The Bayesian Wilcoxon signed-rank test

6. Proofs Then we can write the integral i2) as follows :
6.1. Proof of Theorem 1
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By some algebraic manipulations, it follows that
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6.2. Proof of Theorem 2
From @), settinga (2°) = s— 0 it can be easily seen that EP(Z> 22"
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Note that, Go(min(z,Z)) is a singular distribution on
the cartesian produck x Z’.  Hence, we can write
dGo(min(zZ)) = 6,(Z)dGy(2)dZ. As example consider g3 proof of Theorem 3
the multivariate Normal distribution
From @), settinga (2') = sanddG = &, it can be easily
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which tends to &(Z)N(z,0,1) for p — 1.  Since EP(Z>-Z2)=0 ifZy<0
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in (2) as follows :
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where the last result follows froml8). Therefore from
(16-20) and (L4-15), the posterior expectation is
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Its extrema are found when botfy ) (b) andl_; «)(b)
are equal to, respectively, 0 (minimum) and 1 (maxi-
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3. This can be proven by using a stick-breaking construc-
tion of DP from a generi&g and showing that the lower
and upper probabilities?, & are obtained fod Gy = &,

for a suitable choice dfy. Those priors give posterior DPs

with base distribution
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The fact that a sample froohG; is given bydFR, = wodz, +
¥ l_1W; &z, follows from the definition of Dirichlet process
and the discreteness of the support@yf, by taking the
partition ({Zo},{Z1},...,{Zn},R\ {Zo,...,Zn}); the vec-
tor of probabilities(P({Zo}),P({Z1}),...,P({Zn}),P(R\
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{Zy,...,Zn})) has a Dirichlet distribution with parameters
(51,...,1,0), and thugP({Zo}), P({Z1}), . ..,P({Zn})) ~
Dir(s,1,...,1). LetF, be a sample fronDP(s+n,dG,),

the probability ofP(Z > —Z') > ais:
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mum). These extrema have been obtained assuming that

Go = &z, = &. However, this result holds for any other
choice ofGg, sinceGg = &, for a proper choice df mini-
mizes/maximizes the terms involviig, in (16).

6.4. Proof of Theorem 4

The posterior lower and upper probabilities Bf{Z >

—Z') > a are obtained in correspondence of the DP priors

with atomic base distributiodGy = &z, given in Theorem



