TP
L ML

et Ay s e = T
1 L T i
: - NP i *
e o :
SR
z. g:.
i

ATBL 00

Workshop on Formal Methods
and Computer Security

Thursday, July 20, 2000

Chicago




Workshop Program

9:00 - 10:30: Session I: Keynote Address
e D. Tygar (UC Berkeley)
10:30-10:45: Break

10:45 - 12:15: Session IX
¢ “Formal Verification of Non-Repudiation Protocols - A Game Approack”
3. Kremer, J.-F. Raskin (Universite Libre de Bruxelles, Beigium)

e “On The Security of Authenticated Key-Exchange Protocols”
R. Canetti (IBM T.J.Watson Research Center),
H. Krawczyk (Technion, Israel, and IBM T.J.Watson Research Center)

« “A Comparison and Combination of Theory Generation and Model Checking
for Security Protocol Analysis”
N. Hopper, S. Seshia, J. Wing {Carnegie Mellon University)

12:15-1:30: Lunch

1:30-2:45: Session III
e “A CAPSL Connector to Athena”,
J. Millen (SRI International)

e “Design of a CIL Connector to Maude”,
G. Denker (SRI International)

e “Local Secrecy for State-Based Models”™,
H. Ruess (SRI International), J. Millen (SRI Internationai)

2:45-3:15: Break

3:30-4:45: Session IV
e “A Brutus Model Checking of a Spi-Calculus Dialect”
S. Gnesi (CNUCE-CNR, Pisa, Italy), D. Latella, (IEI-CNR, Pisa, Ttaly),
G. Lenzini (CNUCE-CNR, Pisa, Italy)

o “Categorizing Attacks on Cryptographic Protocols Based on Intruder’s Roles and Behaviour
C. Xu (Duke University), G. Kedem (Duke University),
F. Gong (Advanced Networking Research, MCNC)

o “Verification Method for Possibility of Parallel Attack on Multiple Sessions”
K. Negishi (Hitachi and Tokyo Insitute of Technology, Japan),
N. Yonezaki (Tokyo Institute of Technology, Japan)

J1

¢ “Interpreting Strands in Linear Logic”
L. Cervesato (ITT Industries), N. Durgin (Stanford Unversity),
M. Kanovich (University of Pennsylvania), A. Scedrov (University of Pennsylvania)




A " Brutus” model checking of
a spi-calculus dialect
Extended Abstract

S. Gnesif D. Latella * G. Lenzini f

June 23, 2000

1 Introduction

Recently there has been a wide interest in applying formal methods to spec-
ify and verify cryptographic protocols (see for example {2, 7, 4, 16, 19, 23,
22, 25, 10, 17]}. These approaches range from the use of a process calculus
to model cryptographic protocols and using equivalence relations to prove
security properties on them, to the use of a general or special purpose model
checkers. In this paper we propose a model checking approach for verify-
ing security properties for cryptographic protocols expressed into a process
calculus derived from the spi-calculus [2], a cryptographic version of the
m-calculus [20, 21).

The semantics of the spi-calculus is usually given via labeled transi-
tion systems, while secrecy and integrity properties can be expressed via
may-testing and barbed equivalences [3]; unfortunately this approach is not
immediately suitable for automatic verification. Indeed, Abadi and Gordon
defined in [1] a bisimulation, called frame bisimulation, which is sound re-
spect to testing equivalence, but that requires several levels of quantification
over infinite domains making any automatic verification impossible. Later
works tried to reduce quantifications in order to move towards the design of
verification tools. In [12] an alternative notion of framed bisimilarity, called
fenced bisimilarity, has been defined in such a way that completeness and
soundness with respect to frame bisimilarity are preserved. Although one
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of the original quantifications was eliminated, this result is not not suff-
clent to guarantee the development of a fully automatic verification. In [5]
a trace equivalence and weak bisimulation semantics have been defined over
an environment-sensitive labeled transition system. The former preserves
may-testing while the latter preserves barbed equivalence. This approach
avoids any quantification over contexts, but to our knowledge, no verification
tool has been developed yet on these semantics.

In this paper we propose a preliminary framework in which protocols,
expressed in a dialect of the spi-calculus, can be verified using model checking
algorithms [8]. In particular we define a formal semantics for a dialect of
the spi-calculus based on labeled transition systems in such a way that the
model checking environment developed by Clarke, Marrero and Jha [10],
can be re-used. Recently this environment has been extended with both a
first order linear temporal logic [9], used to specify security properties, and
partial order reduction techniques [11]. These two new results make this
approach interesting and effective for automatic verification.

In addition, while defining the semantics of our spi-calculus dialect we
introduce a definition of knowledge that makes our labeled transition system
finite branching on input actions. In fact, one of the most difficult issues
regarding finite-state behavior of spi-calculus is related to the possibility of
receiving messages drawn from an infinite set of data. In this paper we
present a first attempt for coping with this problem. We want to point out
that the use of finite knowledge notion it still under study and actually it
can be applied only under the hypothesis that any honest agent involved in
a protocol knows, a priori, the structure of all the messages it receives. This
constraint holds for many security protocols proposed in the literature.

The rest of the paper is organized as follows. In Section 2 we summarize
the assumptions under which we have developed our study, in Section 3
we describe the syntax of our spi-calculus dialect, in Section 4 we define
the notion of knowledge used in the language semantics which is defined in
Section 5. Finally in Section 6 we introduce the main intuitions explaining
how model checking can be performed using the "Brutus” model checker of
Clarke, Jha and Marrero. In Section 7 we conclude pointing out some future
work.

2 Assumptions

Generally, when reasoning about correctness of cryptographic protocols one
assumes the presence of a malicious external entity, called attacker. As




some authors have already proposed (see for example [24, 18, 5, 14]) rather
than trying to describe the behavior of the attacker it is much simpler to
assume that the communication network is totally under the control of the
environment. Under this assumption the environment can store, duplicate,
hide or replace messages passing through the network; in addition according
to the rules followed by honest agents, the environment can syntethize new
messages by encryption or by pairing, or it can analyze compound messages
by decryption using the relative decryption key, or by splitting tuples of
sub-messages. '

" Although many different environment capabilities can be defined, the
above ones informally depict the most powerful environment. As Focardi
and Martinelli in [14] formally proved, satisfying properties in presence of
the most powerful environment is a sufficient condition for satisfying them
in presence of less powerful attackers.

In addition we suppose that no private channels between processes exist
and then: (1} whenever a process performs an output action the environment
performs an input action; (2) whenever a process performs an input action
the environment performs an output action; {3) internal process actions do
not require interactions with the environment.

Finally we work under the Perfect Encryption Assumption [18], the aim
of which is to keep separated security issues regarding the protocol itself,
from the robustness of the cryptosystem used to encrypt/decrypt the mes-
sages.

3 Language Specification

In this section we describe our spi-calculus dialect. The syntax of the lan-
guage is given in Table I. We assume given: a set L of channel labels !; a
set K of atomic keys; a set N of atomic names; a set V of variables. We let
a range over channe] labels, k range over atomic keys, n range over atomic
names, fm range over atomic names and keys when no distinction is required,
and z range over variables. Atomic names and keys are used to build mes-
sages, via encryption and pairing. We also suppose the presence of message
terms built using variables or messages still via encryption and pairing. In-
messages and message terms we intend to maintain the structure explicitly
visible. This will be used to perform efficient matching operations.

*Although there are no private chanuels, we want to distinguish different public chan-
nels. Also if not explained in this paper, that is related to the definition of authentication
properties in the logic supported by Brutus. )




A protocol is a parallel composition of agents. Agents syntax is a mod-
ified version of spi-calculus [2]. In particular it includes a null process, 0;
the generation of a new atomic name or key, (new m)P; an input action on
channel g, a(T), that allows the receiving of a message M whose structure
exactly matches the structure of the message term T. An output action,
@(T) allows the sending of a message M over a channel ¢ in this case the
message M is obtained from the term 7 by instantiating each variable with
atomic names or keys. An equality test on messages, [S=T1, can be put as
guard on actions. Also in this case the matching is to be intended guided
by the structure of terms. Finally a fork action, fork P, allows an agent
to create a copy of itself, useful to describe those protocols composed by
multiple runs.

Since we want to avoid any infinite state behavior, we could assume
syntactical restrictions on the use of parallelism and recursion {see for ex-
ample [13]), in such a way to obtain finite control systems. In any case the
potential of infinite behavior is of no practical impact since it will result in
all resources exhausted.

M,N = messages M
m | {M}e | (M, N)
S, Tu= terms T
2| {Sk (S, T) | M
P, Qu= processes P
0 nil
| a(T)- P input
[a(T)-P output
| Pl @ . parallel composition
| fork P fork :
{ (new m)P new name (m is bound in P)
| [S5=T]P match
| p agent identifier
A= process definitions
p Zp defining equation

The definition of free/bound names and variables are defined as usual.

Table 1: Syntax specification.

To illustrate how a cryptographic protocol can be described in our lan-




guage, let us consider a very simple example, where two agents A and B
share keys K,s and Ky with an authentication server . This protocol can
be informally described with the following sequence of actions:

I. 4 - 5: {Kab}f(“
2. § —+B: {Kab};{“
3. 4 - B:{Mx,

where with A —+ B : M we indicate that A sends an atomic message M
to B and respectively that B receives the message M from A. We can express
this protocol in our language as follows:

A Y (new Kup).(new M)(Zar({Kub} ras) Tar( (M iy ))- A
B Y cullyduy)canl{z)y) B
S Y culietr) Tl{ztr )-S5

def

Simple = (new Kg,).(new Ky)(A || S| B)

In order to deal with the structure of messages and message terms, we
introduce the notion of depth.

Definition 1 Let M be a message. The depth of M, depth ,(M), is defined
on the structure of M as follows:

1. depth p4(m) = 1
2. depth o ({M}r) = depth (M) +1
3. depth p ((M, N}} = depth(M) + depth o (N).

Let T be a message term. The depth of T, depth+(T), is defined on the
structure of T as follows:

1. depth(z) =1

2. depthe-({S}:) = depth+(S)+1

3. depth—,—((S, T)) = depthT(S) + d&pthT(T)
4. depthy(M) = depth, (M).

In the following we shall write depti() the particular function meant being
determined by the context.




Shrinking rules

ﬂ,\}/[i'ﬁ U_dec) %@ (l"fst) (_Aiﬁ,r“ﬂ (}*snd}

Expanding rules

e (o) Ay (o)

Table 2: Inference system for message manipulation.

4 Environment Knowledge

In studying cryptographic protocols it is quite important to define a precise
concept of knowledge. By knowledge, it is intended the amount of informa-
tion the environment, or any other agent running the protocol, can generate
at a given moment starting from a set W of messages. The set W, we call
basic knowledge, represents: (a) for the environment the set of messages re-
ally transmitted through the network; (b} for an agent the set of messages
it has received till a given moment. Ia an initial state, W can be empty or
initialized with a set of messages supposed to be known a priori.

In order to model how messages can be handled, we use the inference
system given in Table 2: we say that a message M is deducible from a
set W of messages, and we write W + M, if there exists a proof of M to
have its premises contained in W. The inference system defined encodes all
the operations one can perform on messages. In particular a message M
can be encrypted with a key & obtaining {M}+ (rule Fery); 2 message of
the form {M}, can be decrypted if the corresponding decryption key k is
known? (rule Fg.); two messages M and IV can be combined to form a pair
(M, N); the messages composing 2 pair (M, N) can be extracted (rules i
and snd)-

The inference systems is used to characterize three different concepts of
knowledge:

Definition 2 Let W C M be a finite set of messages. Then:

1. A(W), the analysis of W, is the set of messages W and the ones that
can be inferred starting from W using only shrinking rules;

*Here, without loss of generality, we suppose that the inverse key k™1 needed to decrypt
the message {M }+, is equal to k itself. In other words we suppose that the cryptosystem

used to crypt/decrypt messages is symmetric.




2. S(W), the synthesis of W, is the set of messages A(W) and the mes-
sages that can be inferred using also ezpanding rules;

3. §4W), the d-synthesis of W where d is an positive integer constant,
is the set of messages A{W) and the messages that can be inferred
using also expanding rules to obtain only messages whose depth is at
most d, that is:

SUW) ={M e M: Wk M, depthp (M) < d}

We can notice that, given a finite W the sets A(W) and S%HW) are finite
sets of messages, while S(W) is an infinite set of messages.

5 Semantics

In this section we define the semantics of our language. This semantics de-
fined over labeled transition systems, is very close the one used by Clarke,
Jha and Marrero in [10]. The main difference is that we obtain finite branch-
ing on input transitions by making use of the bounded notion of d-synthesis.

The semantics describes how the overall global state, consisting of the
asynchronous composition of named communicating processes and the en-
vironment, is updated by actions. Each instance of an agent involved in the
protocol is modeled as one of these named processes each augmented with
a local state. A local state consists of the name of the agent, an unique
identifier of the instance, the set of basic messages received by the instance,
and a set of bindings. The unique identifier will be useful in case of multiple
instances of the same agent, usually introduced to model multiple runs of a
protocol. Formally:

Definition 3 A local state I, of an agent P; is a tuple (P, IDy, Wi, 03, P),
where:

e N; is the name of the agent;
e ID; is the unique identifier of the agent;

o W; is the set of messages received by the agent. We will use W; fo
retrieve the knowledge of the agent via the functions defined in Sec-
tion 4.

e o;: V — N UK 15 the the function that represents the set of bindings
for the variables appearing in the the process specification of the agent
N;. We allow a variable to be bounded only to atomic names or keys.




¢ P is the process specification, defining the continuation of its behavior.

Definition 4 4 global state G, is a tuple (Wo, I, I,... | I,,) where:

© Wo C M s the set of messages fetched by the environment (i.e. the
ones passed through the network). In addition we suppose that in a
start state, Wa could be empty or initialized with messages supposed
to be known, a priori, by the environment;

o T; 15 the local state of a honest agent instance running the protocol,
fori=1,... n.

All the transitions are labeled with actions. An action, @, can be: (a) an
output action ID;.a{M}, (b) an input action ID;.a{M), or (c) an internal
action ID;.r, where ID; is the identifier of the agent performing the action,
a is the label indicating the public channel used, and M is the message send
or received. Each possible execution of the model corresponds to a trace,
which is a finite, alternating sequence of global states and actions. Formally
a trace f, issuch that t =Gy - a1 - G5 ... Qn, - Un for some positive integer n
such that G;_, L, Gi for 0 < 4 < n and for the transition relation defined
below.

In the following we only report the most interesting transitions:

(INP) (W91I11"' 7(P£7ID1':W1':UZ'1 a<T)P)’ ’In')
) Way ki, .. (P IDy W0, P, .. In)

where: W) = W; U{M}, for M € SUWpy) with d = aepth(T), and o7 is the
minimal® the set of binding extending o, such that Tol=M;*

In the input action an agent receives a message from the d-synthesis
knowledge of the environment, S%Wgq). In particular in order that the
receive action is successful there should exist a binding o] extending oy,
(ie., ; C o} ), which unifies the message term with the input message.

Notice that finitess of §%(Wpq) implies finite branching on input actions.
This surely is a quite reductive assumption but we want to underline that:
(2) it can be directly applied to many real protocols and in this case for those
protocols we obtain a finite state transition systems; (b) for other critical

*Minimal is to be intended respect to the following partial order relation: ¢ C o iff
Yz such that o{z) is defined, then o(z) = o' (z}.

"With To we indicate the message obtained substituting all the free variable z in T,
with o{z). :




protocols - like BAN-Yahalom [6] where an agent A forwards a message
M without knowing the sub-messages component it, we are studying the
possibility to define some simplifying function preserving security properties,
as done by Hui and Lowe in {15].

(OUT) (WQ1I11"' s(R&'.:IDhWi!ai:E(T)'P)v'“ 7In)
Lo, (Who T« (P IDs, Wiy 3, P )

where: W = Wq U {M}.
In the output action an agent sends a message M = T'g;. According to
our premises, the message is fetched by the environment, and consequently

recorded in Wy

(PAR) (Wao, I, ... (B, ID;, Wy, 05, P || @)oo, In)
[D,'.T’
- (WQJII:'- . 1Ii—11Ii+11 sae Iﬂ:In-{-l'rIﬂ-’{-z)

where: (a} Zn+1 = (Pat1, IDny1, Wat1, 0n41, P), and Fryy is a new name,
IDpy1 is a new agent identifier, Woy1 = Wi, and ¢ = §; (b) Znye =
{Pat2,IDns2, Wnta,0ns2, @), where P is a new name, IDpys is a new
agent identifier, Wpio = W;, and ¢’ = 0.

In case of parallel compositiorn, two new instances of a process are cre-
ated®. Their local states are such that a new agent names and a new agent
identifiers are created for each agent, the set of basic knowledge is inherited
from the father, and the set of binding is reset. All other items in the global
environment remain unchanged.

(FORK) (WQFI].?"' !(Pi:IDiJM':ai,fork P)

ID;.
“'_T)' (WQ:Ila'-' 7(PirIDisWi}‘?i:P)t"'Iﬂ?Iﬂ-{-l)

where: Tne1 = (P, IDpt1, Was1, On+1, P), and IDpy; is 2 new agent iden-
tiﬁer, Wn+; = I/V,;, and o’ = ;.

In case of fork, we simply create a copy of the agent, running in parallel
with the forking agent. In this case the local state of the process differs from
the father only for the identifier.

5Indeed we think of the process P || @ to be substituted by the two processes P and
Q. ‘




{NEW} (Wa, L1,... (B, ID;,W;, 0, (new m}.P)

[Der (WQ,I‘I,--- J(Pi)IDi:Wi’sgi)P)?"'In)

where: W] =W; U {m}.
Whenever a new name m is generated by an agent, the new name is
added to the set of basic messages owned by the agent.

6 Model checking for spi-calculus dialects

In this section we briefly explain how to perform model checking of a protocol
specified in the dialect of the spi-calculus defined in this paper. It is our
intention to resort to the model checking framework developed by Clarke
et. al. in {10, 9, 11]. In the above mentioned works the authors use a
special purpose language to specify a security protocol. The related formal
semantics is based on a labeled transition system which is quite close the
one we presented here. Indeed it is easy to prove, by structural induction
on transitions and on trace length, that it is possible to define a mapping
preserving knowledge information, from our semantics to the one defined
in [9].

Natural consequence of this reduction is that all the results, from prop-
erties specification to the use of the model checker tool "Brutus”, can be
re-used to perform model checking of protocols specified in our spi-calculus
dialect. A positive consequence of this can be the availability of an effective
automatic verification framework for the class of spi-calculus-like languages,
which have been generally recognized as widely expressive in describing se-
curity protocols.

Sinece in Brutus there exists a first order temporal logic to specify se-
curity and authenticity properties, we are actually working to analyze the
relationship between the equivalence induced by that logic and the equiva-
lences already defined on spi-calculus via different approaches.

7 Conclusion and Future Work

In this work, we have defined a preliminary framework in which to perform
model checking of the spi-calculus. Actually no model checking of the spi-
calculus has been proposed in the literature although fundamental steps in
defining security and integrity properties as trace equivalences, have been

10




studied. That lack of automatic tools for the spi-calculus motivated us to
re-use a defined model checking environment as the quickest solution.

The most urgent future work would be to prove sound and/or complete
results between the relation induced by the built-in login in Brutus and
the may-testing, or barbed equivalence defined on the spi-calculus to prove
integrity and secrecy properties. As mentioned in the previcus sections we

are still study on this.
Finally it would be interesting to extend the use of the finite of knowledge

notion presented in this paper also for those protocols that actually seems

not directly translatable in our formalism.
We want thank to M. Boreale and R. Pugliese for stimulating discussion

on basic issues of this work.
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