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Abstract: Arable soils significantly contribute to atmosphere pollution through N2O emissions due to
the massive use of N-based fertilizers and soil managements. N2O formation in the soil occurs mainly
through nitrification and denitrification processes, which are influenced by soil moisture, temperature,
oxygen concentration, pH, and the amount of available organic carbon and nitrogen. This review
synthetically presents the mechanisms of N2O formation and emission in arable land and some of
the current strategies to improve crop nutrient use efficiency. Biological nitrification inhibitor-based
agronomic strategies are also presented as future prospects for the sustainable management of crops,
which is missing in most of the reviews.
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1. Introduction

Agricultural activities are currently heavily affected by climate change but are also a
driver of climate change itself. Agronomic practices significantly contribute to emissions of
a key greenhouse gases (GHGs), mainly in the form of nitrous oxide (N2O) emitted directly
from managed soils through microbial activities and due to the use of synthetic/organic
nitrogen fertilizers. Strategies to mitigate soil N2O emissions are critical, as they are long-
living GHGs with a radiative force that is ~300 times higher than CO2 [1]. Over the last
decades, N2O emissions from the agricultural sector showed a worldwide increase, and the
largest contributions were from Asia (63%), followed by the Americas (20%), Europe (13%),
and Africa (3%) [2]; moreover, N2O represents the main stratospheric ozone-depleting
substance and is predicted to remain so in this century [3].

There are different agricultural practices responsible for GHG emissions, in particular
for N2O emissions into the atmosphere. Among these, we can include the following:

- Nitrogenous mineral fertilization [4,5] in its scheduling [6], methods, and fertilizer
form [7];

- Organic fertilization [8,9];
- Irrigation in its methods [10] and scheduling [11,12];
- Pastures [6,13];
- Tillage systems [10];
- Cultivated plant species [14].
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Current agricultural practices, such as soil management and fertilization, are often
responsible for low nitrogen use efficiency. Approximately only half of the N fertilizer
inputs are recovered in the harvested yield [15]. Consequently, N application is likely
to cause losses in the agroecosystem. Nitrate can be leached to the soil and surface wa-
ters [16,17], ammonia emissions can easily volatilize from topsoil soon after N fertilizer
application [18], and gaseous N2O is emitted because of nitrification and denitrification
processes [19]. Accordingly, increasing NUE is regarded as an effective measure to protect
the environment and enhance crop production [20].

To enrich our understanding of the concurrent effect of crop type (being characterized
by physiological and genetic traits) and agronomic management on NUE, it is crucial
to analyze the whole cropping system following the sequence of crops and fallow over
time [21] and to study the N processes driven by microbiota, which is responsible for
the immobilization of N and the availability of N mineral forms and tightly interacts
with C dynamics [22]. Although the extent that agricultural soils are the dominating
source of N2O is well established, the complex relationship underlying microbial produc-
tion/consumption processes and its links to biotic (e.g., inter- and intraspecies competition,
plant–microbe interaction) and abiotic (e.g., soil, climate, and agronomic practices) factors
requires an interdisciplinary cooperation and knowledge transfer between the scientific
communities working on agronomic practices, soil microbial processes, microbial diversity,
biosphere–atmosphere exchange, and modeling.

The aim of this review is to provide a brief overview of the biological processes
involved in soil N2O emissions and the key factors controlling its production, as well as
the mitigation strategies. Prospectives to mitigate GHG emissions from cropping systems
are also provided through new strategies that allow for ammonium to be retained longer in
the soil. This issue is not addressed much in most of the reviews, and this paper aims also
to fill this gap.

2. Soil Nitrous Oxide Emissions from Arable Soils: Microbial Processes and Key
Controlling Factors
2.1. Nitrous Oxide Production Pathways

N2O is produced through pathways interrelated and interacting to share intermediates
or products. These pathways include the following:

(a) Nitrification-related pathways, including ammonia (hydroxylamine) oxidation and
nitrite oxidation—respectively operated by chemoautotrophic ammonia-oxidizing
bacteria (AOB) and archaea (AOA), and nitrite-oxidizing bacteria (NOB)—and the
nitrifier denitrification consisting in the reduction in nitrite by ammonia-oxidizing
bacteria (Figure 1).

(b) Heterotrophic nitrification, operated by heterotrophic bacteria and fungi, consists of
ammonia or organic compound oxidation (Figure 2).

(c) Heterotrophic denitrification, operated by bacteria and fungi, consists of a microbial
respiratory process that reduces oxidized mineral forms of N to gases, including N2O
(Figure 3).
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Nitrification is the biological conversion of ammonium in nitrite or nitrate (nitri-
fier nitrification, NN) and is performed by different groups of microorganisms, includ-
ing ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and nitrite-
oxidizing bacteria (NOB) [23]. Ammonium oxidation, the first step of the NN pathway
and catalyzed by the amoA gene encoding ammonia monooxygenase (AMO), is performed
by AOA and AOB [24]. Nitrite oxidation, the second step of NN, is catalyzed by the nxrA
or nxrB genes encoding nitrite oxidoreductase and is performed by NOB [25,26]. N2O is
produced during ammonium oxidation as a byproduct of the conversion of NH2OH, an
intermediate product of NN.

Heterotrophic nitrification is a further pathway producing N2O. This pathway, op-
erated by bacteria and fungi, consists of transformations of ammonium ions or labels of
organic molecules to produce NO2

− or NO3
−, but the heterotrophic bacteria perform am-

monia transformation by genes coding for AMO-type enzymes [27]. However, information
regarding this pathway is scarce compared to that on autotrophic nitrification. It is known
that this pathway prevails in acidic soils, such as forest soils, but recent studies also found
it in arable soils [27].

Ammonia-oxidizing bacteria can also perform NO2
− reduction through the nitrifier

denitrification (ND) pathway [28]. In this pathway, ammonium is oxidized to NO2
−,

followed by NO production that is further reduced to N2O. Ammonia oxidation is the
rate-limiting step for the whole nitrification process [29], so it represents a critical step for
the production of the nitrification-originated N2O.

Denitrification is performed by heterotrophic microbes and involves the reduction in
nitrate and nitrite in the presence of carbon availability and leads to N2 synthesis. During
these transformations, N2O is generated as a byproduct. Different reductases are involved
in the bacteria denitrification pathway [30]. The nitrate reductase, encoded by narG or
napA genes, catalyzes the NO3

− reduction to NO2
−; the nitrite reductase, encoded by nirK

or nirS genes, catalyzes the NO2
− reduction to NO; the nitric oxide reductase, leading to

N2O formation, is mediated by the cnorB or qnorB genes; and the nitrous oxide reductase,
encoded by the nosZ gene, which catalyzes the reduction in N2O to N2. Fungi produce
N2O through a nitrite-reducing system consisting of a copper–nitrite-containing reductase
encoded by nirK homologs and a cytochrome P45 nitric oxide reductase encoded by the
P450nor gene [31].

Extensive field measurements of N2O exchange between soils and the atmosphere and
laboratory incubation studies under controlled conditions provide a good understanding
of the emission. Nevertheless, the dynamic and temporal trend of N2O soil emissions
are characterized by ‘hot spots’ with an enormous spatio-temporal variability [32,33]
caused by a multitude of interacting control factors [34]. Among them, the availability of
reactive nitrogen, coming from the use of fertilizer, represents the major driver of soil N2O
emissions. To better understand how soil microorganisms contribute to N2O emissions,
studies that applied next-generation sequencing (NGS) and bioinformatics technologies
for the metagenomic analysis of soil microbiota appear to be of pivotal importance, as
well as a quantitative real-time polymerase chain reaction (qPCR) for the quantification
of the abundance of key genes [35,36]. The extraction of total genomic DNA from soils is
conventionally used as a template to perform metagenomic studies by High-Throughput
Sequencing (HTS) or qPCR [37].

2.2. Drivers of Nitrous Oxide Production and Soil Emissions

Microbial N2O production is affected by several key factors such as soil oxygen levels,
water content, pH, temperature, and the availability of nitrogen and carbon. Those factors
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are, in turn, influenced by climate conditions, soil texture, soil and crop management, and
fertilizer type. Soil microbial biomass, responsible for nitrification and denitrification and
of N2O production emissions, requires adequate environmental conditions that control the
N2/N2O ratio [38].

2.2.1. O2 Levels

Soil oxygen level (O2) is the key factor simultaneously controlling nitrification and
denitrification by influencing both processes and determining the partitioning of the end
products between N2 and N2O [39]. Enzymes involved in N2O production are sensitive
to O2. soil O2 concentration is probably the most critical variable that directly regulates
N2O production and consumption at the cellular level. It is well known that high O2 levels
in the soil promote N2O production by nitrifier nitrification and reduce N2O production
by heterotrophic denitrification and nitrifier denitrification. Moreover, high O2 levels
inhibit N2O reductase, the only enzyme catalyzing a reduction in N2O to N2, resulting in
a net emission of nitrous oxide gas. On the other side, at moderately low O2 levels, N2O
production is mainly promoted by nitrifier denitrification due to an increasing expression of
denitrification enzymes in AOB, whereas at very low O2 levels, heterotrophic denitrification
dominates on the other N2O producing processes. Song et al. [40] found that the soil N2O
concentrations increased quadratically as soil O2 decreased during hot moments in dryland
agricultural soil in Northern China, with the highest N2O production occurring when O2
levels dropped below 0.2%.

O2 levels in the soil are affected by soil texture. It is generally considered that fine-
textured soils provide more favorable conditions for N2O emissions by denitrification than
coarser-textured soils that favor nitrification [39,41]. This occurs because fine-textured soils
have small pores that become more easily anaerobic after rainfall or irrigation and remain
that way for longer durations than coarser-textured soils.

2.2.2. Water Content

Soil humidity affects N2O emissions by influencing O2 availability for biological trans-
formations. Irrigation and precipitation increase soil water content, thus reducing the
pore space that can be occupied by oxygen and influencing the soil O2 diffusion in the
water phase, which is much lower than in air. From this consideration, it follows that the
diffusion rate of O2 in the soil following heavy rain or irrigation declines below the soil
O2 consumption rate by microbes. The water-filled pore space (WFPS), a parameter that
combines the soil water content with the soil’s physical properties, such as soil porosity and
apparent density, is inversely correlated with O2 availability. The highest N2O emissions
occur for a WFPS of 60–65% and are mainly attributed to denitrification, whereas nitrifica-
tion is responsible for N2O emissions for a WFPS below 60% [11]. For higher WFPS levels
(70–90%), N2O emissions are mainly due to denitrification, but in soils saturated by water,
N2O emissions are minimal due to N2O consumption during heterotrophic denitrification
(Figure 4).

The irrigation dose, by influencing the soil moisture, affects N2O emissions. Carbonell-
Bojollo et al. [42] report that a full irrigation dose on crop demand produces more N2O
than a reduced dose, whereas Guo and colleagues [43] report that an excessive water in a
vineyard increased N2O loss. These findings highlight the role of irrigation management in
nitrous oxide production.
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2.2.3. pH

pH affects N2O emissions by affecting the growth of microbes. Acid pH is more
beneficial to nitrifiers than denitrifiers. More specifically, the growth of ammonia-oxidizing
bacteria (AOB) is limited in acid soils—in which optimal growth is restricted to neutral and
subalkaline soils—but not ammonia-oxidizing archaea (AOA), which have been detected
in a wide range of soil pH from acid (pH < 5) to alkaline values (pH > 7) [44,45]. The
causes of limited growth of AOB in acid soil might be attributed to the limited diffusivity
of NH4

+ across the AOB membrane upon acid pH, which instigates the strong ionization
of NH3 to NH4

+, limiting AOB’s ability to oxidize. Acid pH also favors heterotrophic
nitrification, promoting fungi growth using organic over inorganic N [46]. On the contrary,
the alkaline environment strongly affects microbial denitrification [47]. Alkaline soils
promote denitrification because reductase activities are more instigated at alkaline pH [48].

Long-term or excessive application of N fertilizers can lead to soil acidification [49],
which promotes N2O emissions. Different approaches have been tested to counteract soil
acidification. Among these, pH change through soil liming is one of the most efficient
strategies to mitigate soil N2O emissions from acid soils [50].

2.2.4. Temperature

Temperature is another key factor controlling N2O production. N2O emissions increase
with increasing temperature up to 35 ◦C [51]. Nitrification and denitrification seem to
respond similarly to temperature. Temperatures above 35 ◦C reduce N2O production, likely
due to enhanced O2 consumption through an increased microbial respiration, creating
anaerobic conditions, a circumstance that increases the reduction in N2O to N2 [51]. Soil
texture is a factor affecting the temperature sensitivity of N2O emissions. Cui et al. [52]
showed that the temperature sensitivity of N2O emissions was lower as soil texture became
more clayey. This might occur because in a warming environment, clay soil has a greater
possibility to create an anaerobic microenvironment as a result of the greater oxygen
consumption resulting from C mineralization in small unconnected pores, which would
accelerate N2O production by denitrifiers.

2.2.5. Nitrogen and Carbon Availability

Soil nitrogen (N) availability is the main driver of N2O production [53]. Different N
forms are used by soil microbes for their growth, contributing to nitrous oxide emissions
from arable soils. Therefore, N fertilization is the main cause for environmental pollution by
nitrogen. The ammonium in urea and ammonium nitrate fertilizers is rapidly transformed
after their application in the field into nitrate through nitrification, thus producing a sub-
strate (NO3

−) utilizable by autotrophic and heterotrophic microbes through denitrification.
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Under soil conditions promoting nitrification, a decrease in the amount of NH4
+ and an

increase in NO3
− in the soil occurs during the N2O emission peak, as NO3

− is being
produced while NH4

+ is being consumed by nitrifiers [54].
Heterotrophic denitrifiers use a carbon (C) source as an electron donor to produce

nitrous oxide under anaerobic conditions [53]. However, the quantity and quality of soil
carbon affect denitrification [55]. As the quantity of C available to denitrifiers increases,
the rate of denitrification increases if a sufficient NO3

− substrate is present and anaerobic
conditions occur. C in soil derives from organic fertilization through the deposition of
manures and slurries and from the mineralization of organic matter or root exudation.
Increasing availability of labile C in the soil can enhance O2 consumption due to an en-
hanced microbial respiration, thus increasing anaerobic conditions that favor denitrification
and, in turn, N2O production. However, excessive oxygen consumption due to enhanced
respiration because of higher labile carbon content can limit oxygen availability to microbes
and favors complete denitrification to N2.

The C/N ratio might affect soil N2O emissions, even if contrasting results have been
found. For instance, negative [56], positive [57], or no relationships [58] between the soil
C/N ratio and N2O emissions were observed in field studies, evidencing that the soil
C/N ratio alone may be insufficient to predict N2O emissions, unlike labile forms, such as
soluble organic carbon and particulate and light fraction organic carbon, which are more
palatable to N2O producers.

3. Strategies for Improving Nitrogen Use Efficiency by Crops and Mitigating N2O
Emissions in Agro-Ecosystems

In the last 50 years, the EU has become increasingly concerned with the efficiency
of the use of fertilizers. Indeed, these substances may exert strong beneficial effects in
agriculture, but they also hold the potential to negatively impact human health and envi-
ronmental safety.

This is particularly true for nitrogen due to the peculiar characteristics of such a
nutrient. Indeed, on one side, N has a huge effect on crop productivity and, therefore, its
fertilization rate is often pushed far beyond the actual crop demand, as cheap insurance
against yield losses. On the other side, however, this element is known to be rather
mobile in soil and prone to high losses through leaching, especially with high rainfall
levels and irrigation volumes [59]. Furthermore, several crops, especially leafy vegetables,
can accumulate luxury nitrogen in their leaves, leading to health problems for humans
and animals. These possible side effects of N fertilization have promoted great concern
regarding the efficiency with which the crops use the N fertilizer that we provide. Obviously,
the efficiency of the use of fertilizers is a general problem that concerns all nutrients, but
the way we have to tackle it for N is rather peculiar due to the aforementioned mobility of
this element in soil.

3.1. Nitrogen Use Efficiency (NUE)

Nitrogen use efficiency (NUE) has been the object of a remarkable research effort. In
general, it has been shown that NUE is rather small for most crops; for example, years ago,
it was estimated that worldwide NUE for cereals used to be as low as 33% [60]. Ref. [61]
highlighted that NUE comprises three main components: (i) nitrogen uptake efficiency
(NUpE), (ii) nitrogen utilization efficiency (NUtE) in producing biomass, and (iii) the
nitrogen harvest index (NHI). NUtE and the NHI can be merged into one component: the
utilization efficiency for harvestable products.

Of those three components, NUpE is rather important since, despite the high demands,
the great majority of crops can only absorb a small fraction of mineral N in the soil. In
this respect, [62] studied the amount of N absorbed by the crop (excluding fibrous roots)
with and without the application of N fertilization and defined the concept of the Apparent
Recovery (REC) of the N fertilizer; these authors proved that the REC declined when the
fertilization rate was increased. Later studies showed that the REC is strongly variable
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depending on the crop species, according to their root physiology and architecture [61,63].
Furthermore, the REC was also shown to be influenced by soil conditions (e.g., it is reduced
by water shortage, which decreases crop growth and N uptake), weather conditions (e.g.,
high rainfall levels), agronomic practices (e.g., high irrigation volumes), and fertilization
methods (e.g., broadcast application over localized application) [64,65].

In order to improve NUpE, we can use different tools and strategies as follows [66]:

- Breeding N-efficient genotypes. In the past, several research has been carried out
in order to select physiological, biochemical, and molecular traits affecting nitrogen
uptake by plants through roots. In particular, studies have addressed the spatial
root arrangement in the soil evaluating the root depth, lateral root expansion, and
root length densities, together with a variety of components, such as roots and root
segments [63]. Studies have also been carried out in order to understand the molecular
basis of the transport systems involved in the absorption of NO3

− from the soil and its
systemic fluxes within plants, as well as studies that have been addressed to identify
the Ammonium Transporters (AMTs) and the gene family of the Amino acid Transport
Family (ATF) [63]. All that knowledge has made it possible to start crop breeding
programs with high nitrogen absorption through the introgression of the improved
trait into the gene pool of the new genotype [63].

- Adopting appropriate agronomic practices, with particular reference to, e.g., tillage,
crop rotation, green manuring, intercropping, grafting, the use of biostimulants, and,
obviously, organic/mineral fertilization. This latter aspect (mineral fertilization) is
understandably receiving a lot of attention, for example, through the 4R Nutrient Stew-
ardship [67,68], which provides a framework for applying the right nutrient source at
the right rate, at the right time, and at the right place. Recently, the use of biostimulants
to improve NUE by crops has received more and more attention, with encouraging
results. Navarro-León et al. [69] demonstrated that L-α-amino-acid-based biostimu-
lants enhance plant productivity through improved photosynthesis and increased the
assimilation of essential nutrients, such as nitrogen (N). Cozzolino et al. [70] found
that legume-derived protein hydrolysates and the extract of brown seaweed Ecklonia
maxima applied on the leaves improved the yield and quality of tomato grown in the
field. The use of lignite-derived humic substances applied to the soil has also proven
effective in improving NUE through an improvement in nitrogen uptake efficiency
(NUpE) and nitrogen utilization efficiency (NUtE) by tomato crops [71]. Among bios-
timulants, microbial biostimulants also are currently used in agriculture to improve
the efficiency of the use of fertilizers and, in particular, N fertilizers. Bacteria and other
microorganisms, through their metabolic processes, exude or secrete a wide range of
biochemical compounds into the soil that allow plants to efficiently use nutrients [72].

With particular reference to nitrogen, increasing NUpE should be based on the
following [66]:

a. Determination of the N demand from the crop.
b. Determination of the right N fertilizer rates to meet crop demand, considering the

interactions between crop uptake, soil supply, environmental risks, and field opera-
tion logistics.

c. Correct application techniques, favoring localized over broadcast applications.
d. Selection of the proper nutrient source to ensure the best match between nutrient

availability and crop requirements.

The problem of selecting the right nutrient source brings in the so-called Enhanced Ef-
ficiency N Fertilizers (EEFs), which may play a key role in ensuring a better synchronization
between N root uptake and N release kinetics, which is one of the fundamental aspects used
to reduce the spread of N into the environment. Currently, EEFs can be classified into five
categories: (i) slow-release N fertilizers, (ii) controlled-release N fertilizers, (iii) nitrification
inhibitor-treated N fertilizers, (iv) urease inhibitor-treated N fertilizers, and (v) fertilizers
treated with both nitrification and urease inhibitors [73–75].
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3.2. Slow- and Controlled-Release Fertilizers (SRFs and CRFs)

Slow-release fertilizers (SRFs) are characterized by low solubility in water, and they
include urea-formaldehyde (UF) and isobutylenediurea (IBDU); the first compound releases N
through microbial decomposing activities, which are strongly affected by several environmen-
tal factors, such as temperature and soil characteristics. In contrast, IBDU releases N through
hydrolysis at low temperatures and is, therefore, preferred for winter applications [76]. Field
studies demonstrated the effectiveness of slow-release fertilizers. For example, SRFs improved
the yield of sugarcane [77] and winter Chinese chives [78] and, at the same time, mitigated
the adverse effects of excessive fertilizer use in agricultural practices.

In controlled-release fertilizers (CRFs), N release is regulated by the presence of a water-
insoluble coating, which is made of, e.g., sulfur, organic polymers, inorganic polymers, or
several types of combinations. This coating material slows down the release of fertilizers,
depending on the type of coating, soil temperature, and soil humidity [76,79,80]. Regarding
the type of coating, organic and inorganic materials have been used. Organic polymer
materials are mostly made of thermoplastic resins, such as polyolefin, polyvinylidene
chloride, and copolymers, which cannot degrade easily in soil. Sometimes, natural organic
polymers have been used, such as starch, chitosan, and cellulose. In general, [81] lists
more than 10 types of organic coating materials, with very different characteristics and
release times. Inorganic coating materials are usually made from sulfur and minerals,
such as hydroxyapatite, bentonite, zeolite, and attapulgite. Among these inorganic coating
materials, calcium phosphates (CaPs) have been gaining attention as CRFs due to their
relatively high phosphorus content, pH-dependent solubility in water, and ability to act as
carriers of micro- and macro-nutrients, including nitrogen. The beneficial effects of CRFs
on grain yield and NUE largely depend on the synchronization of the N release rate with
the N needs of crops. By slowing down the release of available N, the CRF reduces N
availability for microbial transformation, limiting soil N2O emissions [82].

In general, SRFs and CRFs have been successfully used in field and vegetable crops,
wherein they have demonstrated an ability to improve NUE, reduce nutrient losses due
to leaching and the volatilization of fertilizers, and provide economic advantages due to
decreased fertilization rates [83] and increased agronomic efficiency. Furthermore, SRFs
and CRFs have been proven to reduce possible toxicity phenomena to plants and seedlings
by reducing the local concentration of ions, which can induce osmotic stress and damage
in the case of traditional fertilizers [84]. On the other hand, SRFs and CRFs have also
shown some disadvantages, mainly related to the lack of reliable methods to forecast the
release of nutrients to the plant; indeed, it has been shown that especially with short-cycled
crops, nutrients may continue to be released after crop harvest in a prolonged manner [85].
In addition, the use of sulfur-coated urea (SCU) can increase soil acidity, while polymer-
coated CRFs with synthetic materials can be difficult to degrade, producing a different
form of pollution. Last, but not least, SRFs and CRFs can be more costly than conventional
N fertilizers [59].

3.3. Nitrification Inhibitors (NIs)

Another way to obtain EEFs is based on the use of the so-called nitrification in-
hibitors (NIs); these compounds decrease the speed of conversion of ammonium to nitrate,
thereby reducing the risk of nitrate leaching and N2O emissions. The most used NIs are
3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) [86–88]. Several stud-
ies show the potential usefulness of such compounds in terms of NUE and environmental
side effects, such as nitrate leaching and N2O emissions [89]. According to a comprehensive
meta-analytic work [89], the reduction in N leaching following the application of NIs was,
on average, 48%. Other authors showed that the use of NIs permitted a decrease in the
number of N applications [86] and a reduction in nitrate concentration in leafy vegeta-
bles [90]. Analogously to CRFs and SRFs, the activity of NIs may depend on soil properties,
such as temperature and pH. In particular, the activity of DMPP is more dependent on
soil type than that of DCD, although the efficacy of both inhibitors was lower in more
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alkaline, low-organic matter soil [91]. The inhibitory activity of DCD and DMPP was
shown to last for, respectively, 50 and 95 days, as measured in incubation experiments with
cauliflower residues [92].

Apart from NIs, urease inhibitors (UIs) can also be used in EEFs. These compounds
block the activity of the urease enzyme, resulting in the inhibition of the hydrolysis of
urea into ammonium. Such activity is beneficial because it reduces the volatilization of
ammonia—which may occur in soils with high pH or poorly buffered against pH changes
where the rapid hydrolysis of the urea may result in the accumulation of ammonia rather
than ammonium—and limits N2O production and, in turn, emissions from the soil to the
atmosphere. Products with known UI activity are N-(n-butyl) thiophosphoric triamide
(NBPT) and N-(n-propyl) thiophosphoric triamide (NPPT). These active ingredients are
found in products with tradenames of Agrotain™ (NBPT) and Limus™ (NBPT and NPPT),
but, to date, it is also possible to find NBPT in other commercial products since this
compound is no longer patent protected. UIs have proven effective in increasing yields
and NUE and protecting against ammonia losses.

Of course, NIs and NUs can also be used in combination with each other in order
to ‘close’ all possible N escape routes, which is not achieved when these inhibitors are
applied individually [73]. It has been shown that the use of UIs reduced the volatilization
of ammonia but increased the volatilization of nitrogen oxides, which was avoided by
combining the two inhibitors [93]. Ref. [94] found that the application of a double inhibitor
combining NBPT and 2-(3,4-dimethylpyrazole-1-YL)-succinic acid (DMPSA) produced a
50% reduction in N volatilization.

Although both NIs and NUs have been proven useful [95], in some circumstances, their
activity may not be sufficient, especially when weather and soil conditions are favorable to
N losses or when excess N doses are used [96]. For these conditions, research is needed
to obtain improved formulations and elucidate possible ways for improved distribution
and better integration with correct agronomic practices to reduce N losses and increase
NUE. Moreover, [59] observed that given the concern of consumers and retailers regarding
healthy food, attention will need to be paid to ensure that there are no or minimal residues
of NUs and NIs and their degradation products in edible vegetable organs.

A survey of the literature shows that all the above types of EEFs have been around
for several years, and a lot of information is available in relation to their behavior in the
environment. However, far less is known about their optimal usage in agriculture (e.g., tim-
ings, dosages, and methods of application), which is strongly affected by the complex
interactions between the environment (soil and weather conditions), crop development,
and the dynamics of the release of nutrients. Furthermore, it is not yet totally clear to what
extent these EEFs can increase NUE, depending on the crop and on main environmental
and agronomic factors. Last, but not least, not much information is available to predict the
environmental impact of these compounds using reliable life cycle assessment methods.

3.4. Fertigation

Fertigation is a valid strategy to increase NUE [96] by crops while decreasing leached
N [97] and fertilizer-induced N2O emissions from soil. Fertigation consists in the application
of nutrients through irrigation systems; it presents advantages over dry fertilization, such
as a more precise N management in coordination with crop demand [98]. By splitting
the nitrogen fertilizer application, so-called ‘high frequency’ fertigation, the risk of nitrate
leaching is minimized [99] and the N uptake by roots is improved [100]. High frequencies
with a low quantity of N fertigation also have a third priority, i.e., to reduce N2O emissions.
By allowing the reduction in fertilizer quantity to be applied each time, high-frequency N
fertigation limits N availability for microorganisms under environmental conditions that
promote N2O production during nitrification and denitrification processes. However, the
benefits of fertigation in improving crop NUE and mitigating N2O production depend
on the N source. It should be expected that there will be greater N2O emissions in crops
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fertigated with urea or ammonium fertilizer than with nitrate-based fertigation [101],
resulting in greater NUE by crops for NO3

−-based fertilizers under high frequencies [102].

4. Future Prospective

To limit soil N2O emissions and improve fertilizer use efficiency by crops, it is nec-
essary to create a low-cost and convenient agronomic strategy that keeps (or improves)
crops’ quantity and quality. Regulating nitrification is central to any strategy for improving
nitrogen use efficiency; one of these strategies could be represented by the biological nitrifi-
cation inhibition (BNI) where nitrification inhibitors exuded from plant roots suppress soil
nitrifying activity, thus favoring N uptake by plant roots [103]. Different botanical species
produce NIs; among these are pasture grasses, such as Panicum maximum Jacq. and Lolium
perenne L., cereal crops, such as Sorghum bicolor L. and Pennisetum glaucum L., and legume
crops, such as Arachis hypogaea L. To some extent, the release of NIs from roots is related
to the plant N status [104] and by the N form applied. So, plants grown with NO3 as a
nitrogen source do not release NIs from roots, whereas plants grown with NH4 as their
nitrogen source release them.

Different molecules have been identified as nitrification inhibitors. For example,
methyl 3-(4-hydroxyphenyl) propionate and sorgoleone are exuded from sorghum roots,
1,9-decanediol from rise roots, and brachialactone linolenic acid and linoleic acid from
Brachiaria humidicola roots. Karanjin, a furanoflavonoid (3-methoxy furano-2′,3′,7,8-flavone),
is obtained from Pongamia glabra seeds. All these BNIs block both AMO and HAO enzy-
matic pathways [105]. However, new molecules potentially having inhibitory properties
have to be discovered or tested. For example, cannabinoids have a molecular structure,
like synthetic inhibitors, and, for this reason, they have the potential ability to inhibit
the enzymatic pathways involved in nitrification. By exploiting the ability of plants to
produce nitrification-inhibiting substances, it could be interesting to develop new cultiva-
tion strategies involving target species in association with BNI species or introduce the
BNI-controlling chromosome region in target plants, which is unable to produce inhibiting
substance constitutively [106]. These new strategies will allow ammonium to be retained
longer in the soil, which will be absorbed and assimilated easily by the target crops. In
this way, the effectiveness of fertilizer uses increases, and fewer nitrogen fertilizers will be
required by crops, thus preventing the salinization and eutrophication of water bodies.
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