

ISTI-TR-2022/001

ISTI Technical Reports

SpaghettiData and SpaghettiPlot:
two Python classes for analysing

and visualising SST trends)
Oscar Papini, ISTI-CNR, Pisa, Italy

 ISTI-TR-2022/001

SpaghettiData and SpaghettiPlot: two Python classes for analysing and visualising SST trends
Papini O.
ISTI-TR-2022/001

This document describes the formalization of a "spaghetti plot" (i.e. a graph that captures the
sea surface temperature trends in a target area) as a Python object, for which we defined two
custom classes (SpaghettiData and SpaghettiPlot). In particular, we list the attributes and
methods of these classes, together with the utilities that we use to create objects belonging to
them.

Keywords: Sea surface temperature, Image analysis.

Citation
Papini O., SpaghettiData and SpaghettiPlot: two Python classes for analysing and visualising SST trends). ISTI
Technical Reports 2022/001. DOI: 10.32079/ISTI-TR-2022/001.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Area della Ricerca CNR di Pisa
Via G. Moruzzi 1
56124 Pisa Italy
http://www.isti.cnr.it

SpaghettiData and SpaghettiPlot: two Python
classes for analysing and visualising SST trends

Oscar Papini

24th January 2022

In a previous technical report [1] we described a tool which is able to produce a
so-called spaghetti plot, i.e. a graph that captures the sea surface temperature (SST)
trends in a chosen period of time in a target area (see Figure 1). We used the spaghetti
plots to study the problem of detecting and classifying mesoscale events patterns in
an upwelling ecosystem, obtaining some preliminary but promising results [2; 3].

This report describes the formalization of a spaghetti plot as a Python 3 object,
for which we defined two custom classes (SpaghettiData and SpaghettiPlot). We
list the attributes and methods of these classes, together with the utilities that we
use to create objects belonging to them.

36.5° N

37.0° N

9.5° W 9.0° W 05-Aug 07-Aug 09-Aug 11-Aug 13-Aug

14

15

16

17

18

19

20

21

Te
m

pe
ra

tu
re

(°
C

)

Figure 1: Example of a spaghetti plot. Each graph in the plot on the right describes the trend
of the SST in the point with the same colour in the reference grid on the left. (Figure taken
from [1].)

1

1 The SpaghettiData and SpaghettiPlot classes

1.1 SpaghettiData

The SpaghettiData class is used to describe a single plot in the global spaghetti plot.
The spatial references of a SpaghettiData object are contained in its attributes

latitude, longitude, and resolution. These are float numbers representing the
point which the SST values refer to; more precisely, if a SpaghettiData object has
latitude = `, longitude = m and resolution = r, then it is assumed that any SST
value in it is computed by averaging some values in the square§1 (`; `+r)×(m;m+r).
Latitude and longitude are expressed in degrees, with positive values corresponding
to latitude N and longitude E, and negative ones corresponding to latitude S and
longitude W; the resolution is also expressed in degrees, with typical values ranging
between 0.05 and 0.25.

The SST values themselves (in degrees Celsius) are contained in the data attribute.
This is an n × 2 Numpy array where each of the n rows represents a value of the
SST in a moment in time. In particular the two entries of a row are, in order, a
datetime.datetime object and a float for the SST value.

A SpaghettiData object is initialised by

>>> sdata=SpaghettiData(lat,lon,res,temperatures)

where lat, lon and res are floats representing the latitude, longitude and resolution,
and temperatures is a list of pairs of the form (time, SST) as in the previous para-
graph. The class automatically constructs and populates the Numpy array; moreover,
if temperatures=[], then the data attribute of the SpaghettiData object is a 0 × 2
array.

1.2 SpaghettiPlot

An object of type SpaghettiPlot is essentially a collection of SpaghettiData objects,
all belonging to a delimited target area. In particular, given the extension of this area
in terms of the minimal and maximal latitude and longitude (let those numbers be
lat, LAT and lon, LON respectively), and a resolution r, the area is divided in a grid,
whose points have coordinates (`,m) with

` ∈ {lat + ir | i ∈ N} ∩ [lat; LAT),

m ∈ {lon + jr | j ∈ N} ∩ [lon; LON).
(1.1)

§1If a, b ∈ R, then (a;b) is the open interval {x ∈ R | a < x < b} and [a;b] is the closed interval
{x ∈ R | a 6 x 6 b}. Mixed notation, such as [a;b), is admissible. Notice that (a;b) (with a semicolon)
is different from (a, b) (with a comma), which denotes the (ordered) pair whose elements are a and b.
In any case, in this document the context should provide enough information to avoid confusion.

2

In other words, if k and h are the cardinalities of the two sets defined in Equation (1.1),
we have

` ∈ {lat, lat + r, lat + 2r, . . . , lat + (k− 1)r},

m ∈ {lon, lon + r, lon + 2r, . . . , lon + (h− 1)r}.

A SpaghettiData object with latitude = `, longitude = m and resolution = r is
then assigned to each point in the grid with coordinates (`,m).

The attributes min_lat, min_lon, max_lat, max_lon and resolution contain the
geographical information of a SpaghettiPlot object, with the same conventions for
latitudes, longitudes and resolution as those stated in Subsection 1.1.

For simplicity of use in the algorithms, a point of the grid in a spaghetti plot is
not identified with its geographical coordinates (`,m), but with a pair of integers
(i, j) with i ∈ {0, . . . , k− 1} and j ∈ {0, . . . , h− 1}, where k and h are the same as
above. The obvious relations between (`,m) and (i, j) are{

` = lat + ir

m = lon + jr.

The attributes latitude and longitude contain k× h Numpy arrays that are used to
recover the geographical information of a point, i.e. given (i, j) as above we have

latitude[i,j] = `,

longitude[i,j] = m.

The attribute color contains a k×h× 3 Numpy array such that color[i,j] is the
RGB triple (normalized in [0; 1]) of the colour corresponding to the point (i, j) in the
grid (see Figure 1). The colour components are defined as

red =
j

h− 1
, green =

i

k− 1
, blue = 1−

red + green
2

so that points near to each other have similar colours.
Finally, the spaghetti attribute contains the actual data: it is a Python dictionary

indexed on (i, j) such that spaghetti[i, j] is a n× 2 Numpy array equal to the data

attribute of a SpaghettiData object whose latitude and longitude attributes match
the latitude[i,j] and longitude[i,j] values of the SpaghettiPlot object. Please
note that the resolution attributes of the SpaghettiPlot and the SpaghettiData

objects must have the same value.
To initialise a SpaghettiPlot object it is sufficient to provide the geographical

information of the target area:

>>> splot=SpaghettiPlot(min_lat,max_lat,min_lon,max_lon,resolution)

3

Initially all the entries in the spaghetti dictionary are empty arrays; they can be
populated with the method

>>> splot.add_plot_data(spdata)

where spdata is a SpaghettiData object with the same resolution of splot and such
that its latitude and longitude exist in the grid of splot.

The remaining two methods of a SpaghettiPlot object are used to plot its
contents. The plot method produces the actual plot, as seen in the right side of
Figure 1. It has two optional keyword arguments:

• time_range=[time_min,time_max] sets the temporal range of the plot (where both
time_min and time_max are datetime.datetime objects);

• temperature_range=[sst_min,sst_max] sets the range of the SST values to be
displayed in the plot (where both sst_min and sst_max are floats representing the
SST expressed in degrees Celsius).

The plot_reference_grid method produces the reference grid of the plot, as seen in
the left side of Figure 1. An optional keyword argument can be used in this method,
geomap=[mlat,Mlat,mlon,Mlon], which, if set, produces the plot of the reference
grid inside a geographical map whose boundaries are defined by the values of mlat,
Mlat, mlon and Mlon (see Figure 2).

35.0° N

36.0° N

37.0° N

38.0° N

39.0° N

40.0° N

12.0° W 11.0° W 10.0° W 9.0° W 8.0° W 7.0° W 6.0° W

Figure 2: Plot of the reference grid of Figure 1 obtained from plot_reference_grid with the
key geomap=[35,40,-12,-6].

4

2 Creating a SpaghettiData dictionary

Since the information about SST has to be extracted from a series of NetCDF files
(see [1] for more details), and that process may take some time depending on
the number of files, the length of the time period, and the resolution chosen, we
developed a small utility that reads the NetCDF files and stores the information in a
suitable Python dictionary, which can be used in subsequent analyses and also saved
to a file (as a pickled Python object) if needed at a later time.

Like a SpaghettiPlot object, the dictionary requires a target area in terms of
maximal and minimal latitude and longitude, as well as a resolution: it has an entry
for each point of geographical coordinates (`,m) with ` and m as in Equation (1.1).
The value of the entry is a SpaghettiData object with latitude = `, longitude = m

and the provided resolution; however, using the pair of floats (`,m) as the corres-
ponding key gives inconsistent and unreliable results, so we used as key the pair of
(formatted) strings

(f“{`:.xf}”, f“{m:.xf}”)

where x is the maximum number of decimal places between the representations of
min_lat, max_lat, min_lon, max_lon and resolution (see the arguments below).

The utility is called by the command

>>> spdata_dict=create_spaghetti_data(<arguments>)

where <arguments> are the following:§2

• filedirs: list of strings, each representing the path of a directory containing the
NetCDF files with the SST information;

• start_time, end_time: datetime.datetime objects representing the beginning
and the end of the considered time period;

• min_lat, max_lat, min_lon, max_lon, resolution: floats representing the spatial
area covered by the dictionary, as defined above;

• annual_trend=None: if not None, this is a triple of floats (A,ϕ, µ) representing the
coefficients of the annual trend function

T(t) = A · sin(ωt+ϕ) + µ

where t is the time expressed in days and ω = 365.256363004 is the duration
of a sidereal year; if this parameter is set, the annual trend of the SST (which
is assumed to be sinusoidal) is taken into account when computing the SST

§2We list positional arguments first, then keyword arguments—the latter are identified by the fact
that they are followed by the “=” symbol and their default value.

5

values—in particular, if SST(t) is the temperature registered at a time t, then the
SpaghettiData contains the pairs (t, SST ′(t)) instead of (t, SST(t)), with

SST ′(t) = SST(t) −
(
T(t) − T(t0)

)
where t0 is the earliest time contained in the SpaghettiData;

• lower_weight=None: if not None, this is a float representing the weight to be given
to lower quality data in the computation of the SST for a given square of the grid
(see [1, Appendix A] for a brief description of the quality levels);

• discard_threshold=None: if not None, this is a pair (q,N), where q is a float
and N is an integer, representing the minimum quantity of data that a NetCDF
file should have in a square of the grid in order to not be discarded—in fact,
we found that files with too few detected SST values usually produce plots
with a lot of noise, preventing us from performing a proper analysis of the
data; in particular we expect our NetCDF files to contain about one temperature
value every 0.01° in latitude/longitude, so about (100r)2 values in a square with
resolution r: if discard_threshold = (q,N), then a NetCDF file is discarded for
a point (`,m) of the grid if it contains less than max{q(100r)2, N} values in the
square (`; `+ r)× (m;m+ r); if discard_threshold is None, it defaults to q = 0.0

and N = 1, i.e. a file is discarded only if it has no data in the square;

• save_data=False: if True, the method produces in the current directory a pickled
Python object called SpaghettiData_YYYYmmdd_HHMMSS.pickle (with YYYY, mm, dd,
HH, MM, SS being the current year, month, day, hour, minute and second) containing
the dictionary, together with a file called SpaghettiData_YYYYmmdd_HHMMSS.txt

describing the values of the parameters used to produce it.

3 Creating a SpaghettiPlot object

A SpaghettiPlot object can be initialised directly and then populated with data
from several SpaghettiData objects, as we described in Subsection 1.2; however it is
more convenient to have a dedicated utility that does the work for us.

We wrote a function that returns a SpaghettiPlot object already populated
with data that come either from a series of NetCDF files, or from a SpaghettiData

dictionary produced as in Section 2—in fact, in the former case this function actually
creates one by calling create_spaghetti_data.

This utility is called by the command

>>> splot=create_spaghetti_plot(<arguments>)

where <arguments> are the same as create_spaghetti_data together with one addi-
tional keyword argument, load_data, whose value can be either None (default) or

6

a string representing the path of a pickled Python object containing a dictionary
of SpaghettiData, as produced by the utility create_spaghetti_data called with
save_data=True.

The behaviour of create_spaghetti_plot depends on the value of load_data:

• if load_data is None, then all the other parameters are passed to the function
create_spaghetti_data and the resulting SpaghettiData dictionary (which may
be saved with save_data=True) is used to populate a SpaghettiPlot object;

• if load_data is not None, then the corresponding SpaghettiData dictionary is
loaded; in this case

– the values of file_dirs, annual_trend, lower_weight, discard_threshold, and
save_data are ignored;

– the values of min_lat, max_lat, min_lon, max_lon, and resolution are used to
define the target area of the SpaghettiPlot;§3

– the values of start_time and end_time are used to define the time range of
the SpaghettiPlot object, so that SST values in the SpaghettiData dictionary
whose time is outside this interval are not considered.

4 Future development

A SpaghettiPlot object is useful to visualise SST trends in a target area; however,
depending on the dimensions and resolution of that area, the resulting plot can be
hard to read. From our experience, it is very difficult to identify meaningful patterns
when more than 100–120 plots are superimposed in a spaghetti plot.

On the other hand, a SpaghettiData dictionary can be a powerful instrument for
the analysis of SST trends, eventually culminating in a pattern recognition algorithm
for mesoscale events in an upwelling ecosystem. At the moment we are developing
scripts that extract and process statistics (e.g. mean, standard deviation) for the SST
from a SpaghettiData dictionary, in an attempt to recognise peculiar behaviours and
associate them with specific events.

References

[1] Oscar Papini. A tool for the temporal analysis of sea surface temperature maps. ISTI
Technical Reports 2021/011. ISTI-CNR, 2021. doi: 10.32079/ISTI-TR-2021/011.

§3Notice that this function does not check consistency between the values of these parameters and
the corresponding properties of the SpaghettiData dictionary—in particular, if the two values of the
resolution disagree, the resulting plots may be inaccurate.

7

https://doi.org/10.32079/ISTI-TR-2021/011

[2] Oscar Papini, Marco Reggiannini and Gabriele Pieri. ‘SST Image Processing
for Mesoscale Patterns Identification’. In: Engineering Proceedings 8, 5 (2021).
Presented at the 16th International Workshop on Advanced Infrared Technology
and Applications — AITA. doi: 10.3390/engproc2021008005.

[3] Marco Reggiannini et al. ‘Mesoscale Patterns Identification Through SST Image
Processing’. In: Proceedings of the 2nd International Conference on Robotics, Computer
Vision and Intelligent Systems — ROBOVIS. SciTePress, 2021, pp. 165–172. doi:
10.5220/0010714600003061.

8

https://doi.org/10.3390/engproc2021008005
https://doi.org/10.5220/0010714600003061

	The SpaghettiData and SpaghettiPlot classes
	SpaghettiData
	SpaghettiPlot

	Creating a SpaghettiData dictionary
	Creating a SpaghettiPlot object
	Future development

