to marketplaces, whereas high betweenness

seems not equally characteristic of a specific category of services.
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Figure 6: The LSCC of the CORE graph.

6 CONCLUSIONS
This paper studied three sets of crawling data collected over three

different time frames as well as their common “stable” core. It

provided a deep characterization of the topology of the Tor services

graph, identifying structural and temporal features and further

assessing the persistence of hidden services and hyperlinks.

While previous work only focused on the volatility of Tor hidden

services, thanks to a graph-oriented perspectivewewere also able to

assess the persistence of Tor hyperlinks. This led to the key finding

that edges are more volatile than nodes in the Tor Web graph, as

proved by the fact that hidden services shared by two or more

onion PAGERANK Topic

grams7enufi7jmdl 0.053 Market SE

deepdot35wvmeyd5 0.048 Market

lchudifyeqm4ldjj 0.046 Market

zqktlwi4fecvo6ri 0.045 Hidden Wiki

tmskhzavkycdupbr 0.041 Market

onion BETWEENNESS Topic

auutwvpt2zktxwng 6331 Directory

zqktlwi4fecvo6ri 6105 Hidden Wiki

deepdot35wvmeyd5 3036 Market

torpress2sarn7xw 2766 News/Blogs

torvps7kzis5ujfz 2396 News/Blogs

Table 7: Best 5 nodes with respect to PageRank and between-
ness centrality.

snapshots do not induce the same subgraph in these snapshots.

Additionally, we observed that the LSCC of the CORE graph is

persistent in all three snapshots. Compared with the generally high

volatility of the Tor network, this is the first evidence that Tor may

be comprised of different layers, each with a precise role in the

connectivity patterns of the network, and possibly with different

inter- and intra-layer structures.

We computed several topological metrics on the Tor snapshots

and compared them to well-known network models (ER, WS, BA).

None of those models appears to be suitable to accurately repre-

sent Tor. A small number of out-hubs connecting both central and

peripheral nodes dominates the structure of the graph, whereas

LSCCs are (relatively/due proportions made) smaller than those of

the surface Web or social networks. By removing the out-hubs with
higher degree, the clustering coefficient of the network grows but

the average shortest path remains almost constant: this again sug-

gests that additional insights into Tor’s dynamics could be obtained

by removing and/or isolating specific subnets. Centrality metrics

also indicate that there could be some interesting relation among

node role/position and content: nodes with higher degree are al-

most always link directories, whereas we found that four out of five

nodes in the top PageRank are related to marketplaces. While these

results do not suffice to draw a clear picture, they surely indicate

that further research must be carried out
11
.

We believe the results presented here will foster a larger discus-

sion on the topic, and will be a useful reference for evaluation and

comparison against other real-world graphs.
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