# 6. Proofs

# 6.1. Proof of Theorem 1

Since  $\iint I_{[-z',\infty)}(z)d\mathscr{E}[F(z)F(z')] < \infty$ , then

$$\mathscr{E}[P(Z \ge -Z')] = \mathscr{E}\left[\iint I_{[-z',\infty)}(z)dF(z)F(z')\right]$$

$$= \iint I_{[-z',\infty)}(z)d\mathscr{E}[F(z)F(z')].$$
(11)

Let us define the following sets:

$$A = (-\infty, \min(z, z')], B = (-\infty, \max(z, z')],$$
  
$$C = (\min(z, z'), \max(z, z')]$$

then

$$\mathscr{E}[F(z)F(z')] = \mathscr{E}[P(A)P(B)] = \mathscr{E}[P(A)(P(A) + P(C))]$$
$$= \mathscr{E}[P(A)^2] + \mathscr{E}[P(A)P(C)].$$

From the property of the Dirichlet distribution, it results that

$$\begin{split} & \mathscr{E}[P(A)^2] + \mathscr{E}[P(A)P(C)] \\ & = \frac{\mathscr{E}[P(A)](1 + \alpha(\mathscr{Z})\mathscr{E}[P(A)])}{\alpha(\mathscr{Z}) + 1} + \frac{\alpha(\mathscr{Z})\mathscr{E}[P(A)]\mathscr{E}[P(C)]}{\alpha(\mathscr{Z}) + 1}. \end{split}$$

By some algebraic manipulations, it follows that

$$\begin{split} \mathscr{E}[F(z)F(z')] &= \frac{\mathscr{E}[P(A)]}{\alpha(\mathscr{Z}) + 1} + \frac{\alpha(\mathscr{Z})\mathscr{E}[P(A)]\mathscr{E}[P(B)]}{\alpha(\mathscr{Z}) + 1} \\ &= \frac{1}{\alpha(\mathscr{Z}) + 1}G(\min(z, z')) + \frac{\alpha(\mathscr{Z})}{\alpha(\mathscr{Z}) + 1}G(z)G(z'). \end{split}$$

# 6.2. Proof of Theorem 2

From (2), setting  $\alpha(\mathcal{Z}) = s \to 0$  it can be easily seen that

$$\mathscr{E}\big[P(Z \ge -Z')\big] = \iint I_{[-z',\infty)}(z) dG(\min(z,z')). \tag{12}$$

Note that,  $G_0(\min(z,z'))$  is a singular distribution on the cartesian product  $Z \times Z'$ . Hence, we can write  $dG_0(\min(z,z')) = \delta_z(z')dG_0(z)dz'$ . As example consider the multivariate Normal distribution

$$\left[\begin{array}{c} Z \\ Z' \end{array}\right] \sim N\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right),$$

which tends to  $\delta_z(z')N(z,0,1)$  for  $\rho \to 1$ . Since  $dG_0(\min(z,z')) = \delta_z(z')dG_0(z)$ , then we have  $\mathscr{E}\big[P(Z \ge -Z')\big] = \int I_{[0,\infty)}(z)dG_0(z)$ .

The posterior is found for  $\alpha(\mathscr{Z}) = s + n \rightarrow n$  and

$$G = G_n = \frac{1}{n} \sum_{i=1}^{n} I_{[Z_i, \infty)}.$$

Then we can write the integral in (2) as follows:

$$\begin{split} &\mathscr{E}[P(Z \ge -Z')|Z^n] \\ &= \frac{1}{n(n+1)} \left[ \int I_{[-z',\infty)}(z) \sum_{i=1}^n \delta_{Z_i}(z) \sum_{i=1}^n \delta_{Z_i}(z') dz dz' \right. \\ &+ \left. \iint I_{[-z',\infty)}(z) d\left( \sum_{i=1}^n I_{[Z_i,\infty)}(\min(z,z')) \right) \right] \end{split}$$

Given that

$$I_{[a,\infty)}(\min(z,z')) = \begin{cases} 1, & z,z' \ge a, \\ 0, & otherwise \end{cases}$$
 (13)

which implies that  $dI_{[a,\infty)}(\min(z,z')) = \delta_{(a,a)}(z,z')dzdz',$  then,

$$\iint I_{[-z',\infty)}(z)d\sum_{i=1}^{n}I_{[Z_{i},\infty)}(\min(z,z')) = \sum_{i=1}^{n}I_{[0,\infty)}(Z_{i}). \quad (14)$$

It also holds that

$$\iint I_{[-z',\infty)}(z) \sum_{i=1}^{n} \delta_{Z_i}(z) \sum_{i=1}^{n} \delta_{Z_j}(z') dz dz' = \sum_{i=1}^{n} \sum_{j=1}^{n} I_{[-Z_j,\infty)}(Z_i).$$
(15)

Therefore,

$$\begin{split} \mathscr{E}[P(Z \ge -Z')|Z^n] \\ &= \frac{\left[\sum_{i=1}^n \sum_{j=1}^n I_{[-Z_j,\infty)}(Z_i) + \sum_{i=1}^n I_{[0,\infty)}(Z_i)\right]}{n(n+1)} \end{split}$$

# 6.3. Proof of Theorem 3

From (2), setting  $\alpha(\mathscr{Z}) = s$  and  $dG = \delta_{Z_0}$  it can be easily seen that

$$\mathscr{E}[P(Z \ge -Z')] = 0$$
 if  $Z_0 < 0$   
 $\mathscr{E}[P(Z \ge -Z')] = 1$  if  $Z_0 > 0$ 

and thus those are the lower and upper bounds of  $\mathscr{E}[P(Z \ge -Z')]$ .

When  $\alpha(\mathscr{Z}) = s + n$  and  $G = G_n$  we can write the integral

in (2) as follows:

$$\mathcal{E}[P(Z \ge -Z')|Z^{n}] = \frac{1}{(s+n)(s+n+1)}$$

$$\left[s^{2} \iint I_{[-z',\infty)}(z) dG_{0}(z) dG_{0}(z') + s \iint I_{[-z',\infty)}(z) \sum_{i=1}^{n} \delta_{Z_{i}}(z') dG_{0}(z) dz' + s \iint I_{[-z',\infty)}(z) \sum_{i=1}^{n} \delta_{Z_{i}}(z) dG_{0}(z') dz + \iint I_{[-z',\infty)}(z) \sum_{i=1}^{n} \delta_{Z_{i}}(z) \sum_{j=1}^{n} \delta_{Z_{j}}(z') dz dz' + \iint I_{[-z',\infty)}(z) d\left(\frac{s}{s+n} G_{0}(\min(z,z')) + \sum_{i=1}^{n} I_{[z_{i},\infty)}(\min(z,z'))\right)\right].$$
(16)

Assuming that  $dG_0 = \delta_b$ , with  $b \neq Z_1, \dots, Z_n$ , one has

$$\iint I_{[-z',\infty)}(z)dG_0(z)dG_0(z') = I_{[0,\infty)}(b), \tag{17}$$

$$\iint I_{[-z',\infty)}(z) \sum_{i=1}^n \delta_{Z_i}(z')dG_0(z)dz' = \sum_{i=1}^n I_{[-z_i,\infty)}(b), \tag{18}$$

$$\iint I_{[-z',\infty)}(z) \sum_{i=1}^n \delta_{Z_i}(z)dG_0(z')dz = \sum_{i=1}^n I_{[-z_i,\infty)}(b), \tag{19}$$

$$\iint I_{[-z',\infty)}(z)d\left(G_0(\min(z,z'))\right) = I_{[0,\infty)}(b), \tag{20}$$

where the last result follows from (13). Therefore from (16-20) and (14-15), the posterior expectation is

$$\mathscr{E}[P(Z \ge -Z')|Z^n] = \frac{1}{(s+n)(s+n+1)}$$

$$\left[ s^2 I_{[0,\infty)}(b) + 2s \sum_{i=1}^n I_{[-Z_i,\infty)}(b) + \sum_{i=1}^n \sum_{j=1}^n I_{[-Z_j,\infty)}(Z_i) + s I_{[0,\infty)}(b) + \sum_{i=1}^n I_{[0,\infty)}(Z_i) \right].$$

Its extrema are found when both  $I_{[0,\infty)}(b)$  and  $I_{[-z_i,\infty)}(b)$  are equal to, respectively, 0 (minimum) and 1 (maximum). These extrema have been obtained assuming that  $G_0 = \delta_{Z_0} = \delta_b$ . However, this result holds for any other choice of  $G_0$ , since  $G_0 = \delta_b$  for a proper choice of b minimizes/maximizes the terms involving  $G_0$  in (16).

#### 6.4. Proof of Theorem 4

The posterior lower and upper probabilities of  $P(Z \ge -Z') > a$  are obtained in correspondence of the DP priors with atomic base distribution  $dG_0 = \delta_{Z_0}$  given in Theorem

3. This can be proven by using a stick-breaking construction of DP from a generic  $G_0$  and showing that the lower and upper probabilities  $\mathcal{P}, \overline{\mathcal{P}}$  are obtained for  $dG_0 = \delta_{Z_0}$  for a suitable choice of  $Z_0$ . Those priors give posterior DPs with base distribution

$$dG_n = \frac{s}{s+n}\delta_{Z_0} + \frac{1}{s+n}\sum_{j=1}^n \delta_{Z_j}$$

The fact that a sample from  $dG_n$  is given by  $dF_n = w_0 \delta_{Z_0} + \sum_{j=1}^n w_j \delta_{Z_j}$  follows from the definition of Dirichlet process and the discreteness of the support of  $G_n$ , by taking the partition  $(\{Z_0\}, \{Z_1\}, \dots, \{Z_n\}, \mathbb{R} \setminus \{Z_0, \dots, Z_n\})$ ; the vector of probabilities  $(P(\{Z_0\}), P(\{Z_1\}), \dots, P(\{Z_n\}), P(\mathbb{R} \setminus \{Z_0, \dots, Z_n\}))$  has a Dirichlet distribution with parameters  $(s, 1, \dots, 1, 0)$ , and thus  $(P(\{Z_0\}), P(\{Z_1\}), \dots, P(\{Z_n\})) \sim Dir(s, 1, \dots, 1)$ . Let  $F_n$  be a sample from  $DP(s+n, dG_n)$ , the probability of  $P(Z \ge -Z') > a$  is:

$$\mathscr{P}[P(Z \ge -Z') > a|Z^n] = \mathscr{P}[P_n > a],$$

with

$$P_n = \iint I_{[-z',\infty)}(z)d(F_n(z)F_n(z')).$$

By  $dF_n = w_0 \delta_{Z_0} + \sum_{j=1}^n w_j \delta_{Z_j}$ , one has

$$\begin{split} P_n &= \iint I_{[-z',\infty)}(z) (w_0 \delta_{Z_0}(z) + \sum_{j=1}^n w_j \delta_{Z_j}(z)) \cdot \\ & \cdot (w_0 \delta_{Z_0}(z') + \sum_{j=1}^n w_j \delta_{Z_j}(z')) dz dz' \\ &= w_0^2 I_{[0,\infty)}(Z_0) + 2w_0 \sum_{j=1}^n w_i I_{[-Z_i,\infty)}(Z_0) + \sum_{j=1}^n \sum_{j=1}^n w_i w_j I_{[-Z_i,\infty)}(Z_j). \end{split}$$

which gives

$$P_n = \sum_{i=1}^n \sum_{j=1}^n w_i w_j I_{[-Z_i,\infty)}(Z_j) \quad \text{if } Z_0 < -\max Z_i$$

$$P_n = w_0(2 - w_0) + \sum_{i=1}^n \sum_{j=1}^n w_i w_j I_{[-Z_i,\infty)}(Z_j) \text{ if } Z_0 > \max Z_i.$$