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Abstract – Unveiling the dynamics hidden in multivariate time series is a task of the utmost
importance in a broad variety of areas in physics. We here propose a method that leads to the
construction of a novel functional network, a multi-mode weighted graph combined with an empir-
ical mode decomposition, and to the realization of multi-information fusion of multivariate time
series. The method is illustrated in a couple of successful applications (a multi-phase flow and an
epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical
behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain
states of seizure and non-seizure.

editor’s  choice Copyright c© EPLA, 2017

Introduction. – Characterizing dynamical processes
in complex systems from observed time series is a vi-
tally important, yet intractable, issue in a broad range
of research areas. Various solutions sprung up (such as
fractal analysis [1], power spectra [2], recurrence plot [3],
de-trended cross-correlation analysis [4] and decomposed
transfer entropy [5]), but the increase of system complexity
makes it largely difficult to depict the dynamical behavior
from time series, and conventional methods encountered
resistance to produce reliable results.

Regarding each system component as a node and de-
termining the edges in terms of units’ interactions pave a
way for mapping from a system to a graph [6–11]. There-
after, complex network theory can be used to investigate
the qualities of the system. Several effective methodologies
have been proposed to map a univariate/multivariate time
series into a complex graph [12–21] and have been applied
to various areas like climate dynamics [22,23], epilepsy di-
agnosis [24], rainfall prediction [25], thermo-acoustic insta-
bility detection [26] and two-phase flow analysis [27–31].

In this letter, we put forward a novel powerful functional
network, namely a multi-mode weighted network, by com-
bining multi-mode conversion with recurrence networks to
focus on the analysis of high-dimensional time series. The
key lies in delineating pair-wise system element interrela-
tionships by searching for the times when both of their

trajectories recur simultaneously, i.e., the occurrence of
joint recurrences. In particular, we first perform a mul-
tivariate empirical mode decomposition (MEMD) [32] on
each high-dimensional time series to obtain several mul-
tivariate intrinsic mode functions (IMFs) corresponding
to different modes. Next, for each targeted IMFs (at each
targeted mode), we infer a weighted recurrence network to
form a multi-mode weighted graph. The method is then
applied to measured data from fluid dynamics and neu-
roscience, which validate its effectiveness. Finally, com-
parisons with traditional functional networks will also be
discussed.

Methodology. – We start by introducing the MEMD
method. The past decades have witnessed a rapid de-
velopment of traditional time-frequency analysis methods,
from Fourier transform to wavelet approaches. Such tradi-
tional methods are affected by intrinsic limitations: stan-
dard Fourier methods project data onto fixed functions
and are then unable to properly analyze short and inter-
mittent real-world data, while the employment of inte-
gral transforms in typical time-frequency analysis harms
the analytic signal representation resulting from the blur-
ring of the notion of time. These and other limitations
triggered the appearance of the empirical mode decom-
position (EMD) method, which holds the advantages of
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adaptivity, enhanced accuracy and integrity due to the
fact that its bases are data-driven rather than fixed. How-
ever, channel-wise EMD analysis may generate IMFs with
different numbers, and same-index IMFs are not necessar-
ily containing equal scales. The latter problem led to the
emergence of MEMD [32]. MEMD is capable of contain-
ing mode-aligned intrinsic joint rotational modes, which is
achieved by analyzing the data in a p-dimensional domain,
and performing uniform sampling for the projection vec-
tor directions. Therefore, the p channels of data have the
same number of mode-aligned IMFs, including the same
rotational modes. In addition, MEMD allows the occur-
rence of mixing modes, which makes it applicable for co-
herent multivariate time-frequency analysis. The MEMD
procedure is as follows: given a p-dimensional time series
x(t), 1) we first obtain a uniform sampling of V points on
a p-dimensional sphere to form direction angles θv, where
v = 1, 2, . . . , V , which are used to generate projection vec-
tors sθv (for this a low-discrepancy Hammersley sequence
namely quasi-Monte-Carlo sampling is performed) [33]);
2) we project the p-dimensional time series x(t) along the
direction vector sθv , where v = 1, 2, . . . , V , so that the set
of projections {qθv(t)}V

v=1 can be achieved; 3) we find the
time instants {tiθv

}V
v=1 at which the set of the projected

signals {qθv(t)}V
v=1 reach the local extremum, and then

interpolates [tiθv
, x(tiθv

)] via cubic splines to acquire the
multivariate envelope curves {eθv(t)}V

v=1; 4) we subtract
the mean of the V multidimensional envelopes m(t) from
x(t) to gain the detail d(t) , where m(t) = 1

V

∑V
v=1 eθv(t);

5) if d(t) satisfies the stopping criteria described in [32]
for a multivariate IMFs, then x(t) = x(t) − d(t) other-
wise x(t) = d(t). With the new x(t), the procedure goes
back to step 1). Eventually, a multivariate time series
is converted into several multivariate IMFs corresponding
to different frequency bands. The quasi-dyadic filterbank
property of MEMD and the ability in producing mode-
aligned IMFs greatly facilitate us to pick out the targeted
frequency bands and focus on the analysis of those tar-
geted modes of highest significance.

The weighted recurrence network at each targeted
multivariate IMFs is then constructed. In order to
capture synchronization, here the joint recurrence plot
(JRP) [34] technique is considered. The construction
of the weighted recurrence network can be described
as follows. For a multi-channel signal {xk,l}L

l=1, k =
1, 2, . . . , p which contains p sub-signals of equal length L,
the phase-space reconstruction is first conducted channel-
wise (by choosing a suitable embedded dimension m
and time delay τ by the False Nearest Neighbors algo-
rithm [35] and C-C method [36], respectively) as �xk(t) =
(xk,t, xk,t+τ , . . . , xk,t+(m−1)τ ), t = 1, 2, . . . , N , where N is
the number of vector points in the reconstructed trajec-
tory. For any generated trajectory �xm(i), a N × N recur-
rence plot (RP) can be obtained

RP �xm

i,j (ε�xm) = Θ(ε�xm − ‖�xm(i) − �xm(j)‖),
i = 1, . . . , N ; j = 1, . . . , N, (1)

where ε is a pre-chosen threshold resulting from fixing the
recurrence rate (a measure of the density of recurrence
points in the recurrence plot (RP)) to 0.1, and ‖ · ‖ is
the maximum norm. Thus, for a multi-channel signal
{xk,l}L

l=1, k = 1, 2, . . . , p containing a p sub-signal, the
number of obtained recurrence plots is p. For pair-wise
RPs, the joint recurrence plot (JRP) is

JRP �xm,�xn

i,j (ε�xm , ε�xn) = R�xm

i,j (ε�xm)R�xn

i,j (ε�xn). (2)

In what follows, the joint recurrence rate (JRR) [37] is
used to quantify the density of recurrence points in each
JRP, i.e., JRR(�xm, �xn) = 1

N2

∑N
i,j=1 JRP �xm,�xn

i,j . Then,
we characterize the synchronization of pair-wise time se-
ries by S(�xm, �xn) = JRR(�xm,�xn)

RR , where RR represents
the recurrence rate of each recurrence plot, which is 0.1.
Thus, for a multi-channel signal {xk,l}L

l=1, k = 1, 2, . . . , p,
we eventually obtain a synchronization matrix S(�xm, �xn)
of size p × p. By means of these calculations, we infer a
weighted recurrence network by regarding each sub-signal
of the multivariate IMFs as a node and deeming the value
of the synchronization index S(�xm, �xn) as the weight of
the link between nodes m and n. Thus, the novel func-
tional network (namely the multi-mode weighted network)
is formed, and consists of several weighted networks cal-
culated at each targeted mode. The schematic diagram of
our method is described in fig. 1.

The application in a two-phase flow system. –
Validation of the performance and effectiveness of the

method is provided with two applications in real systems.
The first is an oil-water two-phase flow, which is frequently
encountered in many industrial fields. Particularly, the
combination of different total flow velocities and water
cut Kw (identified as different flow conditions) gives rise
to the formation of three typical flow patterns, i.e., oil-
in-water slug flow (D OS/W), oil-in-water bubble flow
(D O/W) and very fine dispersed oil-in-water bubble flow
(VFD O/W) [38]. Recognition of the transition between
flow patterns, and characterization of the underlying dy-
namical behaviors are extremely important, especially for
the enhancement of oil recovery. Our method identifies
the flow patterns in the complicated oil-water two-phase
flow system and detect the underlying dynamical behav-
iors during the transitions. We use tap-water and No. 3
white oil, with a density of 856 kg/m3 and a viscosity of
11.984 mPa · s, to conduct a small-diameter vertical oil-
water two-phase flow experiment, where a high-speed cy-
cle motivation conductance sensor is designed to record
the conductivity of the oil-water mixture resulting from
the evolution of different flow patterns. A series of 48-
channel time series is then obtained. MEMD conversion
is first performed on each 48-channel time series. Accord-
ing to the energy distribution of each mode, we select as
targeted modes those whose energy have only little differ-
ence with the original signal and whose frequency distri-
bution is in accordance with the typical frequency bands
of the three flow patterns. For each generated weighted
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Fig. 1: (Color online) The schematic diagram of the method leading to a multi-mode weighted network representation of the
original data set.

Fig. 2: (Color online) The combined graph of Lw and Ew (see
text for definition). Insets are photos of the corresponding flow
patterns.

recurrence network, only those edges whose weight is the
highest (in the range 10%–35%) among all the links are
retained, aiming at inspecting the topology of relatively
sparse networks [39]. In addition, the integrals (over the
sparsity range) of two network metrics are considered for
two metrics: the weighted global efficiency which is de-

fined as Ew = 1
n

∑
i∈N

∑
j∈N,j �=i(d

w
ij)

−1

n−1 , and the weighted
characteristic path length which can be calculated as
Lw = 1

n

∑
i∈N

∑
j∈N,j �=i dw

ij

n−1 (both indicating the functional
integration of networks). Note that, dw

ij is the shortest
weighted path length between nodes i and j and is decided
by dw

ij =
∑

auv∈gi
w↔ j

f(wuv), where g
i

w↔ j
is the shortest

weighted between i and j and f is a map from weight to
length [40].

The final values of Lw and Ew of each flow condi-
tion are obtained by averaging the integrated Ew and
Lw from each generated recurrence network. The com-
bined distribution graph of these two metrics is reported
in fig. 2, together with images of the different flow con-
ditions. In addition, fig. 3(a) and (b) presents some de-
tailed results of these two metrics, aiming at portraying
the evolution of different flow patterns. Notice that sparse
networks are here weighted, while traditional functional

Fig. 3: (Color online) The evolutional process of the two met-
rics during the transition among different patterns, while the
water cut Kw is 86% and 97%, respectively: (a) Ew; (b) Lw;
(c) E; (b) L (see text for definitions of all quantities).

networks are commonly un-weighted. As a result, we can
compare our weighted sparse networks with multi-mode
un-weighted networks and calculating the integrated un-
weighted global efficiency and characteristic path length
(denoted as E and L, respectively) for the same flow con-
ditions as in fig. 3(a) and (b) (the detailed results are
shown in fig. 3(c) and (d)). The definitions of E and L
are similar to that of Ew and Lw, but dw

ij should be sub-
stituted for dij which represents the shortest path length
(distance) between nodes i and j. Furthermore, the Pear-
son correlation coefficient (a widely used metric for func-
tional networks) is here also used on the original data to
infer a traditional functional network for the flow condi-
tions described in fig. 3, and again the integrated Ew and
Lw are calculated (the results are reported in fig. 4).

In fig. 3(a) and (b) the distribution of the two mea-
sures is significantly different in the transition among the
three typical oil-water flow patterns. While the total flow
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Fig. 4: (Color online) The evolutional process of the two met-
rics, calculated using a traditional (Pearson correlation coeffi-
cient based) functional network, during the transition among
different flow patterns while the water cut Kw is 86% and 97%,
respectively: (a) Ew; (b) Lw.

velocity is low and the oil cut is relatively high, the oil-in-
water slug flow appears as an aggregation of cup-shaped
oil slugs and small oil droplets moving in a water contin-
uum quasi-periodically. The increase of the flow velocity
and the turbulent kinetic energy destroys the joint move-
ment conditions, and makes it impossible to form oil slugs
which separate into relatively uniformly distributed small
oil bubbles. At that moment, the movement of oil bubbles
becomes stochastic, resulting in a gradual weakening of the
synchronization of the system and further leading to the
increase of Lw and the decrease of Ew. Figure 3(a) and
(b) provides the concrete evolutional process of the two
metrics, related to the transition of flow patterns, and the
water cut Kw is 86% and 97%, respectively. When the oil
cut is pretty low but the turbulent kinetic energy is huge,
the giant crushing force triggers oil bubbles scattering into
the whole tube and transforming them into tiny droplets,
indicating that the very fine dispersed oil-in-water bub-
ble flow shows up. Thus, the synchronization of the sys-
tem nearly dies away and Lw possesses a growth trend
while Ew changes in the opposite trend simultaneously.
On the other side, as shown in fig. 3(c) and (d), the recon-
struction of un-weighted network is infeasible to identify
the three different flow patterns, let alone characterize the
complicated evolution process. In addition, fig. 4(a) and
(b) shows that the traditional approach, based on Pearson
correlation analysis, is also unable to uncover the flow be-
havior in the transitions between different flow conditions.
All these findings render our multi-mode weighted com-
plex network extraordinarily effective for identifying flow
patterns, and for characterizing the dynamical behaviors
in the evolution of different flow patterns.

The application in an epileptic electro-
encephalogram. – As a paroxysmal neurological
disorder, epilepsy occurs with recurrent and abrupt
seizures closely linked to neural synchronization [41].
Most of the studies on epilepsy which use complex
networks analysis [42–44] aim at differentiating epilepsy
patients from healthy controls. However, the identifica-
tion of pre-seizure and seizure periods (i.e., the seizure
prediction task) can further improve the precaution
and even the treatment of epilepsy [45,46]. We here
apply our method to the identification of pre-seizure

Fig. 5: (Color online) The p-value for each t-test: (a) Cw;
(b) Ew

loc (see text for definitions of both quantities).

and seizure in the scalp electroencephalogram (EEG)
recordings [47] of three pediatric patients (labeled as
ch01, ch03, ch08), who feature 7, 7 and 5 seizure events
respectively. For each one of them, we select a 20-s-long
non-seizure recording immediately prior to the seizure
onset (the pre-seizure recording), and a 20-s-long seizure
recording. After the MEMD procedure, we choose
mode 2 to 8 as our targeted modes (corresponding to
the 1–48 Hz broad frequency band), and construct the
multi-mode weighted complex networks. Thereafter,
we calculate the integrated weighted local efficiency
and clustering coefficient (representing the efficiency of
local communication and the clustered connectivity
in networks, respectively) of each weighted recurrence
network and then average the values of all of them as
the final results. Besides, the weighted local efficiency is

defined as Ew
loc = 1

2n

∑
i∈N

∑
j,h∈N,j �=i(wijwih[dw

jh(Ni)]−1)1/3

ki(ki−1) ,
where dw

jh(Ni) is the length of the shortest path between
nodes j and h that contains only neighbors of node i,
and ki is the degree of node i [40]. And the weighted
clustering coefficient is defined as Cw = 1

n

∑
i∈N

2tw
i

ki(ki−1) ,

where twi = 1
2

∑
j,h∈N(wijwihwjh)1/3 is the geometric

mean of triangles around node i and wij , wih and wjh

represent the weight between node i and j, i and h, j and
h, respectively [40].

A t -test is performed between non-seizure and seizure
results for all events of each patient. The p-value of each
t -test is shown in fig. 5, where each p-value is much less
than 0.05, reflecting the excellent performance of the two
metrics on discriminating between non-seizure and seizure
periods. Cw presents a growth trend, namely, the clus-
tering of synchronization among different brain regions
experiences a sharp change due to the onset of seizure.
In addition, the increase of the integrated Ew

loc implies
that during the seizure period a well-pronounced local syn-
chronization behavior appears and compared to the non-
seizure period, its efficiency among different brain regions
is stronger. Once again, all these findings validate that our
method possesses the capacity of exploring the dynamical
properties underlying seizure processes, and is able to pro-
vide a more accurate seizure prediction.

Conclusions. – In summary, our method allows realiz-
ing multi-information fusion. Successful utilization in ver-
tical oil-water two-phase flow experiments demonstrates
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that the reconstructed network enables to distinguish
between typical flow patterns, and further detects the in-
herent dynamical property during the transition among
the different flow patterns. Furthermore, the results also
illustrate that our technique performs much better than
un-weighted networks and traditional approaches based
on Pearson correlation analysis. On the other hand,
a strong performance in patient-specific classification of
non-seizure and seizure periods paves the way for the uti-
lization of our method in the prediction task of seizure
onset. Our method is however not limited to the above ap-
plications, but can make contributions in all cases in which
addressing multi-information fusion challenges is needed,
which is generally encountered in many data-intensive re-
search areas like smart power grids and cities, as well as
intelligent transport and health care.
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