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Abstract
The undesired interaction of a quantum system with its environment generally leads to a coherence
decay of superposition states in time. A precise knowledge of the spectral content of the noise
induced by the environment is crucial to protect qubit coherence and optimize its employment in
quantum device applications. We experimentally show that the use of neural networks (NNs) can
highly increase the accuracy of noise spectroscopy, by reconstructing the power spectral density
that characterizes an ensemble of carbon impurities around a nitrogen-vacancy (NV) center in
diamond. NNs are trained over spin coherence functions of the NV center subjected to different
Carr–Purcell sequences, typically used for dynamical decoupling (DD). As a result, we determine
that deep learning models can be more accurate than standard DD noise-spectroscopy techniques,
by requiring at the same time a much smaller number of DD sequences.

1. Introduction

Quantum sensing combines theoretical results with experimental and engineering techniques to carry out
inference of signals with improved accuracy and/or less computation time by making use of quantum
physics [1, 2].

A quantum sensor takes advantage of the fragility of its quantum properties, such as quantum coherence
or entanglement, to improve the detection of external perturbations with higher accuracy compared to any
classic sensor. However, this same property implies that the quantum sensor is subjected to detrimental noise
stemming from the coupling with its environment. For this reason, it is desirable to fully characterize the
sensor’s environment, either to filter out its detrimental effect, or to take it into account when detecting
external signals, for example, in algorithms using quantum optimal control [3–7].

Neural networks (NNs) [8, 9], i.e. algorithmic models provided by the interconnection of a group of
nodes commonly called neurons, could be a powerful tool to infer the sensor’s environment. In this context,
deep learning has been already proposed theoretically for the classification and detection of quantum noise
features [10–12], and employed experimentally for the following tasks. (a) Estimating the spectra of
minuscule amounts of complex molecules [13] for nano nuclear magnetic resonance; (b) the sensing of
magnetic-field strength at room temperature with high precision [14, 15] by using nitrogen vacancy (NV)
centers; (c) performing error mitigation [16] and noise learning [17–19]; (d) the tracking of quantum
trajectories [20]; (e) classification of many-body quantum states [21] in superconducting quantum circuits;
(f) improving quantum error correction [22]. Also quantum NNs are recently investigated in order to solve a
given quantum technology task with a greater accuracy than classical NNs [23–25]. However, to our
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Figure 1. NV center and neural networks for noise spectroscopy. The NV center is surrounded by an ensemble of 13C nuclear
spins (orange spheres) that collectively induce dephasing to the NV electronic spin (blue sphere). The NV electronic spin is
controlled with a DD sequence (specifically, a Carr–Purcell (CP) sequence) with the aim to measure its dephasing, and therefore
characterize the NSD of the nuclear spin bath, i.e. S(ω; s0,A,σ). The CP sequence is formed by N equidistant π pulses in between
an initial and a final π/2 pulse. The time τ between the π pulses determines the measurement total time T= Nτ , given that the
time between the first π/2 and the train of π pulse and the time between the last π and π/2 pulses are both equal to τ/2.
Then, we measure the output of this experiment, which is the probability P= 1

2
(1+C(τ,N)) that the NV center remains in

the initial state |0⟩. The spin coherence function C(τ,N)—evaluated at previously-determined inter-pulse times in the set
τ ∈ {τ1, τ2, . . . , τn} is the input of the designed neural networks (NNs). For illustrative purposes, here we only consider one fixed
value of N. In our study we also consider a set of different values of N (section 2.3). After being trained, the NNs return the
estimation of the NSD parameters.

knowledge, experimental noise spectroscopy in single color centers in diamond via deep learning is still
missing.

In this paper, we demonstrate that NNs can be used to process the data obtained by a qubit, operating as
a quantum sensor, and then reconstruct the noise spectrum that induces dephasing into the qubit itself. In
particular, we focus on a qubit under dynamical decoupling (DD) control sequences [26, 27] in the presence
of classical random noise with an unknown power density spectrum, usually denoted as noise spectral density
(NSD). Beyond testing numerically our machine learning models, we use a single NV center in diamond as a
spin qubit sensor and we perform a spectroscopic reconstruction of the magnetic noise of its local
environment. The latter comprises 13C nuclear spins randomly distributed in the diamond lattice [28–30]
(see figure 1). The dephasing affecting the qubit sensor is analyzed by applying a set of DD control pulses that
realize filter functions [26, 27, 31, 32] in the frequency domain. The filter functions are designed to select
specific noise components, without sensing all other system-bath interactions. A widely used DD control
pulse is the Carr–Purcell (CP) sequence [1, 33] that is given by N equidistant π pulses, performed between
an initial and a final π/2 pulse. CP sequences act in the frequency domain approximately as Dirac comb
filters [34]; hence, they have been used to perform spectroscopy of intricate signals, e.g. for noise
spectroscopy [35, 36]. With this protocol, the requirement to achieve high values of the noise reconstruction
accuracy is to perform sequences with a high number of pulses meaning N ∈ [30,120] (as in [37]) or higher,
so that the Dirac comb filter approximation remains valid (in fact, N determines the filter width). This
usually leads to long experiments to reconstruct the whole spectrum of the noise. Other techniques using
non-equidistant or even more sophisticated DD sequences [4, 38–41] have proved to be effective for noise
sensing, but sometimes at the price of a higher computational burden.

For our sensing task, NNs are designed to solve a regression problem, i.e. the reconstruction of the NSD.
Here, we assume that the NSD of the bath of spins has a Gaussian profile [37, 42, 43]. The Gaussian NSD is
thus parametrized as a function of key parameters, i.e. the mean value, variance, offset and noise power that
we aim to reconstruct. Note that our proposal can be adapted to other parametrized NSD functions. The
NNs are trained over a set of synthetic data generated by simulating how the coherence of the qubit sensor
decays over time under the influence of both the CP control pulses and the NSD. Moreover, to make the
measurement statistics as close as possible to the ones obtained from the experiments, extra artificial errors
sampled from a normal distribution are added.

Our approach using NNs entails the following advantages that we have proven experimentally. (i) NNs
have the capability to predict never-before-seen experimental data, and they can work with a better
reconstruction accuracy (even up to seven times better, as shown in the section 2 below) than standard noise
spectroscopy, as the Álvarez–Suter method [36], by making use at the same time of DD control sequence
with a much smaller number of pulses. (ii) The training dataset, which can contain both synthetic and
experimental data, is generated just once and then it can be applied several times, as long as the new collected
data reproduce the physical context under analysis. In connection with (i), we are going to show that the
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amount of data used as input to the NNs can be smaller than the one needed to resolve the NSD by means of
standard noise spectroscopy methods.

From our knowledge, this work is the first experimental proof of enhanced reconstruction performance
with NNs for carrying out noise spectroscopy in single color centers in diamond. We thus expect that the
techniques discussed here could fast become a novel standard spectroscopy tool both for such quantum
systems and other quantum platforms in which regression problems have to be solved.

2. Results

2.1. Generation of training dataset
The training dataset is composed of synthetic data that are originated by simulating the coherence decay of
the qubit sensor in a noise spectroscopy experiment based on DD, as the one depicted in figure 1. This
standard sensing procedure, which stems from Ramsey interferometry [1], maps information about the
quantum coherence of the sensor into the population in |0⟩ that is then effectively recorded. After having
initialized the qubit sensor in the ground state |0⟩, a π/2 pulse is applied such that the qubit state |ψ⟩ is the
superposition (|0⟩+ |1⟩)/

√
2. Then, we perform a CP control sequence consisting in a train of π pulses that

flips repeatedly the qubit, and finally, a second π/2 pulse is applied in order to map the phase of the qubit
into its population. The probability that the state of the quantum sensor is |0⟩, which corresponds to the
observable population, equals to [1, 37]

P=
1

2
(1+C(τ,N)) , (1)

where N is the number of π pulses and τ is the time between them. The coherence function C(τ,N) is
simulated numerically, for a set of different values of τ and N, to generate the training dataset.

Let us now introduce the decoherence function that quantifies how the quantum coherence C(τ,N) is
modified under the action of both the external bath of spins and a set of CP control pulses. The control
sequence has the effect to modulate the coherence content of the qubit sensor, while the interaction with the
bath, associated to the NSD S(ω), tends on average to destroy such coherence. Overall, under the joint
presence of control fields and a noise source, the coherence decays as C(τ,N)≡ e−χ(τ,N), where χ(τ,N)
denotes the decoherence function [32, 44–46]:

χ(τ,N) =

ˆ
dω

πω2
F(ω,τ,N)S(ω) . (2)

In equation (2), the filter function F(ω,τ,N)≡ |Y(ω,τ,N)|2 is the square modulus of the Fourier transform
of the so-called modulation function y(t, τ,N). The latter is constant piecewise, with values±1, and switches
sign at the times t= τ/2,3τ/2, . . . ,(N− 1/2)τ where each π pulse is applied [2]. Notice that we are
assuming that the π pulses are instantaneous, a reasonable assumption for our experimental setup where a π
pulse duration is∼0.1µs and the time between pulses is τ ∈ [3.3,6.1] µs. Let us now recall the expression, in
the frequency domain, of the filter function for a CP sequence with even N:

F(ω,τ,N) = 8sin2
(
ωτN

2

)
sec2

(ωτ
2

)
sin4

(ωτ
4

)
, (3)

while for odd N, sin2(ωτN/2) has to be replaced with cos2(ωτN/2) [2, 31].
In order to generate the training dataset, the NSD S(ω) is parameterized as

S(ω) = s0 +Aexp

(
− (ω−ωc)

2

2σ2

)
. (4)

Thus, being a Gaussian distribution, the NSD is fully described by the offset s0, amplitude A, width σ and
center ωc. For the training dataset in the paper, the values of these parameters are taken from the following
intervals: s0 ∈ [4× 10−4,4× 10−3]MHz; A ∈ [0.3,0.7]MHz; σ ∈ [2× 10−3,9× 10−3]MHz. Instead, ωc is
kept constant. This is because in our experimental setup the NSD stems from the interaction with a large
ensemble of unresolved 13C impurities (nuclear spin bath) around the NV electronic spin. Therefore, the
center of the NSD corresponds to the Larmor frequency ωc = γB, where γ= 1.0705 kHzG−1 is the
gyromagnetic ratio of the 13C nuclear spins, and B is the amplitude of a static magnetic field aligned with the
NV quantization axis, z. Such static magnetic field is well known during the experimental procedure since it
determines the NV electronic spin resonances (B= 403.2± 2G).

The training dataset is generated by uniformly sampling 104 sets of parameters within the chosen
intervals. Hence, overall we consider 104 distinct sequences of NSD parameters that are used to simulate
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different coherence curves C(τ,N). These sequences are taken in the time intervals τ ∈ [3.3,3.66] µs and
[5.5,6.1] µs with sampling time∆τ = 1 ns (∆τ = 20 ns in the experimental case, see below), and for
N= {1,8,16,24,32,40,48}. These intervals are significant for our study because they include the values of τ
at which the coherence decay curve exhibits the first and second order collapses induced on the qubit sensor
by the bath of 13C impurities (for the coherence curves, the first and second order of the collapses refer to the
harmonics of the filter functions F(ω,τ,N), for more details see [37]). Finally, in order to make the synthetic
data used to train the NNs closer to the experimental setting, extra artificial errors sampled from a normal
distribution with zero expected value and standard deviation equal to 0.05 (comparable with the expected
error in our experimental measurements) are added to every point of the generated coherence decay curves.
In this way, one may mitigate the over-fitting of the employed machine learning models that are thus
expected to better generalize to unseen data. In general, a model trained on synthetic data cannot be
successfully applied to real data without fine tuning it. But in our case, it becomes possible, probably due to
the fact that the simulated data of the coherence decay are quite close to the experimentally observed decay
data induced by the environment.

As final remark, notice that, from the 104 simulated curves C(τ,N), 6000 are used for the training of the
NNs and 2000 for their validation. Instead, the test step is performed either by using the remaining 2000
simulated curves, or by using experimental data as described below.

2.2. NNs working principles
Let us describe the main working features of the NNs employed in this paper to carry out noise spectroscopy.
Specifically, we are going to use the multi-layer perceptron (MLP) that is composed of fully-connected layers,
each of them with a variable number of artificial neurons.

A single artificial neuron returns as output the scalar

ŷ≡ Σ(wT · x+ b) (5)

that, by definition, is provided by applying the non-linear function Σ : R→ R to the weighted sum of the
input vector x ∈ Rk to which the bias term b ∈ R is added. w ∈ Rk denotes the vector of weights. In our
analysis, the activation function Σ is chosen equal to the rectifier Σ(x)≡max(0,x) [47, 48]. Thus, an MLP
layer composed of q neurons (each with k inputs) returns the vector

ŷ≡ Σ(WTx+ b), (6)

where ŷ ∈ Rq,W ∈ Rk×q is the matrix of weights (W collects all the weight vectors of the single neurons),
and b ∈ Rq is the vector of the biases. Hence, an MLP with L layers is ruled by the recursion equation

h[ℓ]≡ Σ
(
W[ℓ]Th[ℓ− 1] + b[ℓ]

)
, (7)

where ℓ= 1, . . . ,L is the index over the number of layers and h[0]≡ x. In equation (7),W[ℓ] and b[ℓ] are,
respectively, the weights and the biases of the ℓth layer. The output vector of the MLP is ŷ≡ h[L]. It is worth
noting that the number, dimension and activation functions (they are usually denoted as the
hyperparameters ξ) of the NN layers are chosen through a single optimization routine (cf section 5).

Let us now introduce the supervised learning process. Ideally, the purpose of the latter is to find the
parameters θ∗ = argminθRD(θ,ξ) that minimize the theoretical risk function

RD(θ,ξ)≡ E(x,y)∼D [L(ŷ,y)] , (8)

where θ ≡ {W[1],b[1], . . . ,W[L],b[L]}, and ŷ are the estimated values of y. By definition,RD is the expected
value of the loss function L for (x,y) sampled from the distributionD that generates the dataset [49]. The
loss function L is a differentiable function that measures the distance between the prediction ŷ (output of the
MLP) and the desired output y. However, since one can only dispose of a finite set S = {(x,y)1, . . . ,(x,y)m}
of samples to train, validate and test the employed ML models, the theoretical risk function is approximated
by the empirical risk function. Considering the partition {Str,Sva,Ste} of S in training (Str), validation (Sva)
and test (Ste) sets, the empirical risk function is defined by:

RStr(θ,ξ)≡
1

|Str|
∑

(x,y)∈Str

L(ŷ,y) , (9)

where |Str| is the cardinality of the training set. In fact,RStr is the arithmetic mean of the loss function L
evaluated on the samples of the training set Str.
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In our paper, we take the loss function L equal to themean squared error (MSE), also called
L2 loss:

L(ŷ,y) = 1

q

q∑
i=1

(ŷi − yi)
2 (10)

for the q outputs of the last layer (in our case three, corresponding to the noise parameters s0, A, σ). The
MLP is trained by minimizing (step-by-step over time) the empirical risk functionRStr(θ,ξ) with respect to
θ by means of themini-batch gradient descent method, so as to obtain the optimal value θ∗ of the NN
parameters. Each gradient descent step is defined by

θt+1 = θt − η∇θ
1

B

B∑
b=1

L(ŷb,t,yb,t), (11)

where θ0 is a randomly chosen starting point, η is the learning rate that defines the length of the step and
∇θ

1
B

∑B
b=1L(ŷt,b,yt,b) is the gradient of the loss function. The gradient is calculated for any time t on a batch

of B elements taken from the training set, and the subscript θ in∇θ indicates that the variables of L during
the gradient evaluation are the weights of the NN. In this paper,RStr is minimized by means of Adam [50]
that is a gradient-based optimization algorithm performing the adaptive estimation of lower-order moments.
The minimization is stopped when the time-derivative of the risk function evaluated on the validation set
RSva(θ

∗, ξ) becomes positive (early stopping strategy) or after a predefined number of gradient steps using all
the data of the training set (called epochs). Then, we useRSva(θ

∗, ξ) to check if the MLP works also for
unseen data and tune the hyperparameters ξ (cf section 5). Finally, the test set Ste is employed to calculate the
metrics (discussed in detail below) used to generate the figures with the results that we are going to illustrate.

2.3. Training and numerical test of NNs
We now show the results obtained by using the trained machine learning models to infer the value of the
NSD parameters {s0,A,σ}. As already mentioned, the NNs are tested with 2000 different NSD parameters.
For each of these sets of parameters, the curves C(τ,N) have been simulated as described in the previous
subsections.

In order to determine the smallest amount of data required to reconstruct the NSD, we perform the
training, validation and test of the NNs with sub-sets of the simulated curves. These sub-sets are defined by
introducing the variable N that denotes the upper bound for the number of pulses N⩽ N considered during
the whole process. For example, for N= 16 only the curves C(τ,N) with N ∈ {1,8,16} are considered. Note
that the sub-sets defined for each value of N contain the curves for all the different NSD parameters (6000 for
training, 2000 for validation, and 2000 for testing), and for all the times τ in the intervals defined in
section 2.1. In detail, the input of the NN is defined as the concatenation of all the values of C(τ,N), for τ
in the intervals defined before and N= 1,8,16, . . .,N. Specifically, x= {C(τ1,1),C(τ2,1), . . . ,C(τn,1),
C(τ1,2), . . . ,C(τn,2), . . . ,C(τn,N)}.

The results of this analysis are shown in figure 2 (orange data), where the MSE (the loss function)
between the inferred parameters (ŝ0, Â, σ̂) and the original parameters (s0, A, σ) used to generate the dataset
is plotted as a function of N. Remarkably, the MSE seems to achieve its minimum value after N= 16. This
entails that the NNs do not significantly improve their precision on the reconstruction of the NSD by using
more data to train them beyond this point.

To establish how accurately an NN reconstructs the NSD, we need to compare the corresponding results
with those of a different method. In particular, we concentrate on the method used in [37], which is itself
based on references [35, 36]. According to them, the decay of the coherence function C(τ,N) is analyzed as a
function of N, for each fixed value of τ i, i.e. for each fixed frequency component of the filter functions. In the
limit of high N, the decay of the coherence is exponential, with a rate that is inversely proportional to the
amplitude of the NSD [35]. In other words, the amplitude of the NSD is directly estimated for a discrete set
of frequencies (each proportional to 1/τ ). In contrast with the original proposals in references [35, 36], the
method in [37] demonstrates that it is better to use the harmonics of the filter functions to reconstruct the
NSD, in order to avoid extra broadening of the reconstructed spectrum. For this reason, we denote this
method as harmonics spectroscopy (HS).

We have analyzed the same 2000 different curves C(τ,N) (used to test the machine learning models) also
with the HS method. The results are collected and shown in figure 2 (blue data), where the first point is for
N= 16. This is due to the fact that, by definition, the HS method fits the decay of the coherence as a function
of N. This is possible only for a dataset with at least three points (in this case N= 1,8,16). As one can
observe in figure 2, the MSE values for the HS method (blue region) are always above the MSE values for the
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Figure 2.Mean-square-errors (MSEs) between original and estimated NSD parameters for a set of 2000 test cases. Orange bullets
with dash-dotted line are the mean values returned by NNs. Blue squares with dotted line are the mean values provided by the HS
method. Finally, shaded areas denote the standard deviation, taking into account all the 2000 cases.

NNmethod (orange region), especially for lower values of N. These results demonstrate that the NN method
can predict the parameters of the NSD with an improved accuracy (up to five times larger) with respect to
the HS method. The test presented in this subsection have been performed with simulated data. In the next
subsection we are going to repeat the same test but with experimental data.

2.4. Experimental test of NNs
By this point we know that NNs can reliably predict the NSD from noisy simulated data. In this section, we
want to use the NNs (trained and validated with noisy simulated data) to reconstruct the NSD using
experimental data.

As quantum sensor we use a spin qubit encoded in the electronic spin of the ground state of a single NV
center in a bulk diamond at room temperature. This system has proven as a sensitive quantum probe of
magnetic fields, with outstanding spacial resolution and sensitivity [51, 52]. The diamond sample in our
experiments has a natural abundance of 13C impurities (1.1%) that are randomly distributed in the diamond
lattice [28–30]. The 13C nuclear spins constitute the external environment of the NV center. They act as a
collective bath of spins that induces dephasing into the NV electronic spin, limiting the its coherence time
T2 ≈ 100µs. In the presence of strong bias magnetic field (⩾150G) [37, 53], the weak coupling of the NV
spin with these carbon impurities can be modeled as a classical stochastic field. The latter has a power
spectrum density (here called NSD) that follows a Gaussian distribution centered at the Larmor frequency of
the 13C nuclear spins. In order to measure the NV spin coherence function C(τ,N), we apply a train of π
pulses (in our case a CP sequence) to the NV spin qubit following the DD protocol described in figure 1. For
more details on the experimental implementation and Hamiltonian of the system see [37]. We have
performed this experiment for N= {1,8,16,24,32,40,48}, and for τ ∈ [3.3,3.66] µs and [5.5,6.1] µs with
sampling time∆t= 20 ns. The results are shown in figure 3(a) (blue bullets). Then, the collected coherence
functions have been processed and employed to reconstruct the NSD parameters by means of both the NN
(trained with the generated dataset) and the HS methods. In contrast with the test using simulated data in
the previous section, in the experimental case we do not know the exact values of the NSD parameters.
Therefore, we cannot calculate the MSE to quantify the accuracy of the reconstructed parameters. In order to
estimate such accuracy we have used the following procedure: from the inferred NSD, the coherence curves
C(τ,N) are simulated and then compared with the experimental results. An example of this comparison is
shown in figure 3(a), where C(τ,N) is simulated under the assumption that the NSD parameters are inferred
either by the machine learning models (orange) or by the HS method (red), both for N= 16. Qualitatively it
is clear that the orange curves are much closer to the experimental data, than the red curves.

There are several options to quantitatively compare the experimental data and the simulation results.
Here we use both the reduced chi-squared χ2

ν [54], and the MAE [55] between the experimental data and the
predicted coherence functions C(τ,N) (see section 5 for more details). The results of this comparison are
shown in figure 3(b), where χ2

ν and the MAE are plotted as a function of N. Remarkably, the NSD
reconstructed by the NN for N= 16 behaves better that any case using the HS method. It is worth observing
that the same experimental data used to infer the NSD parameters are partially used to estimate the χ2

ν and
MAE(C(τ,N)). For example, for N= 16, only the data for N= 1,8,16 are used to reconstruct the NSD, but
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Figure 3. (a) Coherence function C(τ,N). The experimental data (blue bullets) are shown together with the simulated ones using
the NSD predicted respectively by the HS method (red lines) and machine learning models (orange lines), both for N= 16.
(b) Reduced chi-squared χ2

ν , obtained by comparing simulation and experimental data, as a function of N. As in panel (a),
orange and red curves refer to the NN and HS method, respectively. Instead, the dashed line denotes the value of the reduced
chi-squared for the HS method when we employ additional measurements for N= 56,64,72,80 in the interval τ ∈ [5.5,6.1] µs.
Inset: same results but quantified by the mean-absolute-error (MAE) between the experimental data and the predicted C(τ,N).

we employ all the data N= 1,8,16, . . . ,48 to obtain the χ2
ν and MAE(C(τ,N)). Overall, we have observed

enhanced performance in reconstructing the NSD of the collective bath of spins, with a maximum
improvement (about seven times higher) for N= 16. In other words, for N= 16, once we reconstruct the
NSD, the quantum sensor dynamics can be predicted with an average square deviation of≃1.86
experimental error-bars by using the NN method, or with an average square deviation of≃13 error-bars if
we use the HS method.

3. Discussion

As shown pictorially in figure 1, the NN takes as input the spin qubit coherence functions (the coherence of
the quantum sensor decays due to the presence of the external bath) obtained by using a set of different CP
control sequences. The NN returns as output the parameters of the unknown NSD in the frequency domain.
One can thus note that the NN, once validated, acts as a ‘time-frequency converter’ (making use of a quite
complicated deconvolution) from the measured signals living in the time domain—the spin coherence
functions—to the NSD defined in the frequency domain.

The results shown in the previous section, and summarized in figures 2 and 3(b), demonstrate that NNs
can be used to reconstruct the NSD affecting a quantum sensor, achieving higher precision and with
considerable less data than the standard HS method. Improved values of the reconstruction accuracy have
been obtained with simulated and experimental data. Both the HS and NN methods are comparable—in
terms of NSD reconstruction accuracy—for high values of N, but not for small ones, where NNs give
significantly better results. Moreover, the main result of our study is that NNs trained with data obtained for
N= 16 reconstruct the NSD more accurately than the best estimate provided by the HS method with
N= 48. This improvement is remarkable by itself, but it becomes more significant when we consider that the
time required to complete these experiments has a growth faster than a linear function with respect to N,
following an arithmetic progression. As an example, the total time to perform all the experiments in the case
of N= 16 and 48 is respectively≃10min and≃1.2 h (for this estimation we consider 105 repetitions as in
our experiments, we recall that the total time for each repetition of the single experiment is T= Nτ ). This is
an under-estimation of the time difference between methods, because we are only considering the bare
measurement time, without taking into account the time delay between different experiments. Furthermore,
it is worth stressing that our results also show that deep learning has a predictive power since it can be
applied to never-before-seen data. This naturally provides to the employed machine learning models a
connotation of robustness that is crucial in real applications.

As a general comment, we stress that it is difficult to identify a definite reason why a machine learning
model is more accurate (especially in the case of small N) than a standard DD technique for noise
spectroscopy. As said above, we observe experimentally that the employed NNs are able to learn non trivial
patterns in the sequences of input-output data. What the NN learn is to invert C(τ,N) as a function of the
noise parameters s0, A and σ (see equations (2) and (4) in the main text) that we aim to reconstruct. It is
known that NNs are universal approximators of functions: this can be the reason why they are well suited to
find the parameters of the NSD from C(τ,N). Moreover, NNs do not consider approximations of the filter
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function, and they manage to find the noise parameters even for input data containing values of C(τ,N) with
N small. In contrast, the Álvarez–Suter method, as well as the HS methods in general, arises from
approximating the filter function as a Dirac comb. This approximation is not valid for a small number of
pulses, hence it is expected to poorly reconstruct the noise spectrum using standard DD techniques. In
addition, reconstructing the parameters of an NSD using experimental data with an NN trained with
synthetic data has been made possible by training the NN over an informative set of noise samples, used to
generate the synthetic data. The latter, indeed, are given by a collection of values of C(τ,N) that implicitly
include a parameterization of the NSD that is reasonable for the experimental setting; in our case, a Gaussian
distribution whose offset, amplitude, width and center belong to finite-valued intervals estimated from
similar experimental conditions (e.g. [37]).

Let us also observe that regression tasks, which are successfully solved by MLPs (one of the easiest form of
NN), are less common with respect to the ones to carry out classification; a review of some example datasets
and methods for regression is in [56]. Hence, we expect that the synthetic data used in this work could be
useful as a test bed also to the audience of machine learning researchers and developers solving regression
problems in different contexts. With this in mind, we share the training dataset with synthetic data and our
codes for their generation, as well as the code for machine learning experiments and NSD reconstruction
[57]. In this way, we promote the improvement of machine learning models for noise sensing purposes and
their use to solve different regression tasks in the quantum estimation framework.

4. Conclusions

In this paper, we use NNs to carry out noise spectroscopy with a quantum sensor using DD sequences with a
much smaller number of π pulses and, at the same time, achieving a higher reconstruction accuracy than
standard methods (e.g. HS protocol). This means that with our proposal the noise spectroscopy procedure
will take less time and give better results. More in detail, we experimentally demonstrate the capability of
NNs to reconstruct the NSD of the collective nuclear spin bath that surrounds an electronic spin qubit,
i.e. the ground state of a single NV center in bulk diamond at room temperature.

To conclude, we outline some possible outlooks for our work. First of all, one may evaluate the
performance of NNs that are trained over input data obtained using DD control sequences with more
degrees of freedom than the CP ones [58–62]. Secondly, deep learning might be applied to noise
spectroscopy techniques beyond the HS methods, as for example optimal band-limited control protocols [39,
40] and even non-Gaussian noise characterization [63–65]. In this regard, notice that the NNs take as input
the data associated to the spin coherence, and return as output the parameters of the NSD. Therefore, a new
NN for the characterization of spin qubit’s environment can be trained with coherence curves obtained from
using any kind of coherent control sequences. The study of the performance of NNs trained with data from
these more general control protocols is the next step in understanding how machine learning can enhance
quantum sensing. In addition, it might be worth investigating how deep learning can be integrated to
quantum sensing procedures that rely on the so-called stochastic quantum Zeno effect [66, 67], whereby the
quantum probe is subjected to a sequence of quantum measurements that in the ideal case are designed to
confine the dynamics of the probe around the initial (nominal) state [38, 68, 69]. We are also confident that
the extent of our results can be quite easily replicated in other experimental settings, as e.g. superconducting
flux qubits [70, 71], trapped ions [72, 73], cold atoms [74, 75], quantum dots [76, 77], nuclear magnetic
resonance (NMR) experiments in molecules [36, 78], and nanoelectronic devices [79]. For such a purpose,
one might slightly adapt the deep learning techniques used here to methods tailored for time series.

5. Methods

5.1. Technical details on the training of NNs
The NN models are developed using the PyTorch framework [80] on a machine with 32 CPU cores,
126GB of RAM and a GeForce RTX 3090 GPU. The training time, including the optimization of the
hyperparameters, is around 12 h for each N.

The hyperparameters optimization is implemented by means of the Ray Tune library [81]. The Hyperopt
package [82] uses the Tree-structured Parzen Estimators [83] algorithm as a Bayesian optimization to search
for the best choice of the hyperparameters within a predefined search space. Hyperopt suggest the likely
better configurations of the hyperparameters and the underlying model is updated after each trial that is run.
The ASHA scheduler [84] is then used to stop the run of the least promising trials chosen by the search
algorithm, thus speeding up the hyperparameters optimization process.

The optimized hyperparameters are the following. (1) The number of hidden layers decides the value of
L− 1 in equation (7). The hidden layers are between the input layer h[0] and the output layer h[L]. (2) The
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Table 1.Hyperparameters for the employed machine learning models. For each value of N (that determines the size of the input layer)
we report: the number of hidden layers (h. l. num.), the dimension of each hidden layer (h. l. dim.) and the values of learning rate
(learning r.), batch size, dropout and weight decay (weight d.).

N h. l. num. h. l. dim. Learning r. Batch size Dropout Weight d.

1 1 2 10−2 16 0 10−3

8 5 328 10−4 4 0 10−4

16 2 133 10−3 8 0 10−6

24 3 224 10−4 2 0 10−4

32 3 145 10−4 4 0 10−5

40 3 286 10−4 4 0 10−4

48 3 38 10−3 8 0 10−4

dimension of the hidden layers is the value of q in equation (6) that, for the sake of simplicity, is equal for all
the layers in equation (7). Both the number and dimension of the hidden layers are chosen by sampling
log-uniformly an integer value from the space [1,32) and [1,1024), respectively. (3) The learning rate is
responsible for the length of the gradient descent step and it is optimized with a choice between 10−2, 10−3

and 10−4. (4) The batch size denotes the dimension of the batch on which the loss function is summed for the
gradient calculation in a single descent step. The batch size is chosen between 2, 4, 8, 16, 32. (5) The dropout
is a regularization strategy that aims to reduce the overfitting by randomly turn off the NN neurons with a
predefined probability. Such probability is one among 0 (no dropout), 0.2 and 0.5. (6) The weight decay is
another regularization technique that adds to the loss function the squared weights of the NNmultiplied by a
decay value. The latter value is optimized choosing between 0 (no decay), 10−6, 10−5, 10−4 and 10−3.

To facilitate the reproducibility of the experiments, we summarize in table 1 the optimal values of the
hyperparameters for the trained models. Each value of N defines the input size of the NN. Therefore, a
different optimization of the hyperparameters is performed for each case.

5.2. Definition of quantifiers for reconstruction accuracy
The accuracy of NN and HS methods can be estimated by using the reconstructed NSD to simulate the
coherence function C(τ,N), and ‘measuring’ the distance between the simulated data and the experimental
values. To do so, we use the reduced chi-squared χ2

ν , and the mean-absolute-error (MAE(C)): we define
Ce ± δCe (Cs) as the experimental (simulated) values of C(τ,N), where δCe is the standard deviation of the
experimental data. Then we can write reduced chi-squared and the MAE as

χ2
ν ≡ 1

ν

∑
n,N

(Ce(τn,N)−Cs(τn,N))2

δCe(τn,N)2
(12)

MAE(C)≡ 1

ν

∑
n,N

|Ce(τn,N)−Cs(τn,N)| , (13)

where N= {1,8,16,24, . . . ,N}, {τn} are the values of the time between pulses within the time intervals
defined in main text, and ν is the total number of elements in the sum. Notice that χ2

ν takes into account the
experimental precision to scale the difference between experiment and simulation. The results showing both
χ2
ν and the MAE are in figure 3.
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[42] Szańkowski P, Ramon G, Krzywda J, Kwiatkowski D and Cywiński Ł 2017 Environmental noise spectroscopy with qubits subjected
to dynamical decoupling J. Phys.: Condens. Matter 29 333001
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