
università di pisa

Dipartimento di Informatica

Corso di Laurea Magistrale in Informatica per l'economia e per l'azienda

(Business Informatics)

tesi di laurea

Predicting and explaining the popularity

of songs with data mining

relatore:

Prof.ssa Anna MONREALE

correlatore:

Dott. Luca PAPPALARDO

candidato:

Massimiliano CAMPAGNA

ANNO ACCADEMICO 2016-17

.

Alla mia famiglia

e a Fabiana

per avermi sostenuto

in questi anni

Contents

Abstract 1

Introduction 2

1 DATA COLLECTION 5

1 Summary . 5

2 Data collection process . 5

3 Hooktheory case study . 7

4 Spotify case study . 10

2 DATA UNDERSTANDING 13

1 Summary . 13

2 Data exploration process . 13

3 Statistical analysis . 16

4 Ad-Hoc queries . 20

3 PREDICTION ON POPULARITY

FROM MUSICAL STRUCTURES 26

1 Summary . 26

2 Models creation process . 26

3 Regression problem . 29

3.1 Linear regression and Decision tree regressor 29

3.2 Lasso and Ridge regressor . 34

3.3 Bagging regressor and Random forest regressor 37

3.4 Ada boost regressor and Stochastic gradient boost regressor . . 41

Contents iii

4 Classi�cation problem . 46

4.1 Logistic regression and Decision tree classi�er 46

4.2 Bagging classi�er and Random forest classi�er 51

4.3 Ada boost classi�er and Stochastic gradient boost classi�er . . . 55

4 INTERPRETATION OF MODEL AND SIMULATION 59

1 Summary . 59

2 Model interpretation . 59

3 Conclusions . 62

Bibliography 65

Abstract

Data Mining techniques are widely used in the analysis of musical items. In this

thesis we study the factors a�ecting the popularity of songs and given an answer to the

so-called "four chord" myth, according to which all popular songs consists of the same

four chords. The work illustrated in the thesis covers all the stages of the Knowledge

Discovery in Databases process. In particular, data on music songs are collected and

used to create several predictive models using data mining algorithms. The best model

is interpreted and tested with speci�c instances to better understand the origina of

popularity of music songs.

Introduction

A rock guitarist plays

three chords to a million people

and a jazz guitarist plays

a million chords to three people

Today the amount of data that is being generated is far more than can be handled,

almost every single activity or interaction leaves a trail that somebody somewhere

captures, stores and analyses. The size of this data has gone beyond human-sense

capabilities, in fact it is quite impossible for a person to detect patterns just by looking

at the data. At this point Data mining comes into play.

Data mining is the computing process of discovering patterns in large data sets

involving methods at the intersection of machine learning, statistics, and database

systems. The overall goal of the data mining process is to extract information from a

data set and transform it into an understandable structure for further use. Additionally,

this process is only a part of the so-called Knowledge discovery in databases process

also known as KDD. There are several formal de�nitions of KDD, all agree that the

intent is to harvest information by recognizing patterns in raw data.

The research area of Music Information Retrieval has gradually evolved to address

the challenges of e�ectively accessing and interacting large collections of music and

associated data, such as styles, artists, lyrics, and reviews. Several music researches

can be found on Internet based on the data mining techniques. Tao Li, professor in

Computer Science at Florida International University, formally de�nes the concept of

Music Data Mining also called MDM. He shows how to use data mining techniques in

order to solve several problems and he presents some social aspects. In particular, some

of these studies use classi�cation algorithms to create models able to detect mood or

the genre of songs. Additionally, there are also projects that focus on classi�cation and

recognition of musical instruments. Therefore, all these studies feed on the importance

Introduction 3

of the of music in our life and they are aimed to improve music marketing and music

creation by artists, as well as to suggest songs to users based on their mood and tastes.

According to marsbands.com, there are at least 97 million songs in the world. Of

course, these are only the songs o�cially released. This number could reach 200 million

songs, if the songs which everyone knows or if the old Celtic songs are considered.

Generally speaking, the music world has its roots in themusic theory. The music theory

can be de�ned as �the study of the practices and possibilities of music�. According to

Fallows and David from The Oxford Companion to Music, this term can be used in

three main ways. The �rst is called rudiments, currently taught as the elements of

notation, of key signatures, of time signatures, of rhythmic notation, and so on. The

second is the study of writings about music from ancient times onwards. The third is an

area of current musicological study that seeks to de�ne processes and general principles

in music. In any case, the music theory is frequently concerned with describing how

musicians and composers make music.

The myth of the 4 chords is well known on Internet, particularly, by those who play

an instrument. This myth asserts that all popular songs can be played by only 4 chords.

A chord, in music, is any harmonic set of three or more notes that is heard as if sounding

simultaneously. These chords do not need actually be played together: arpeggios and

broken chords may, for many practical and theoretical purposes, constitute chords. The

most frequently encountered chords are triads, so called because they consist of three

distinct notes and a series of chords is called a chord progression. Although any chord

may in principle be followed by any other chord, certain patterns of chords have been

accepted as establishing key in common-practice harmony. For simplicity, the chords

are commonly numbered by means of Roman numerals.

At �rst glance, it seems strange that many popular songs should have the same

chords. After all, with 12 notes to choose from, and a choice of major mode or minor

mode, there should be thousands of chord progressions that could be played. Conse-

quently, it is important to understand what is the real impact of chord progressions

and if they could in�uence the popularity of songs.

This thesis focuses on songs popularity in order to �nd out unknown patterns that

could describe the relationship among songs popularity, chord progressions and other

music features. The whole project covers all the stages of the KDD process since several

regression and classi�cation algorithms were used in order to achieve the goal. Finally,

http://www.marsbands.com/2011/10/97-million-and-counting/

Introduction 4

a data driven software was created in order to give the users the opportunity to employ

our models.

This project can be subdivided into 4 stages and each one is described in the

following chapters:

• The �rst chapter concerns the Data collection stage. This chapter covers and

describes the whole process performed in order to create the dataset which will

be used in the analysis.

• The second chapter concerns the Data understanding stage. The dataset already

obtained was analyzed under the statistical point of view in order to better un-

derstand the meaning of the data collected.

• The third chapter focus the attention on the Data mining techniques.This chapter

describes the creation of regression and classi�cation models

• The fourth chapter concerns the interpretation and the simulation of the models.

In particular, this chapter describes the behavior of the models created in terms

of songs popularity prediction.

Chapter 1

DATA COLLECTION

1 Summary

This chapter explains how the data collection process was performed. In particular,

this process is made up of two stages. In the �rst stage the data are retrieved using

the Hooktheory's API, then the outcomes are used as input in the second phase to

collect data from Spotify using its Web API1. The Hooktheory's API allows to retrieve

basic information about songs that use a speci�c chord progressions such as song title

and artist's name. These information are used to collect data from Spotify such as for

example songs popularity, artist popularity, mode, key and so on. The �nal outcome

is a tab separated text �le or .tsv 2 and each row in this �le is a Tuple3 that represents

a unique track.

2 Data collection process

Nowadays, there are several databases on Internet that contain information about

music. However, these databases often contain only a subset of all the necessary infor-

mation to achieve the goal. This is the reason why the data collection process involves

two di�erent sources of data. Therefore, the data collection process can be divided into

1Web API is an API over the web which can be accessed using HTTP protocol. An application pro-

gramming interface (API) is a set of subroutine de�nitions, protocols, and tools for building software

and applications.
2TSV �le is a simple text format for storing data in a tabular structure, e.g., database table or

spreadsheet data, and a way of exchanging information between databases
3A tuple is a �nite sequence of attributes, which are ordered pairs of domains and values.

1.2 Data collection process 6

2 stages: the �rst stage concerns the data collection from the Hooktheory website and

the second one concerns data from Spotify.

The process begins to retrieve data from Hooktheory, particularly, the famous chord

progressions were used to detect and collect songs that use some particular harmonic

structures. Once the requests were performed, the data collected were stored in a �le

which will be used to retrieve data from Spotify. This last �le is made up of three

information: artist's name, song title and Chord progressions list. Each row in this �le

represents a unique song with its harmonic structures.

The second stage uses the pairs made up of artist's name and song title to collect

data from Spotify. In particular, the Spotify Web API were used to retrieve information

about audio features, popularity, tonality and mode of songs. This last stage allows

to get the �nal dataset which will be used for the analysis. The following image

summarizes the whole data collection process.

Figure 1.1: Data collection process

1.3 Hooktheory case study 7

3 Hooktheory case study

The Hooktheory website provides users with a platform to learn how to write the

music. The users can also select a song and look at its tab. In progressions section there

is a page dedicated to famous chord progressions and one dedicated to the progression

builder. The builder assumes a central role in the site, in fact, its purpose is to provide

the list of songs which have the same chord or progressions sequence in a part or in

the whole song. In addition, the authors also provide a Web API which implements

di�erent features in order to interact with their Database. As mentioned before, famous

chord progressions are used to collect data by means of the Web API. This API exposes

the chord probability data and it contains two di�erent endpoints: one for next chord

probabilities and one for songs containing a chord progression. It is necessary remember

that each API request must be made over an HTTPS connection and each one also

must begin with the url https://api.hooktheory.com/v1/ or otherwise the request

is rejected. For more details on the API, the link https://www.hooktheory.com/api/

trends/docs/ refers to the o�cial documentation.

The sources codes used to collect data from Hooktheory are stored at the following

link HookTheory on Github. This folder contains two di�erent �les: the �rst one is

called 1_request.py and it is used to send requests and to save the respective results

whereas the other one is called 2_extract.py which is used to process the outcomes in

order to remove redundancy. Consequently, the collection process can be divided into

two phases.

The �rst phase consists in sending di�erent requests to the Hooktheory server.

In particular, the 1_request.py takes as input the �le note.txt that contains the list

of famous chord progressions and the �le login.json. This last �le stores the creden-

tials which are used to perform the login procedure. Once the login procedure was

performed, the Hooktheory server send a response in JSON format. This message

contains the activkey property which is the HTTP Bearer Token and its value will be

used in order to authenticate future requests.

As mentioned before, the API provides two di�erent endpoints: the �rst one is called

next chord probabilities and it provides a list of chords and their probability whereas

the second one is called songs containing a chord progression. The data collection

process is focused on this last powerful endpoint. In particular, this endpoint provides

a list of songs related to a chord progression. The entry point for songs containing a

https://api.hooktheory.com/v1/
https://www.hooktheory.com/api/trends/docs/
https://www.hooktheory.com/api/trends/docs/
https://github.com/jonpappalord/music_analysis/tree/master/HookTheory/

1.3 Hooktheory case study 8

chord progression is the following:

Hooktheory API songs containing a chord progression

1 GET trends/songs?cp=4,1 �
The cp parameter stand for child path and it is essentially a chord progression. In

general, the response is divided into pages. Each page can contain a list of 20 songs

and it is necessary to specify the page number in the request in order to retrieve the

next page of results. Finally, the response is conform to the JSON format and so each

song can be easily processed and stored.

Hooktheory API songs containing a chord progression response

1 [

2 {

3 "artist ":" Adele",

4 "song ":" Someone Like You",

5 "section ":" Chorus",

6 "url":" http :// local.www.hooktheory.com /.."

7 },

8 ...

9] �
The collection process proceeds with the request phase. The chord progressions,

stored in the �le note.txt, can be considered as single requests. There are 21 chord

progressions and each one could have n-pages of results. In addition, the Hooktheory

API limits requests to 10 every 10 seconds and therefore each request was delayed

before to be sent to the server. The limitations on requests, the pagination of the

outcomes, the connection speed and the server response speed can be considered as

the bottleneck of the whole process, even if each request was parallelized to speed the

process up. This is the reason why the entire process lasts about 3 hours.

Finally, the outcomes of the �rst phase was stored in a �le called requested.txt which

will be used as input in the second phase.

Once the data were collected from Hooktheory, the second phase concerns the cre-

ation of the �le which will be used to retrieve data from Spotify. As seen before, the

2_extract.py �le takes the requested.txt �le as input in order to extract informations

about songs. In particular, this last �le is a collection of objects and each one is made

1.3 Hooktheory case study 9

up of 4 properties:

• artist, the artist's name;

• song, the song title;

• section, the part of the song in which the chord progression appears;

• pattern, the chord progression.

Once the input was loaded, the software scans the outcomes in order to collect the

pairs made up of artist's name and song title from each chord progression and from each

page. Next, these pairs were inserted in a set in order to remove redundancy. Finally,

the software associates each pair with the list of the chord progressions in which pairs

appear and the input.csv �le is produced. This last �le will be used as input to retrieve

data from Spotify and the following table shows the outcomes just obtained.

Artist's name Song title Chord progressions list

Big Dope P Hit Da Blokk ['1,5,6,4']

ClariS Connect ['6,5,4,5']

Daughtry Home ['1,4,6,5']

Alex Lloyd Amazing ['1,5,6,4']

Klingande Punga ['1,5,6,4']

Jason Derulo Trumpets ['1,4,6,5']

Blink 182 Bored To Death ['1,5,6,4']

Taylor Swift 22 ['6,5,4,5']

Teen Beach Movie Can't Stop Singing ['4,b4,1', '1,6,4,5']

Jimi Hendrix All Along The Watchtower ['6,5,4,5']

Shakira Waka Waka ['1,5,6,4']

Britney Spears Lucky ['1,6,4,5']

Oasis Don't Go Away ['6,5,4,5']

Duran Duran Come Undone ['6,5,4,5']

Avicii Father Told Me ['1,5,6,4']

Radiohead Karma Police ['4,16,2']

Danny McCarthy Silver Scrapes ['1,5,6,4']

The Gaslight Anthem Rollin' And Tumblin' ['1,5,6,4']

Meaghan Smith It Snowed ['4,b4,1']

The chord progressions list �eld has a special syntax which is explained at the

following links: trends-api-chord-input and vizualitation-of-all-chord-progressions.

http://forum.hooktheory.com/t/trends-api-chord-input/272
http://forum.hooktheory.com/t/vizualitation-of-all-chord-progressions-kinda/164/4

1.4 Spotify case study 10

4 Spotify case study

Nowadays Spotify is the most popular software for music in the world, in fact, it

has a huge songs database. This database contains many information on artists, tracks,

albums and also audio features, thus the data collection process uses this database in

order to create the �nal dataset of this project. The data were retrieved from Spotify by

means of its Web API which are implemented in di�erent programming languages. In

particular, the spotipy interface was used. This implementation is a lightweight Python

library that provides di�erent features in order to interact with the Spotify server. For

more details on the library, the link https://spotipy.readthedocs.io/en/latest/

refers to the o�cial documentation.

As mentioned before, this phase begins once the collection process from Hooktheory

was completed. The sources codes used to collect data from Spotify are stored at the

following link https://github.com/jonpappalord/music_analysis/tree/master/

Spotify/ on Github. This folder contains many �les, some of these are the outcomes

and others are the sources codes implemented in order to collect data from Spotify. In

particular, the python project is divided in the following �les:

• work.py, the main �le;

• spotify_request.py, the �le used to send each request to the Spotify server;

• utils.py, the �le used to process and to extract data from each request;

• db_spotify.py and tp_spotify.py, the �les used to locally store information at

runtime.

The data collection process begin with the login procedure but this task requires

the user credentials and the key released by Spotify once the application was registered

on its domain. The key obtained from Spotify is necessary to send requests to its

Server. The �le login.json stores these information which will be used to perform the

login procedure.

The Web API provides several endpoints in order to retrieve information about

songs. These can be classi�ed under two main classes: the �rst class concerns the

so-called look up functions whereas the other one concerns the search functions. In

general, the look up functions are quite faster than the search functions because they

use element's IDs to speed the data collection process up. However, Spotify limits the

number of elements that can be retrieved simultaneously by using the multiple look

https://spotipy.readthedocs.io/en/latest/
https://github.com/jonpappalord/music_analysis/tree/master/Spotify/
https://github.com/jonpappalord/music_analysis/tree/master/Spotify/

1.4 Spotify case study 11

up function. In addition, it is necessary to know a priori which is the element's ID in

order to obtain its information. On the other hand, the search functions overcome this

problem, in fact, it provides information about artists, albums, tracks or playlists that

match a keyword string. The following example shows how to sent a request by means

of a query.

Spootify API: Track search

1 GET q=track:Mamma %20Mia%20 artist:abba&type=track �
The Spotify Server returns a list of objects in the JSON format and each one

has several information about the element of the query. The https://developer.

spotify.com/web-api/search-item/ provides more details about �ltering options

and information retrieved.

Once the login procedure was performed, the information retrieved from Hooktheory

were used to perform the tracks search function. Therefore, the pairs artist's name and

song title were used to collect tracks information such as the song popularity, the

track id, the artist id and the album id. These outcomes were stored in a �le called

1_tracks.json whereas the �le missed.txt contains the songs which were not found on

Spotify.

As seen before, the element's id can be used to retrieve data by means of the look

up function. Consequently, the track id, the artist id and the album id were used to

collect their information and these outcomes were stored in di�erent �les. The last

task concerns the creation of the dataset which will be used for the analysis process.

The �le called utils.py processes each response and then it creates the so-called tuples

of songs. Finally, the dataset were stored in the �le called SPOTIFY_DB.tsv and the

following table shows �ve instances of this dataset.

https://developer.spotify.com/web-api/search-item/
https://developer.spotify.com/web-api/search-item/

1.4
S
p
otify

case
stu

d
y

1
2

track_id title artist_name popularity artist_popularity release_date key acousticness danceability

4ye3W4xN dance in the dark lady gaga 46 86 2009 8 2.99e-05 0.645

2raJLzvN animals muse 52 78 2012 3 0.00571 0.446

6OmApaLQ doctor worm they might be giants 33 55 1998 6 0.0826 0.537

5xEM5hIg complicated avril lavigne 71 75 2002 5 0.0572 0.585

64yrDBpc 21 guns green day 72 82 2009 5 0.0518 0.268

duration_ms energy instrumentalness liveness loudness mode speechiness valence patterns_list

289013 0.768 4.49e-05 0.276 -6.211 1 0.036 0.102 ['1,5,6,4']

262813 0.804 0.796 0.696 -6.906 0 0.0307 0.596 ['6,642,4']

181533 0.633 0 0.0755 -5.903 1 0.0306 0.719 ['1,6,4,5']

244507 0.776 7.74e-06 0.3 -5.898 1 0.0459 0.43 ['1,5,6,4', '1,6,4,5']

321093 0.742 0 0.626 -4.939 1 0.0355 0.413 ['1,5,6,4', '1,5,4,5', '1,56,6,5']

Chapter 2

DATA UNDERSTANDING

1 Summary

This chapter concerns the data understanding process. In particular, the data

collected are analyzed in order to better understand their meaning. First of all, the

attributes were explained by de�ning their domain and providing a brief description.

Then, two di�erent tasks were performed: the �rst one concerns statistical analysis

over the attributes such as distribution and frequency; the second one concerns queries

ad-hoc performed in order to better understand the behavioir of songs popularity.

2 Data exploration process

Once the Data collection process was performed, the next phase concerns the Data

understanding process. The dataset seen before contains over 900 instances and 20 at-

tributes. In particular, each row represents a unique song which is made up of several

features. These information could be divided in two classes: the �rst class concerns

descriptive information and the second one refers to some technical details on songs.

In general, the data understanding process �rstly performs some statical analysis on

the attributes and then it proceeds to perform ad-hoc analysis in order to better un-

derstand the behavior of the songs popularity. This process was performed only on a

subset of the available attributes, hence the attributes selected could be those chosen in

the models creation process. These analysis were performed using the Jupyter notebook

software and they can be found at the following link Analysis/DataUnderstanding/-

data_understanding_1. Finally, the following table summarizes the information of

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/DataUnderstanding/data_understanding_1.ipynb
https://github.com/jonpappalord/music_analysis/blob/master/Analysis/DataUnderstanding/data_understanding_1.ipynb

2.2 Data exploration process 14

each attribute, in particular, it shows the attributes names, their domain and it gives

a brief description.

No. Attribute name Description

1 track_id The Spotify ID of a song.

2 title Song's title.

3 artist_name The artists who performed the track.

4 popularity The popularity of the track (0 - 100).

5 artist_popularity The popularity of the artist (0 - 100). It is calculated

using the popularity of all the artist's tracks.

6 release_date The date the album was �rst released.

7 genres The list of the genres used to classify the album. (could

be empty)

8 key The key is an integer (0 - 11) and it is conform to the

Pitch Class notation. (0 = C, 1 = C# ...)

9 acousticness A con�dence measure whether the track is acoustic. (0.0

- 1.0) 1.0 represents high con�dence the track is acoustic.

10 danceability Danceability describes how suitable a track is for danc-

ing based on a combination of musical elements. (0.0 -

1.0) A value of 0.0 is least danceable.

11 duration_ms The duration of the track in milliseconds.

12 energy Energy represents a perceptual measure of intensity and

activity. (0.0 - 1.0) Typically, energetic tracks feel fast,

loud, and noisy. For example, death metal has high

energy, while a Bach prelude scores low on the scale

13 instrumentalness Predicts whether a track contains no vocals. (0.0 1.0)

"Ooh" and "aah" sounds are treated as instrumental in

this context. Rap or spoken word tracks are clearly "vo-

cal". The closer the instrumentalness value is to 1.0, the

greater likelihood the track contains no vocal content.

14 liveness Detects the presence of an audience in the recording.

(0.0 - 1.0) Higher liveness values represent an increased

probability that the track was performed live.

2.2 Data exploration process 15

No. Attribute name Description

15 loudness The overall loudness of a track in decibels (-60 - 0 dB).

Loudness is the quality of a sound that is the primary

psychological correlate of physical strength (amplitude).

16 mode Mode indicates the modality (major or minor) of a track,

the type of scale from which its melodic content is de-

rived. Major is represented by 1 and minor is 0.

17 speechiness Speechiness detects the presence of spoken words in a

track. (0.0 - 1.0) The more exclusively speech-like the

recording the closer to 1.0 the attribute value. Values

above 0.66 describe tracks that are probably made en-

tirely of spoken words. Values between 0.33 and 0.66

describe tracks that may contain both music and speech.

Values below 0.33 most likely represent music and other

non-speech-like tracks.

18 tempo The overall estimated tempo of a track in beats per

minute (BPM).

19 valence A measure describing the musical positiveness conveyed

by a track. (0.0 - 1.0) Tracks with high valence sound

more positive (e.g. happy), while tracks with low valence

sound more negative (e.g. sad)

20 patterns_list List of the famous chord progressions which are in a

song.

2.3 Statistical analysis 16

3 Statistical analysis

As mentioned before, the data understanding process begins with the statistical

analysis. In particular, these analysis focus the attention on distribution and frequency

of some attributes. The key attribute was �rstly analyzed because this attribute con-

cerns the tonality of a song. In general, tonality is a musical system that arranges

pitches or chords to induce a hierarchy of perceived relations, stabilities, and attrac-

tions. In this hierarchy, the individual pitch or triadic chord with the greatest stability

is called the tonic. The root of the tonic chord is considered to be the key of a piece or

song. Thus a piece in which the tonic chord is C major is said to be in the key of C. This

attribute can have a value between 0 and 11, in fact, each value represents a unique

key. The �rst question concerns the frequency of each key in order to show which is the

most frequently used. Each value of the key attribute was replaced with the relative

letter in the English notation and the following image shows their frequency.

Figure 2.1: Frequency of each key in descending order

These outcomes show that the tonality most frequently used is the C followed by

G, A and D. In general, the choice among several tonalities frequently depends on the

ability of the musician. A song played in the tonality of C is simpler than one played

on D#.

The tonality can be divided in two main mode, major and minor. The mode

determines the mood of a song which will be, for example, cheerful or sad. The mode

2.3 Statistical analysis 17

attribute denotes with 0 the minor mode whereas with 1 the major mode. The following

image shows that the majority of the songs in the dataset are in major mode.

Figure 2.2: Mode distribution

The keys and the mode can be combined together in order to get the frequency of

each key in both modes. In particular, the data were grouped on the key attribute

and on the mode attribute, then the frequencies were calculated. The following image

shows these frequencies in descending order.

Figure 2.3: The frequency of each key on both modes

As seen before, the keys C, G, A and D are still in the top positions whereas the

2.3 Statistical analysis 18

minor keys are not so frequently used.

The analysis proceeds with the duration attribute. This attribute represents the

duration of a track in milliseconds. It is important to determine if a track has a long

duration or a short duration in order to distinguish songs from simple tracks. For

simplicity, the attribute were transformed in seconds and the following image shows its

distribution.

Figure 2.4: Distribution of the duration

The majority of the songs has a duration of 200 seconds and so they are not simple

tracks. The next question concerns the release date distribution of these songs. The

release_date attribute refers to the date of a album was �rst published. In particular, a

song could be contained in an album which will be published in a date. For simplicity,

the release_date attribute stores only the year in which the album was released and

the following image shows the distribution of the release date of the songs.

2.3 Statistical analysis 19

Figure 2.5: Distribution of the release date of the songs

These outcomes show that the majority of songs was recently released, in fact,

the years after the 2008 are the most populated. Others analysis focus the attention

on the quality of songs, in particular, the valence , the energy, the instrumentalness

and liveness attributes were analyzed. As mentioned before, these attribute can have

a value between 0.0 and 1.0. The valence is a measure of the musical positiveness

conveyed by a track, hence a value near to 1.0 means that a track sound more positive

than a track with low valence. The energy attribute denotes the intensity and the

activity of a track, in particular, the more a track is energetic the more is the intensity.

For example, death metal has high energy, while a Bach prelude scores low on the scale.

On the other hand, instrumentalness attribute measures if a track is based only on

musical instruments or not. The closer the instrumentalness value is to 1.0, the greater

likelihood the track contains no vocal content. Finally, the liveness attribute denotes

the probability of a track which was performed live or not. Higher liveness values

represent an increased probability that the track was performed live. The following

images show the distribution of these attributes and for simplicity, the probability

intervals were set with the 33th percentile.

2.4 Ad-Hoc queries 20

Figure 2.6: Distribution of the valence, the energy, the instrumentalness and the live-

ness attributes

In general, songs tend to have low levels of instrumentalness and liveness, hence

they are not live songs and they are not only played but are also sung. In addition,

these songs have a high level of energy and the valence attribute denotes that songs

are both positive and sad.

4 Ad-Hoc queries

The second phase of the analysis concerns the popularity attribute in order to better

understand the relationships with the others attributes. The popularity of a track is a

value between 0 and 100, with 100 being the most popular. The popularity is based on

the total number of plays the track has had and how recent those plays are. Generally

speaking, songs that are being played a lot now will have a higher popularity than songs

that were played a lot in the past. The �rst question on songs popularity concerns the

frequency of each level of popularity. The following image shows the number of songs

on each level of popularity.

2.4
A
d
-H
o
c
q
u
eries

2
1

Figure 2.7: Frequency of songs popularity

2.4 Ad-Hoc queries 22

There are few songs with high popularity because the majority of songs tends to

have a medium level of popularity. Additionally, the popularity attribute was analyzed

under several aspects, in particular the distribution of popularity was calculated on

each tonality. This analysis allows to determine which is the key that better represents

the highest or the lowest values of popularity. Therefore, the following image shows

the songs popularity distribution for each key.

Figure 2.8: Songs popularity distribution for each key

These outcomes shows that the tonality attribute tends to have a popularity dis-

tribution similar in each key. It seems that there is not a connection between the

popularity attribute and the key attribute. Hence, these attributes can be considered

independent to each other. The next step concerns the pattern attribute in order to

show which is the connection with the songs popularity. As previously stated, the

pattern attribute represents the famous chord progressions which are contained in a

song. Therefore, there is a one-to-many relationship between songs and the chord pro-

gressions. This is the reason why a new table that has as columns track_id, popularity,

pattern and len was created and each row still represents a song. However, now it refers

to a speci�c progression. Hence, a song could be duplicated because this depends on

the number of chord progressions associated to a song. Once the table was created, the

�rst analysis concerns the chord progressions frequencies. The following image shows

these frequencies in descending order.

2.4
A
d
-H
o
c
q
u
eries

2
3

Figure 2.9: Famous chord progression frequencies

2.4 Ad-Hoc queries 24

As expected, the progression 1, 5, 6, 4 is the most frequent. This progression in the

C tonality represents the progression C, G, Am, F. This is the most common and the

most popular chord progression across several genres of music. It is also known as the

chord progression used to play several songs. For example, there are many videos on

www.youtube.com that teach how to play hundred of songs with these 4 chords. The

next analysis compares the popularity distribution of songs in each chord progression.

This analysis allows to understand which is the relationship between songs popularity

and the famous chord progressions.

Figure 2.10: Songs popularity distribution for each chord progression

In general, these outcomes show that there is not a chord progression that represents

only high or only low values of songs popularity. Therefore, these attributes can be

considered independent to each other because there is not a pattern able to create

always famous songs and vice versa. Finally, the last query determines the top 10

most popular chord progressions. The data were grouped on chord progressions and

on songs popularity in order to get the 10 most popular.

www.youtube.com

2.4 Ad-Hoc queries 25

Figure 2.11: Top 10 popular chord progressions

Chapter 3

PREDICTION ON POPULARITY

FROM MUSICAL STRUCTURES

1 Summary

This chapter describes the process performed in order to �nd out the elements

that determine songs popularity. In particular, several models were created by using

both regression and classi�cation algorithms. First of all, the model creation process

is explained and the tools used were indicated. Then, the models obtained and their

outcomes are show for each algorithm considered. The objective is to �nd a model

that better explains the relationships among songs attributes and songs popularity. In

particular, the data mining techniques are used to predict and explain songs popularity.

2 Models creation process

This stage concerns the experiments performed, with a detailed description of the

models creation process. The phases performed are the same in both regression and

classi�cation problems. Obviously, the main di�erences concern the algorithms used

and some small changes in the dataset.

The dataset version for regression is called data_for_regression.tsv and it is stored

at the following link Analysis/Regression/ on Github. The song popularity was not

modi�ed, since it is a numerical variable and in fact it does not need any modi�cation

to be used in the regression problem. The changes concern the attribute patterns_list1,

1Remember that this last is the list of the chord progressions associated with each song.

https://github.com/jonpappalord/music_analysis/tree/master/Analysis/Regression/

3.2 Models creation process 27

in fact it was subdivided in multiple rows and the others information were duplicated.

In addition, some attributes were removed such as track_id, title, artist_name, re-

lease_date and genres because they were useless. On the other hand, the models

creation process in the Classi�cation approach is the same used to solve the Regression

problem. The main di�erence concerns the response value. The song_pop attribute

was transformed into a categorical variable by means of the 33th percentile. In par-

ticular, the domain of the attribute was divided into 3 classes. The �rst class was

set within an interval ranging from 0 and 42 of songs popularity and it is the low

popularity class or LP. The medium popularity was set within an interval ranging

from 43 and 57 and it is called MP whereas the others values represent the high pop-

ularity class or HP. This version of the dataset can be found at the following link

DATA_FOR_CLASSIFICATION.tsv and it was used to solve the classi�cation prob-

lem.

Each single model was created by means of the jupyter notebook software. The

models creation process begins with the data preparation phase. In this phase, the X

matrix of predictors and the y response vector (song popularity) were created. Next,

the categorical attributes were transformed in numerical ones by means of the LabelEn-

coder function. In addition, the data were normalized by means of the StandardScaler

function. This last task in the Classi�cation approach was not performed in order to

maintain models interpretability.

The second phase concerns detection and selection of the attributes which will be

used in the creation models phase. This task was performed by means of the Recursive

Features Elimination Cross Validation or RFECV function. Once the attributes were

selected, the process proceeds to the Train Test split approach in order to get two

subsets of the dataset. The 20% of the dataset is the Train set and it was used to

create the models while the 80% is the Test set and it was used to evaluate these

models.

The next phase is the creation models one in which the estimators were performed.

In particular, di�erent models were created for each regression and classi�cation esti-

mator by means of the GridSearchCV function. This last function allowed to get the

so-called hyper-parameters. Next, the validation phase was performed by means of the

k-fold cross validation approach and �nally the outcomes will be shown for each class

of problem. In conclusion, the following image summarizes the whole process.

https://github.com/jonpappalord/music_analysis/tree/master/Analysis/Classification/DATA_FOR_CLASSIFICATION.tsv

3.2 Models creation process 28

Figure 3.1: Models creation process

3.3 Regression problem 29

3 Regression problem

In statistical modeling, regression analysis is a statistical process for estimating the

relationships among variables. It includes many techniques for modeling and analyzing

several variables, when the focus is on the relationship between a dependent variable

and one or more independent variables (or predictors). More speci�cally, regression

analysis helps to understand how the typical value of the dependent variable changes

when any one of the independent variables is varied, while the other independent

variables are held �xed. Most commonly, regression analysis estimates the conditional

expectation of the dependent variable given the independent variables - that is, the

average value of the dependent variable when the independent variables are �xed.

The estimation target is a function of the independent variables called the regression

function.

3.1 Linear regression and Decision tree regressor

The regression analysis begins with the linear regression model and the decision

tree regressor model. These models and their outcomes are stored in a �le called

linear_and_tree_regressor.ipynb at the following link /linear_and_tree_regressor on

Github. Simple linear regression is a useful approach for predicting a response on the

basis of a single predictor variable. However, in practice there may be more than one

predictor. This last is the case of Multiple linear regression which is used to explain the

relationship between one continuous dependent variable and two or more independent

variables. On the other hand, the decision tree learning expresses this relationship by

means of the trees. The prediction space is divided into a number of simple regions

which are used to predict each observation.

As previously mentioned, the RFECV was performed both on the linear regression

and the decision tree regressor once the dataset was normalized. The attributes previ-

ously selected will be included in the models creation phase and these are the following:

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Regression/linear_and_tree_regressor/linear_and_tree_regressor.ipynb

3.3.1 Linear regression and Decision tree regressor 30

RFECV: Selected attributes for regression problem

1 {

2 seq , artist_pop , danceability , energy ,

3 instrumentalness , liveness , loudness , tempo

4 } �
The above list shows 8 attributes which will be the same obtained from the others

regression analysis. The next step concerns the GridSearchCV approach. This last

technique was performed on both estimators in two di�erent versions: one that sets

the cross validation to 5 and another that sets the cross validation to 10. In addition,

the r-squared was used as evaluation metric for each model.

Since the linear regression estimator has few parameters to set, the GridSearch was

performed quickly. The following outcomes show two di�erent Linear models: the �rst

one concerns the best model trained with cross validation set to 5 whereas the second

one is the best model obtained with cross validation set to 10.

GridSearchCV: Linear regression outcomes

1 # set of parameters to test

2 param_linear = {"normalize ": ["False", "True",],

3 }

4 -- Grid Parameter Search via 5-fold CV

5 GridSearchCV took 0.04 seconds

6 for 2 candidate parameter settings.

7 Model with rank: 1

8 Mean validation score: 0.506 (std: 0.087)

9 Parameters: {'normalize ': 'False '}

10 -- Grid Parameter Search via 10-fold CV

11 GridSearchCV took 0.07 seconds

12 for 2 candidate parameter settings.

13 Model with rank: 1

14 Mean validation score: 0.494 (std: 0.149)

15 Parameters: {'normalize ': 'False '} �
In general, results tend to be similar to each other, therefore the model chosen and

its parameters are those that maximize the metric considered. Both models have the

r-squared near to 50% and the GridSearchCV took few milliseconds to complete the

3.3.1 Linear regression and Decision tree regressor 31

training stage. On the other hand, the decision tree regressor allows to set several

parameters. These parameters concern the depth of the tree or the number of leaves

that the tree could have and so on. The set of parameters used in�uences the execution

time of the GridSearchCV. In fact, the training phase was completed in one minute for

the �rst version of the GridSearch whereas the second version took over two minutes

to �nd the best model.

GridSearchCV: Decision tree regressor outcomes

1 # set of parameters to test

2 param_TR = {"criterion ": ["mse",],

3 "min_samples_split ": [2, 5, 10, 15, 20],

4 "max_depth ": [2, 5, 10, 15, 20],

5 "min_samples_leaf ": [1, 5, 10, 15, 20],

6 "max_leaf_nodes ": [None , 5, 10, 15, 20],

7 "max_features ": [None , 3, 6, 8],

8 }

9 -- Grid Parameter Search via 5-fold CV

10

11 GridSearchCV took 72.31 seconds

12 for 2500 candidate parameter settings.

13 Model with rank: 1

14 Mean validation score: 0.529 (std: 0.064)

15 Parameters: {'max_leaf_nodes ': 10, 'min_samples_leaf ': 10,

16 'min_samples_split ': 10, 'criterion ': 'mse ',

17 'max_features ': 6, 'max_depth ': 15}

18

19 -- Grid Parameter Search via 10-fold CV

20

21 GridSearchCV took 145.05 seconds

22 for 2500 candidate parameter settings.

23 Model with rank: 1

24 Mean validation score: 0.492 (std: 0.124)

25 Parameters: {'max_leaf_nodes ': 15, 'min_samples_leaf ': 10,

26 'min_samples_split ': 15, 'criterion ': 'mse ',

27 'max_features ': 6, 'max_depth ': 10} �

3.3.1 Linear regression and Decision tree regressor 32

Similar to the Linear models, results show a mean validation score near to 50%,

therefore, there are no improvements. Once the hyper-parameters were obtained, the

next phase consists to evaluate the models just created. As mentioned above, this

task was performed on the Test set by means of the K-fold Cross validation approach.

The number of folds was set within an interval ranging from 2 and 10 in order to see

how the r-squared vary based on the number of folds. The following image shows this

relationship on both models.

Figure 3.2: CV on Linear regression and Decision tree regressor

The above results, obtained in the evaluation phase, show that the Linear regression

model generally has the r-squared greater than that of the decision tree regressor. This

depends on the fact that Linear regression models have a low variance but a high bias

whereas Decision trees have a high variance. The following linear equation represents

the relationship among the attributes and songs popularity of the linear model.

Song_pop ≈ 47.95 + 13.25artist_pop + 1.27loudness + 0.92danceability − 0.79tempo −

0.88liveness − 1.17seq − 1.29energy − 2.73instrumentalness

Although the data were normalized, it is possible to understand which is the real

impact of each attributes respect to the song popularity in both models. In particular,

the artist popularity attribute is crucial to determine which will be the response value.

On the other hand, the model obtained by means of the Decision tree regressor is the

following:

3.3.1 Linear regression and Decision tree regressor 33

Figure 3.3: Decision tree regressor

The above model splits the predictors space into 10 regions, each region represents

the songs popularity value which will predicted. Additionally, the model uses only 2

attributes over 8 as split nodes: the artist_pop and the instrumentalness. The �rst

one is quite crucial to determine which will be the value of songs popularity, in fact,

the majority of splits are based on this attribute. Generally, the less is the artist's

popularity the less is the song popularity and viceversa. Finally, the following image

shows the features importance of the Decision regressor model.

Figure 3.4: Features importance of the decision tree regressor

3.3.2 Lasso and Ridge regressor 34

3.2 Lasso and Ridge regressor

The regression analysis proceeds with the Ridge and the Lasso estimators in order

to check if they could be better than the previous ones. These analysis are stored in a

�le called lasso_and_ridge.ipynb at the following link /lasso_and_ridge on Github.

The simple linear model can be improved, by replacing plain least squares �tting

with some alternative �tting procedures. These alternative �tting procedures can yield

better prediction accuracy and model interpretability. The Ridge and the Lasso es-

timators are also known as the Shrinkage methods. In general, a Shrinkage method

involves �tting a model involving all p-predictors. However, the estimated coe�cients

are shrunken towards zero relative to the least squares estimates. This shrinkage (also

known as regularization) has the e�ect of reducing variance. Depending on what type

of shrinkage is performed, some of the coe�cients may be estimated to be exactly zero.

Hence, shrinkage methods can also perform variable selection.

As mentioned before, the RFECV approach was performed on both estimators

and it has selected the same 8 attributes of the previous analysis. Furthermore, the

GridSearchCV was also performed in the two versions already seen before. The analysis

begin with the Ridge estimator which seems to be faster than the other one. In fact,

this estimator has few parameters to be set and the GridSearch was completed in few

seconds.

GridSearchCV: Ridge regressor outcomes

1 # set of parameters to test

2 param_ridge = {"alpha": np.arange(1, 10,0.5),

3 "normalize ": [True , False],

4 "solver ": ["auto", "svd", "cholesky",

5 "lsqr", "sparse_cg", "sag"],

6 }

7 -- Grid Parameter Search via 5-fold CV

8 GridSearchCV took 4.25 seconds

9 for 216 candidate parameter settings.

10 Model with rank: 1

11 Mean validation score: 0.512 (std: 0.082)

12 Parameters: {'normalize ': False ,

13 'alpha ': 9.5, 'solver ': 'lsqr '}

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Regression/lasso_and_ridge/lasso_and_ridge.ipynb

3.3.2 Lasso and Ridge regressor 35

14 -- Grid Parameter Search via 10-fold CV

15 GridSearchCV took 9.98 seconds

16 for 216 candidate parameter settings.

17 Model with rank: 1

18 Mean validation score: 0.499 (std: 0.142)

19 Parameters: {'normalize ': False ,

20 'alpha ': 9.5, 'solver ': 'sparse_cg '} �
As mentioned before, the �rst model concerns the best model obtained with the

cross validation set to 5 whereas the second model is the best obtained with the cross

validation set to 10. The outcomes obtained are quite similar to those of the Linear

regression but with small improvements. Both models have a mean validation score

near to 50% but they use two di�erent solvers. On the other hand, the Lasso estimator

can be set with several parameters. The training phase was completed in 30 seconds

for the �rst version of the GridSearch and the second version took over one minute.

GridSearchCV: Lasso regressor outcomes

1 # set of parameters to test

2 param_lasso = {"alpha": np.arange(1, 10,0.5),

3 "normalize ": [True , False],

4 "precompute ": [True , False],

5 "tol": [200.0 , 300.0, 500.0] ,

6 "warm_start ": [True , False],

7 "positive ": [True , False],

8 "selection ": [" cyclic", "random"],

9 }

10

11 -- Grid Parameter Search via 5-fold CV

12

13 GridSearchCV took 36.48 seconds

14 for 1728 candidate parameter settings.

15 Model with rank: 1

16 Mean validation score: 0.548 (std: 0.029)

17 Parameters: {'normalize ': False , 'warm_start ': True ,

18 'selection ': 'random ', 'positive ': False ,

19 'precompute ': True , 'tol ': 200.0, 'alpha ': 3.0}

3.3.2 Lasso and Ridge regressor 36

20 -- Grid Parameter Search via 10-fold CV

21

22 GridSearchCV took 80.25 seconds

23 for 1728 candidate parameter settings.

24 Model with rank: 1

25 Mean validation score: 0.517 (std: 0.133)

26 Parameters: {'normalize ': False , 'warm_start ': True ,

27 'selection ': 'cyclic ', 'positive ': False ,

28 'precompute ': True , 'tol ': 200.0, 'alpha ': 1.5} �
The above results show that the lasso estimator generates better models than the

ridge estimator. In fact, the �rst version of the GridSearch select a lasso model with

the mean validation score near to 55%. In the evaluation phase, it is possible to notice

which are the main di�erences between these models. As mentioned above, the focus

of the Shrinkage methods is on reducing variance at the expense of the bias. This

situation is reached by introducing the so-called shrinkage penalty. In particular, this

factor serves as tuning parameter on the regression coe�cients estimates. The following

image shows the outcomes of the evaluation phase.

Figure 3.5: CV on Ridge and Lasso regression

These outcomes show that the Ridge model has a better average r-squared than

that of the Lasso, even if this last has better results in the training stage. In addition,

3.3.3 Bagging regressor and Random forest regressor 37

the regression coe�cients estimates of the Ridge model are quite similar to those of

the Linear regression, in fact, their evaluation curves are the same. Consequently, it is

easy to suppose that these two models are interchangeable, so it does not matter which

one is used. The Ridge equation is the following:

Song_pop ≈ 47.95 + 13.07artist_pop + 1.25loudness + 0.90danceability − 0.78tempo −

0.89liveness − 1.17seq − 1.24energy − 2.74instrumentalness

As mentioned above, this equation is similar to that of the Linear model, so the

Ridge estimator expresses the relationship among the predictors and the song popu-

larity in the same way of the Linear regression estimator. Hence, the artist_pop is

crucial to determine the response value. On the other hand, the Lasso equation is very

di�erent from the one above.

Song_pop ≈ 47.88 + 10.21artist_pop + 0.0loudness + 0.0danceability + 0.0tempo + 0.0liveness +

0.0seq + 0.0energy + 0.0instrumentalness

Only 1 attributes over 8 was used in the model whereas the others have a null value

because the Lasso estimator can shrunk the value of each coe�cient in order to be

exactly zero. Therefore, the estimator performs a variables selection.

3.3 Bagging regressor and Random forest regressor

The outcomes already obtained could be improved by using the Bagging algo-

rithms. These are respectively the Bagging regressor estimator and the Random forest

regressor estimator. Their outcomes are stored in two di�erent �les: one called bag-

ging_regressor.ipynb and the other called random_forest_regressor.ipynb; they are

both stored at the following link Analysis/Regression/bagging/ on Github.

A Bagging regressor is an ensemble meta-estimator that �ts base regressors each on

random subsets of the original dataset and then aggregate their individual predictions,

either by voting or by averaging, to form a �nal prediction. Such a meta-estimator

can typically be used as a way to reduce the variance of a black-box estimator (e.g.,

a decision tree), by introducing randomization into its construction procedure and

then making an ensemble out of it. On the other hand, Random forest provide an

improvement over bagged trees. As in bagging, a number of decision trees are built

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Regression/bagging/

3.3.3 Bagging regressor and Random forest regressor 38

on bootstrapped training samples. But when building these decision trees, each time

a split in a tree is considered, a random sample of m predictors is chosen as split

candidates from the full set of p predictors. The split is allowed to use only one

of those m predictors. A fresh sample of m predictors is taken at each split. This

procedure makes the trees not strongly correlated to each other.

The Bagging regressor estimator allows to set which will be the so-called base

estimator to �t on random subsets of the dataset. This parameter was set with the list

of the estimators and their best parameters already seen before. The model creation

phase was completed in one minute for the �rst version of the GridSearch whereas the

second version took over two minutes to complete the training stage. The best models

selected by the GridSearch use the Lasso estimator as base estimator. The following

outcomes show that the �rst model has a mean validation score of 52% whereas the

second one has a mean r-squared of 42%.

GridSearchCV: Bagging regressor outcomes

1 # set of parameters to test

2 DTR = DecisionTreeRegressor (**best_param_DTR)

3 LR = LinearRegression (** best_param_LR)

4 lasso = Lasso (** best_param_lasso)

5 ridge = Ridge (** best_param_ridge)

6

7 param_BR = {" base_estimator ": [DTR , LR, lasso , ridge],

8 "n_estimators ": [5, 10, 20, 50],

9 "max_samples ": [2, 5, 8, 10, 15],

10 "random_state ": [99],

11 "bootstrap ": [True , False],

12 "bootstrap_features ": [True , False],

13 }

14

15 -- Grid Parameter Search via 5-fold CV

16

17 GridSearchCV took 93.87 seconds

18 for 320 candidate parameter settings.

19 Model with rank: 1

20 Mean validation score: 0.522 (std: 0.021)

3.3.3 Bagging regressor and Random forest regressor 39

21 Parameters: {'max_samples ': 15, 'base_estimator ':

22 Lasso(alpha =3.0, copy_X=True , fit_intercept=True ,

23 max_iter =1000,

24 normalize=False , positive=False ,

25 precompute=True , random_state=None ,

26 selection=u'random ', tol =200.0 , warm_start=True),

27 'bootstrap ': False , 'n_estimators ': 5,

28 'random_state ': 99, 'bootstrap_features ': False}

29

30 -- Grid Parameter Search via 10-fold CV

31

32 GridSearchCV took 197.82 seconds

33 for 320 candidate parameter settings.

34 Model with rank: 1

35 Mean validation score: 0.463 (std: 0.119)

36 Parameters: {'max_samples ': 15, 'base_estimator ':

37 Lasso(alpha =3.0, copy_X=True , fit_intercept=True ,

38 max_iter =1000,

39 normalize=False , positive=False ,

40 precompute=True , random_state=None ,

41 selection=u'random ', tol =200.0 , warm_start=True),

42 'bootstrap ': False , 'n_estimators ': 10,

43 'random_state ': 99, 'bootstrap_features ': False} �
On the other hand, Random forest regressor estimator was performed only in the

�rst version of the GridSearchCV. The second version was aborted because this training

stage seemed not to stop even after ten minutes. Similar to the Decision tree regressor,

the Random forest regressor has several parameters to be set, for example the depth

of the trees or the number of the leaves and so on.

GridSearchCV: Random forest regressor outcomes

1 # set of parameters to test

2 param_RFR = {"n_estimators ": [10],

3 "criterion ": ["mse"],

4 "max_depth ": [5, 10, 15, 20],

5 "min_samples_split ": [5, 10, 15, 20],

3.3.3 Bagging regressor and Random forest regressor 40

6 "min_samples_leaf ": [1, 5, 10, 15, 20],

7 "max_leaf_nodes ": [None , 5, 10, 15],

8 }

9

10 -- Grid Parameter Search via 5-fold CV

11

12 GridSearchCV took 60.53 seconds

13 for 320 candidate parameter settings.

14 Model with rank: 1

15 Mean validation score: 0.549 (std: 0.050)

16 Parameters: {'max_leaf_nodes ': 15, 'min_samples_leaf ': 5,

17 'n_estimators ': 10, 'criterion ': 'mse ',

18 'min_samples_split ': 20, 'max_depth ': 15} �
In general, the above result shows a Random forest model which has a mean val-

idation score of 55%. This last model, in fact, seems to be more accurate than the

Bagging regressor models. It is necessary to remember that the bagging models use

the Lasso estimator as base estimator and probably these models could show some

troubles in the validation stage. The following image shows the evaluation curves of

both estimators in order to point out which one is the best.

Figure 3.6: CV on Bagging and Random forest regression

3.3.4 Ada boost regressor and Stochastic gradient boost regressor 41

The evaluation stage shows that the Bagging regressor improves the performance

of the Lasso estimator, but the Random forest model has better results. Regardless of

the number of folds, this last model has a mean r-squared of 50%. The following image

shows the model obtained by means of the Random forest estimator.

Figure 3.7: Bagging Random forest regression tree

The predictors space was divided into 15 regions and the model seems to be more

complex than that of the Decision tree regressor. In fact, the Random forest model uses

all the 8 attributes in order to predict which will be the songs popularity. Similar to the

Decision tree, the majority of splits are based of the artist_pop attribute. This model

con�rms that the artist's popularity is crucial to determine the songs popularity. Addi-

tionally, the others attributes are also quite important, for example the instrumetalness

attribute is second as importance. The following image shows the features importance

of the model.

3.4 Ada boost regressor and Stochastic gradient boost regres-

sor

The Regression analysis end with the Boosting algorithms. Like bagging, boosting

is a general approach that can be applied to many statistical learning methods for

regression or classi�cation. The idea of boosting came out of the idea of whether a

weak learner can be modi�ed to become better.

An AdaBoost regressor is a meta-estimator that begins by �tting a regressor on the

original dataset and then �ts additional copies of the regressor on the same dataset

3.3.4 Ada boost regressor and Stochastic gradient boost regressor 42

Figure 3.8: Features importace of the Random forest regression

but where the weights of instances are adjusted according to the error of the current

prediction. As such, subsequent regressors focus more on di�cult cases.

Like other boosting methods, gradient boosting combines weak learners into a single

strong learner, in an iterative fashion. This framework was further developed by Fried-

man and called Gradient Boosting Machines. The statistical framework cast boosting

as a numerical optimization problem where the objective is to minimize the loss of the

model by adding weak learners using a gradient descent like procedure. This class of

algorithms were described as a stage-wise additive model. This is because one new

weak learner is added at a time and existing weak learners in the model are frozen

and left unchanged. The generalization allowed arbitrary di�erentiable loss functions

to be used, expanding the technique beyond binary classi�cation problems to support

regression, multi-class classi�cation and more.

These analysis are stored in two di�erent �les: the �rst one is called ada_regressor

and the other one is called stochastic_gradient_boosting_regressor. They are both

stored at the following link Analysis/Regression/boosting on Github. As the Bagging

regressor, the Ada regressor allows to set which will be the base estimator and this

parameter was set with the list of the estimators and their best parameters already

obtained before. In general, the models creation phase for the Stochastic estimator is

faster than the Ada estimator and the outcomes are quite similar to each other. The

�rst Ada model has a mean r-squared of 52% and the training stage was completed

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Regression/boosting

3.3.4 Ada boost regressor and Stochastic gradient boost regressor 43

in one minutes. The second model obtainend by means of the GridSearch has a mean

validation score of 50%.

GridSearchCV: Ada boosting regressor

1 # set of parameters to test

2 DTR = DecisionTreeRegressor (**best_param_DTR)

3 LR = LinearRegression (** best_param_LR)

4 lasso = Lasso (** best_param_lasso)

5 ridge = Ridge (** best_param_ridge)

6

7 param_ADA = {" base_estimator ": [DTR , LR, lasso , ridge],

8 "n_estimators ": [5],

9 "loss": ['linear ', 'square ', 'exponential '],

10 "random_state ": [99],

11 }

12

13 -- Grid Parameter Search via 5-fold CV

14

15 GridSearchCV took 0.81 seconds

16 for 12 candidate parameter settings.

17 Model with rank: 1

18 Mean validation score: 0.521 (std: 0.081)

19 Parameters: {'n_estimators ': 5, 'loss ': 'exponential ',

20 'base_estimator ': LinearRegression(copy_X=True ,

21 fit_intercept=True , n_jobs=1,

22 normalize=u'False '),

23 'random_state ': 99}

24

25 -- Grid Parameter Search via 10-fold CV

26

27 GridSearchCV took 1.52 seconds

28 for 12 candidate parameter settings.

29 Model with rank: 1

30 Mean validation score: 0.504 (std: 0.123)

31 Parameters: {'n_estimators ': 5, 'loss ': 'exponential ',

32 'base_estimator ': Lasso(alpha =3.0, copy_X=True ,

3.3.4 Ada boost regressor and Stochastic gradient boost regressor 44

33 fit_intercept=True , max_iter =1000,

34 normalize=False , positive=False ,

35 precompute=True , random_state=None ,

36 selection=u'random ', tol =200.0 ,

37 warm_start=True),

38 'random_state ': 99} �
The above results show that the �rst model uses the Linear estimator as base

estimator whereas the second one uses the Lasso estimator. Generally, it looks like

that the �rst model is more accurate than the second one. On the other hand, the

Gradient estimator produces 100 sequentially trees in order to improve the models

created at run time. However, these models are less accurate than the previous ones.

GridSearchCV: Stochastic gradient boosting regressor

1 # set of parameters to test

2 param_SGBR = {"loss": ['ls '],

3 "n_estimators ": [100],

4 "max_depth ": [2, 5, 10, 15],

5 "min_samples_split ": [2, 5, 10, 15],

6 "min_samples_leaf ": [5, 10, 15],

7 "max_leaf_nodes ": [None , 5, 10, 15],

8 "random_state ": [99], }

9

10 -- Grid Parameter Search via 5-fold CV

11

12 GridSearchCV took 30.22 seconds

13 for 192 candidate parameter settings.

14 Model with rank: 1

15 Mean validation score: 0.502 (std: 0.076)

16 Parameters: {'loss ': 'ls', 'max_leaf_nodes ': 5,

17 'min_samples_leaf ': 10, 'n_estimators ': 100,

18 'random_state ': 99, 'min_samples_split ': 2,

19 'max_depth ': 5}

20

21 -- Grid Parameter Search via 10-fold CV

22

3.3.4 Ada boost regressor and Stochastic gradient boost regressor 45

23 GridSearchCV took 87.83 seconds

24 for 192 candidate parameter settings.

25 Model with rank: 1

26 Mean validation score: 0.503 (std: 0.111)

27 Parameters: {'loss ': 'ls', 'max_leaf_nodes ': 5,

28 'min_samples_leaf ': 10, 'n_estimators ': 100,

29 'random_state ': 99, 'min_samples_split ': 2,

30 'max_depth ': 5} �
In the evaluation phase, the models have an average r-squared similar to each other,

but in general the Ada boost model has better performance than the second model.

In particular, the evaluations curves tend to be similar and it is quite di�cult to say

which one is the best model.

Figure 3.9: CV on Ada boost and Stochastic GB regressors

3.4 Classi�cation problem 46

4 Classi�cation problem

The linear regression model assumes that the response variable Y is quantitative.

But in many situations, the response variable is instead qualitative. For example, eye

color is qualitative, taking qualitative on values blue, brown, or green. Often qualitative

variables are referred to as categorical. The classi�cation is the process for predicting

qualitative responses. In machine learning and statistics, classi�cation is the problem

of identifying to which of a set of categories a new observation belongs, on the basis of

a training set of data containing observations whose category membership is known.

An algorithm that implements classi�cation, especially in a concrete implementation,

is known as a classi�er. The term classi�er sometimes also refers to the mathematical

function, implemented by a classi�cation algorithm, that maps input data to a category.

4.1 Logistic regression and Decision tree classi�er

The classi�cation analysis begins with the Logistic regression model and the Deci-

sion tree classi�er. These models and their outcomes are stored at the following link

logistic_and_decision_tree_classi�er on Github. Logistic regression is named for the

function used at the core of the method, the logistic function. The logistic function,

also called the sigmoid function was developed by statisticians to describe properties of

population growth in ecology, rising quickly and maxing out at the carrying capacity

of the environment. It is an S-shaped curve that can take any real-valued number and

map it into a value between 0 and 1, but never exactly at those limits. Logistic re-

gression uses an equation as the representation, very much like linear regression. Input

values are combined linearly using weights or coe�cient values to predict an output

value. A key di�erence from linear regression is that the output value being modeled is

a binary values rather than a numeric value. The coe�cients of the logistic regression

algorithm are estimated by means of the maximum-likelihood estimation.

A classi�cation tree is very similar to a regression tree, except that it is classi�cation

used to predict a qualitative response rather than a quantitative one. The classi�cation

tree predicts each observation belongs to the most commonly occurring class of training

observations in the region to which it belongs. The task of growing a classi�cation tree

is quite similar to the task of growing a regression tree. Just as in the regression

setting, the recursive binary splitting is used to grow a classi�cation tree. However,

https://github.com/jonpappalord/music_analysis/tree/master/Analysis/Classification/logistic_and_decision_tree_classifier

3.4.1 Logistic regression and Decision tree classi�er 47

in the classi�cation setting, RSS cannot be used as a criterion for making the binary

splits. A natural alternative to RSS is the classi�cation error rate. The classi�cation

error rate is simply the fraction of the training observations in a region that do not

belong to the most common class.

As seen before for the regression problem, the RFECV approach was used in order

to select the features which will be used in the models creation phase. The attributes

selected are more than those used in the regression problem and they are the following:

RFECV: Selected attributes for classi�cation problem

1 {

2

3 'seq ', 'mode ', 'artist_pop ', 'acousticness ',

4 'danceability ', 'energy ', 'instrumentalness ',

5 'liveness ', 'loudness ', 'speechiness ', 'valence '

6 } �
Obviously, the importance of the artist_pop is well known and in fact it was selected

by the RFECV. In addition, the RFECV has selected some attributes related to the

quality of a song such as liveness, loudness and so on.

The training stage is the same already seen in the regression problem, in particular,

each model was created by means of the GridSearchCV technique in two di�erent ver-

sions and these versions di�er in the number of folds considered in the cross validation.

In general, the training stage shows that the Logistic regression estimator was per-

formed in few seconds, this may depend on the number of parameters. Both versions

of the logistic regression estimator have an accuracy of 53%

GridSearchCV: Logistic regression outcomes

1 # set of parameters to test

2 param_logistic = {"solver" : ["newton -cg", "lbfgs",

3 "sag", "liblinear"],

4 }

5

6 -- Grid Parameter Search via 5-fold CV

7

8 GridSearchCV took 0.25 seconds

9 for 4 candidate parameter settings.

3.4.1 Logistic regression and Decision tree classi�er 48

10 Model with rank: 1

11 Mean validation score: 0.535 (std: 0.026)

12 Parameters: {'solver ': 'newton -cg'}

13

14 -- Grid Parameter Search via 10-fold CV

15

16 GridSearchCV took 0.44 seconds

17 for 4 candidate parameter settings.

18 Model with rank: 1

19 Mean validation score: 0.535 (std: 0.070)

20 Parameters: {'solver ': 'newton -cg'} �
On the other hand, the Decision tree estimator took more time than the one above.

Similar to the Decision tree regressor, Decision tree classi�er has several parameters

to be set, such as the depth of the tree and so on. But this estimator di�ers from the

Decision regressor for the functions used to measure the quality of a split.

GridSearchCV: Decision tree classi�er outcomes

1 # set of parameters to test

2 param_DTC = {"criterion ": ["gini", "entropy"],

3 "min_samples_split ": [2, 5, 10, 15],

4 "max_depth ": [2, 5, 10, 15],

5 "min_samples_leaf ": [1, 5, 10, 15],

6 "max_leaf_nodes ": [None , 5, 10, 15],

7 "max_features ": [None , 3, 4, 5],

8 }

9

10 -- Grid Parameter Search via 5-fold CV

11

12 GridSearchCV took 43.71 seconds

13 for 2048 candidate parameter settings.

14 Model with rank: 1

15 Mean validation score: 0.600 (std: 0.065)

16 Parameters: {'max_leaf_nodes ': None , 'min_samples_leaf ': 5,

17 'min_samples_split ': 15, 'criterion ':'gini ',

18 'max_features ': 5, 'max_depth ': 5}

3.4.1 Logistic regression and Decision tree classi�er 49

19

20 -- Grid Parameter Search via 10-fold CV

21

22 GridSearchCV took 89.05 seconds

23 for 2048 candidate parameter settings.

24 Model with rank: 1

25 Mean validation score: 0.605 (std: 0.109)

26 Parameters: {'max_leaf_nodes ': None , 'min_samples_leaf ': 5,

27 'min_samples_split ': 5, 'criterion ': 'entropy ',

28 'max_features ': None , 'max_depth ': 15} �
The above results show that both versions of the Decision tree classi�er have an

accuracy of 60%, it seems that the classi�er estimators generate better models than

the regression estimators. As mentioned before, the evaluation phase was performed

by means of the cross validation approach. The evaluation curves show the variation

of the accuracy on the basis of the number of folds considered and the following image

shows this relationship for both models.

Figure 3.10: CV on Logistic regression and Decision tree classi�er

The outcomes obtained in the evaluation stage are better than those obtained in

the regression analysis, in fact, the logistic regression model has an accuracy of 58% in

all folds considered. The second model tends to be less accurate, this may depend on

the fact that the Decision trees approach have a high variance.

3.4.1 Logistic regression and Decision tree classi�er 50

The above results are based on the accuracy metric but this measure is not good

enough to explain which is the best model. Therefore, the confusion matrix was calcu-

lated on both models in order to show the prediction errors. Additionally, the precision

and the recall metrics were calculated because they are crucial to choose the correct

model. The following table shows these matrices: the left matrix concerns the Logistic

model and the second matrix refers to the Decision tree model.

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 200 19 64 283

LP 29 228 34 291

MP 128 82 79 289

Total 357 329 177

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 157 27 99 283

LP 36 194 61 291

MP 108 78 103 289

Total 301 299 263

Table 3.1: Confusion matrices: Logistic reg. on the left and Decision tree classi�er on

the right;

The precision and the recall of the HP class are respectively 0.56 and 0.71 for the

Logistic model while 0.52 and 0.55 for the Decision tree model. The precision and the

recall of the LP class are 0.69 and 0.78 for the Logistic model while 0.65 and 0.67 for

the Decision model. Finally, the precision and the recall of the MP class are 0.45 and

0.27 for the Logistic model while 0.39 and 0.36 for the Decision model.

In general, the �rst model seems to be better than the second one, in fact, the

Logistic model tends to predict correctly the LP and HP classes whereas the MP class

has several errors. Both models predict songs with a medium popularity as less popular

songs or high popular songs. In addition, the second model predicts correctly only the

LP class whereas the other classes have more errors than those in the Logistic model.

Similar to the Linear regression estimator, the Logistic estimator has high bias but low

variance whereas the Decision tree methods have low bias and high variance. This is

the reason why the �rst model tends to be more accurate than the second one.

Once the confusions matrices were obtained, the last task performed concerns the

visualization of the models just created. The Logistic model has three lists of results,

in particular, these lists contain the beta coe�cients of a speci�c song popularity class

which will be used as the response value. These outcomes can be found at the link

3.4.2 Bagging classi�er and Random forest classi�er 51

mentioned before. Finally, the following link tree_classi�er_best_v2.png shows the

Decision tree classi�er obtained.

4.2 Bagging classi�er and Random forest classi�er

The classi�cation analysis proceed to improve the outcomes already obtained. In

particular, the Bagging algorithms were used and these analysis can be found at the

following link Analysis/Classi�cation/bagging/ on Github. These analysis concern the

Bagging classi�er which is stored in the �le called bagging_classi�er.ipynb and the

Random forest classi�er which is store in the �le random_forest_classi�er.ipynb.

As mentioned before, the Bagging or Bootstrap Aggregation is a general procedure

that can be used to reduce the variance for those algorithm that have high variance.

An algorithm that has high variance are decision trees, like classi�cation and regression

trees. Decision trees are sensitive to the speci�c data on which they are trained. If

the training data is changed the resulting decision tree can be quite di�erent and

in turn the predictions can be quite di�erent. In particular,a Bagging classi�er is

an ensemble meta-estimator that �ts base classi�ers each on random subsets of the

original dataset and then aggregate their individual predictions, either by voting or by

averaging, to form a �nal prediction. On the other hand, the Random forest estimator

is an improvement over bagged decision trees.

Similar to the Bagging regressor estimator, the Bagging classi�er estimator allows

to set which will be the base estimator to �t on random subsets of the dataset. This

parameter was set with the list of the estimators and their best parameters already

seen before. Since the models creation phase took too much time, the Bagging classi�er

was performed only on the �rst version of the GridSearchCV. In fact, this phase was

completed in 6 minutes.

GridSearchCV: Bagging classi�er outcomes

1 # set of parameters to test

2 DTC = DecisionTreeClassifier (**best_param_DTC)

3 LR = LogisticRegression (** best_param_LR)

4

5 param_BC = {" base_estimator ": [DTC , LR],

6 "n_estimators ": [5, 10, 20, 50],

7 "max_samples ": [2, 5, 8, 10, 15],

https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Classification/logistic_and_decision_tree_classifier/tree_classifier_best_v2.png
https://github.com/jonpappalord/music_analysis/blob/master/Analysis/Classification/bagging/

3.4.2 Bagging classi�er and Random forest classi�er 52

8 "random_state ": [99],

9 "bootstrap ": [True , False],

10 "bootstrap_features ": [True , False],

11 }

12

13 -- Grid Parameter Search via 5-fold CV

14

15 GridSearchCV took 369.21 seconds

16 for 160 candidate parameter settings.

17 Model with rank: 1

18 Mean validation score: 0.581 (std: 0.035)

19 Parameters: {'max_samples ': 5, 'base_estimator ':

20 LogisticRegression(C=1.0, class_weight=None ,

21 dual=False , fit_intercept=True ,

22 intercept_scaling =1, max_iter =100,

23 multi_class='ovr ', n_jobs=1,

24 penalty='l2', random_state=None ,

25 solver='newton -cg', tol =0.0001 ,

26 verbose=0, warm_start=False),

27 'bootstrap ': True , 'n_estimators ': 50,

28 'random_state ': 99, 'bootstrap_features ': True} �
The Logistic Regressor was selected as base estimator and the model just created

has 58% of accuracy. On the other hand, the Random classi�er took less time than

the Bagging estimator. As the Decision tree classi�er, the Random forest classi�er has

several parameters to set such as the depth of the tree and so on. This training stage

was completed in one minute and the model selected has a mean validation score of

59%.

GridSearchCV: Random forest classi�er outcomes

1 # set of parameters to test

2 param_RFC = {"n_estimators ": [10],

3 "criterion ": ["gini"],

4 "max_depth ": [5, 10, 15, 20],

5 "min_samples_split ": [5, 10, 15, 20],

6 "min_samples_leaf ": [1, 5, 10, 15, 20],

3.4.2 Bagging classi�er and Random forest classi�er 53

7 "max_leaf_nodes ": [None , 5, 10, 15],

8 }

9

10 -- Grid Parameter Search via 5-fold CV

11

12 GridSearchCV took 65.79 seconds

13 for 320 candidate parameter settings.

14 Model with rank: 1

15 Mean validation score: 0.591 (std: 0.063)

16 Parameters: {'max_leaf_nodes ': 10, 'min_samples_leaf ': 5,

17 'n_estimators ': 10, 'criterion ': 'gini ',

18 'min_samples_split ': 20, 'max_depth ': 20} �
Once the models were created, the evaluation stage was performed on both models.

The following image shows the accuracy variation of both models on the basis of the

number of folds considered.

Figure 3.11: CV on Bagging classi�er and Random forest classi�er

The evaluation phase shows that the Random classi�er has a better average accu-

racy than the second model. In fact, the accuracy of the Random classi�er is always

higher than that of the Bagging classi�er. Consequently, the Random model should be

more accurate but it is necessary to compare the confusion matrices in order to choose

which model is the best.

3.4.2 Bagging classi�er and Random forest classi�er 54

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 200 22 61 283

LP 27 229 35 291

MP 130 83 76 289

Total 357 334 172

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 210 22 51 283

LP 34 219 38 291

MP 127 83 79 289

Total 371 324 168

Table 3.2: Confusion matrices: Bagging classi�er on the left and Random forest clas-

si�er on the right;

As seen before, the models predict very well the classes LP and HP whereas theMP

class tends to have some errors. This situation could be depend on certain instances,

for example some songs with medium popularity could be similar to those of the low

and high popularity classes. The artist_pop attribute could in�uence the popularity

of these songs, particularly, an ugly song could be predicted in the high class because

it was created by a famous singer.

Finally, the following image shows the tree which is obtained by the Random clas-

si�er. For simplicity, only one tree over 10 was considered. The predictors space was

divided into 10 regions. The attribute acousticness is used as root node and the inter-

nal nodes use the artist_pop attribute or the songs quality attributes in order to do a

split in the tree.

Figure 3.12: Decision tree classi�er model

3.4.3 Ada boost classi�er and Stochastic gradient boost classi�er 55

4.3 Ada boost classi�er and Stochastic gradient boost classi�er

The classi�cation analysis ends with the boosting algorithms. These analysis can

be found at the following link Analysis/Classi�cation/boosting/. As mentioned before,

boosting is a general ensemble method that creates a strong classi�er from a number of

weak classi�ers. This is done by building a model from the training data, then creating

a second model that attempts to correct the errors from the �rst model. Models are

added until the training set is predicted perfectly or a maximum number of models are

added. Modern boosting methods build on AdaBoost, most notably stochastic gradient

boosting machines.

Similar to Ada regressor, the Ada classi�er has a parameter for the so-called base

estimator. The best versions of the Decision tree classi�er and the Logistic regression

are used to set the base estimator parameter. The training stage was completed in 2

minutes and the models obtained have respectively an accuracy of 56% for the �rst

version of the GridSearchCV whereas the second version has a mean validation score

of 57%.

GridSearchCV: Ada boost classi�er outcomes

1 # set of parameters to test

2 DTC = DecisionTreeClassifier (**best_param_DTC)

3 LR = LogisticRegression (** best_param_LR)

4

5 param_ADA = {" base_estimator ": [DTC , LR],

6 "n_estimators ": [3],

7 "algorithm ": ['SAMME ', 'SAMME.R'],

8 "random_state ": [99],

9 }

10

11 -- Grid Parameter Search via 5-fold CV

12

13 GridSearchCV took 1.06 seconds

14 for 4 candidate parameter settings.

15 Model with rank: 1

16 Mean validation score: 0.563 (std: 0.043)

17 Parameters: {'n_estimators ': 3, 'base_estimator ':

18 LogisticRegression(C=1.0, class_weight=None ,

https://github.com/jonpappalord/music_analysis/tree/master/Analysis/Classification/boosting/

3.4.3 Ada boost classi�er and Stochastic gradient boost classi�er 56

19 dual=False , fit_intercept=True ,

20 intercept_scaling =1, max_iter =100,

21 multi_class='ovr ', n_jobs=1,

22 penalty='l2', random_state=None ,

23 solver='newton -cg', tol =0.0001 ,

24 verbose=0, warm_start=False),

25 'random_state ': 99, 'algorithm ': 'SAMME '}

26

27 -- Grid Parameter Search via 10-fold CV

28

29 GridSearchCV took 1.86 seconds

30 for 4 candidate parameter settings.

31 Model with rank: 1

32 Mean validation score: 0.572 (std: 0.063)

33 Parameters: {'n_estimators ': 3, 'base_estimator ':

34 LogisticRegression(C=1.0, class_weight=None ,

35 dual=False , fit_intercept=True ,

36 intercept_scaling =1, max_iter =100,

37 multi_class='ovr ', n_jobs=1,

38 penalty='l2', random_state=None ,

39 solver='newton -cg', tol =0.0001 ,

40 verbose=0, warm_start=False),

41 'random_state ': 99, 'algorithm ': 'SAMME '} �
The above results are stored in the �le called ada_boost_classi�er.ipynb. The

models just created use the same estimator as base estimator parameter, in fact, both

models use the Logistic regression. The second model tends to have better accuracy

than the �rst one, therefore only the second model was considered in the evaluation

stage.

On the other hand, the outcomes of the Stochastic estimator are stored in the �le

called stochastic_gradient_boosting_classi�er.ipynb. The creation phase took over 3

minutes, in fact, this is the reason why the training stage was performed only in the

�rst version of the GridSearchCV. The model obtained has a mean validation score of

60%.

GridSearchCV: Stochastic GB classi�er outcomes

3.4.3 Ada boost classi�er and Stochastic gradient boost classi�er 57

1 # set of parameters to test

2 param_SGBC = {"loss": ['deviance '],

3 "n_estimators ": [100],

4 "max_depth ": [2, 5, 10, 15],

5 "min_samples_split ": [2, 5, 10, 15],

6 "min_samples_leaf ": [5, 10, 15],

7 "max_leaf_nodes ": [None , 5, 10, 15],

8 "random_state ": [99],

9 }

10

11 -- Grid Parameter Search via 5-fold CV

12

13 GridSearchCV took 228.83 seconds

14 for 192 candidate parameter settings.

15 Model with rank: 1

16 Mean validation score: 0.600 (std: 0.057)

17 Parameters: {'loss ': 'deviance ', 'max_leaf_nodes ': 15,

18 'min_samples_leaf ': 5, 'n_estimators ': 100,

19 'random_state ': 99, 'min_samples_split ': 2,

20 'max_depth ': 10} �
Once the models were created, the analysis proceed with the evaluation phase. In

general, the Stochastic model has better performance than the Ada boost model, in

fact, the accuracy of the Stochastic model is higher than that of the other model.

As seen before, the confusion matrices were calculated on both models in order

to show the prediction errors. The models predict very well the classes HP and LP

whereas the MP class tends to have several errors. In particular, the stochastic model

has a better accuracy and it produces less errors in the MP class than the Ada model.

On the other hand, the Ada model predicts better the LP and HP classes than the

Stochastic model, but the Ada confusion matrix is the same obtained by the Bagging

classi�er.

3.4.3 Ada boost classi�er and Stochastic gradient boost classi�er 58

Figure 3.13: CV on Ada boost classi�er and Stochastic GB classi�er

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 200 22 61 283

LP 27 229 35 291

MP 130 83 76 289

Total 357 334 172

Predicted

H
P

L
P

M
P

T
ot
al

A
ct
u
al

HP 179 19 85 283

LP 26 202 63 291

MP 99 62 128 289

Total 304 283 276

Table 3.3: Confusion matrices: Ada boost classi�er on the left and Stochastic GB

classi�er on the right;

Chapter 4

INTERPRETATION OF MODEL

AND SIMULATION

1 Summary

This last chapter gives an answer to the myth of four chords by analyzing the

Decision tree model already obtained before. In particular, the rules of the model were

extracted and interpreted. Finally, some particular instances were created in order to

prove that there is not a relationship between chord progressions and songs popularity.

2 Model interpretation

The last phase of this project focus the attention on the analysis of the model

already obtained before. In particular, two di�erent tasks were performed: the �rst

one concerns the interpretation of the model and the extrapolation of the rules used

to predict the popularity of songs; the other task is called Simulation in which the

model was tested with particular instances in order to check if a relationship exist or

not between the chord progressions and the songs popularity. The sources codes can

be found at the following link Simulation on Github.

For simplicity, the model considered is the Decision tree regressor, in fact the de-

cision tree obtained by means of this estimator is generally easier to understand than

others regression models. The model was recreate by means of the hyper-parameters

already obtained before, i.e.:

https://github.com/jonpappalord/music_analysis/tree/master/Analysis/Simulation

4.2 Model interpretation 60

Decision tree regressor best parameters

1 "criterion ": "mse", "max_depth ": 15,

2 "max_features ": 6, "max_leaf_nodes ": 10,

3 "min_samples_leaf ": 10, "min_samples_split ": 10 �
Once the model was recreated, the next step concerns the extrapolation of the

model rules. These rules are used to predict the popularity of songs. The following

image shows the decision tree regressor model which was used to extract the rules.

Figure 4.1: Decision tree regressor model

As seen before, the model splits the predictors space into ten regions. Each re-

gion speci�es the value of songs popularity which will be assigned to the respectively

instances. In particular, the model uses a subset of the available attributes and the

majority of splits are based on the artist_pop attribute. Furthermore, the chord pro-

gressions attribute was not used as split node whereas it looks like the model prefers

to use the qualitative attributes such as for example the instrumentalness and the

danceability. The following image shows the rules extracted from the model.

4.2 Model interpretation 61

Figure 4.2: Decision tree regressor rules

The majority of rules use the artist_pop attribute to determine which will be songs

popularity values. The most frequently rules are the top 3. In particular, the rules 1

and 2 use the instrumentalness level in order to determine songs popularity. On the

other hand, the rule 3 considers the loudness attribute. The �rst rule and the second

one are related to songs which have medium/high popularity whereas the third rule is

used to predict the less popular songs.

4.3 Conclusions 62

3 Conclusions

Based on the rules extracted, we perform a simulation task where we select instances

describing real songs and investigate the model's behaviour. We consider two groups

of instances: the �rst one contains highly popular songs, the second one contains little

popular songs. Each group contains each of the chord progressions analyzed in this

thesis. The songs from popular artists are those having a value of artist_pop 75,

whereas the songs from the less popular artists are those having artist_pop 35. These

prototypes are stored in two di�erent �les and used as input to the Decision tree model.

We �nd that the most popular artists use more chord progressions than the less

popular artists. Moreover, the songs' harmonic structures do not in�uence signi�cantly

songs popularity. Consequently, there is not a chord progression which increases the

chances of a song to become popular. These results suggest that songs popularity

mainly depend on the popularity of its creator.

4.3 Conclusions 63

Figure 4.3: Frequencies of songs popularity for each decile of songs popularity

4.3 Conclusions 64

As mentioned before, the myth of four chords asserts that all popular songs consists

of the same 4 chords. The most common chord progression is 1,5,6,4 and in fact this

progression appears in each decile of songs popularity. In general, this pattern could be

used to play several songs but this choice does not ensure if they will be popular or not.

Similar to 1,5,6,4, others chord progressions are used regardless of songs popularity.

The choice of chords is just one aspect of writing a song. The chord progression

provides the harmony of a song, but music contains many other elements. As well as

harmony, there is melody, rhythm, tempo, meter, dynamics, articulation, and timbre.

And beyond the music, many artists feel that the story told by the lyrics is just as

important to the success of a song.

Bibliography

[1] G. Casella, S. Fienberg, I. Olkin An Introduction to Statistical Learning, Springer

texts in statistics

[2] K. Markham http://www.dataschool.io/15-hours-of-expert-machine-learning-

videos/ Data school

[3] H. Hamilton http://www2.cs.uregina.ca/ dbd/cs831/index.htmlKnowledge Discov-

ery in Databases

[4] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth From Data Mining to Knowledge Dis-

covery: An overview in Advances in Knowledge discovery and Data Mining. Fayyad

U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. MIT Press. Cambridge, Mass..

1996 pp. 1-36

[5] U. Fayyad Data Mining and Knowledge Discovery: Making Sense Out of Data in

IEEE Expert October 1996 pp. 20-25

[6] E. Simoudis Reality Check for Data Mining in IEEE Expert October 1996 pp. 26-33

[7] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth The KKD Process for Extracting Use-

ful Knowledge from Volumes of Data in Communications of the ACM, November

1996/Vol 39, No.11 pp.27-34

[8] Nick Long https://www.musical-u.com/learn/four-chords-and-the-truth/ Four

Chords and the Truth January 2011

[9] jack Hook https://www.theodysseyonline.com/quick-guide-chords A Quick Guide

To Chords May 2016

[10] http://www.rollingstone.com/music/lists/the-500-greatest-songs-of-all-time-

20110407/the-cure-just-like-heaven-20110526 500 Greatest Songs of All Time

Bibliography 66

[11] F. Pellacini http://pellacini.di.uniroma1.it/teaching/fondamenti14/lectures.html

python

[12] https://docs.python.org/3.5/tutorial/index.html the python tutorial

[13] https://doc.scrapy.org/en/latest/intro/tutorial.html Scrapy Tutorial

[14] Jason Brownlee http://machinelearningmastery.com

[15] https://en.wikipedia.org/wiki/Data_mining

[16] https://en.wikipedia.org/wiki/Music_theory#Chord

[17] http://jupyter.org/

[18] http://docs.python-requests.org/en/master/

[19] http://ipython.readthedocs.io/en/stable/interactive/magics.html

[20] http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

[21] http://seaborn.pydata.org/api.html

[22] http://pandas.pydata.org/pandas-docs/stable/10min.html#csv

	Abstract
	Introduction
	DATA COLLECTION
	Summary
	Data collection process
	Hooktheory case study
	Spotify case study

	DATA UNDERSTANDING
	Summary
	Data exploration process
	Statistical analysis
	Ad-Hoc queries

	PREDICTION ON POPULARITY FROM MUSICAL STRUCTURES
	Summary
	Models creation process
	Regression problem
	Linear regression and Decision tree regressor
	Lasso and Ridge regressor
	Bagging regressor and Random forest regressor
	Ada boost regressor and Stochastic gradient boost regressor

	Classification problem
	Logistic regression and Decision tree classifier
	Bagging classifier and Random forest classifier
	Ada boost classifier and Stochastic gradient boost classifier

	INTERPRETATION OF MODEL AND SIMULATION
	Summary
	Model interpretation
	Conclusions

	Bibliography

