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Multiple temperatures and melting of a
colloidal active crystal

Helena Massana-Cid 1 , Claudio Maggi 1,3 , Nicoletta Gnan1,4,
Giacomo Frangipane 1,2 & Roberto Di Leonardo 1,2

Thermal fluctuations constantly excite all relaxation modes in an equilibrium
crystal. As the temperature rises, these fluctuations promote the formation of
defects and eventuallymelting. In active solids, the self-propulsion of “atomic”
units provides an additional source of non-equilibrium fluctuations whose
effect on the melting scenario is still largely unexplored. Here we show that
when a colloidal crystal is activated by a bath of swimming bacteria, solvent
temperature and active temperature cooperate to define dynamic and ther-
modynamic properties. Our system consists of repulsive paramagnetic parti-
cles confined in two dimensions and immersed in a bath of light-driven E. coli.
The relative balance between fluctuations and interactions can be adjusted in
twoways: by changing the strength of themagnetic field and by tuning activity
with light. When the persistence time of active fluctuations is short, a single
effective temperature controls both the amplitudes of relaxation modes and
themelting transition. Formorepersistent active noise, energy equipartition is
broken andmultiple temperatures emerge, whereasmelting occurs before the
Lindemann parameter reaches its equilibrium critical value. We show that this
phenomenology is fully confirmed by numerical simulations and framed
within a minimal model of a single active particle in a periodic potential.

Colloidal systems have been successfully studied as model atomic
solids thanks to their experimentally accessible length and time
scales, along with their known and controllable interactions. They
have been used to elucidate very debated issues connected to the
nature ofmelting transition in two dimensions1, the dynamical arrest
in glass transition2, and the vibrational excitations in disordered
solids3. A new class of solid materials, known as active solids4–6, has
recently attracted increasing attention. These materials consist of
active, self-propelled particles embedded in an elastically coupled
network. Thismix generates awide variety ofmacroscopic collective
motions7,8 that have no counterpart in systems at equilibrium while
they are often found in living systems9. Nevertheless, on a more
“atomistic” and fundamental level, there is limited experimental
evidence on how activity alters the conventional properties of solids

in equilibrium such as the equipartition of energy among relaxation
modes10 and the microscopic origin of melting11. Whereas some
numerical studies have shown that the two-step melting scenario of
2d crystals is qualitatively preserved when activity is introduced12–15,
more recent simulation work has pointed out that two different
effective temperatures control the large-scale elastic deformations
of the crystal structure and the small-scale bond-order
fluctuations16,17. The primary obstacle to tackle these issues experi-
mentally is the necessity for a system that is simultaneously active
and possesses a precisely defined, controllable geometry, and
interactions. While self-propelling synthetic active particles can self-
organize into dynamic crystals when colliding18–20, or into poly-
crystals when sedimenting21,22, particle velocities and fluctuations
are hard to access in these close-packed systems23–25. Moreover, the
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self-propulsion mechanism can become ineffective or perturbed by
the presence of close neighbors.

Here we show an experimental realisation of a large ordered and
loose-packed colloidal active solid with interactions and activity tunable
in-situ and on-command. Our system consists of a two-dimensional
crystal composed of self-ordered magnetic particles activated26–29 by a
photokinetic bacterial bath. This non-equilibrium solid is excited by two
fluctuating forces: the thermal noise due to the solvent and the sto-
chastic interactions with swimming bacteria. The strength of these two
components can be adjusted dynamically by tuning inter-particle inter-
actions through the magnetic field and by changing the intensity of the
green light that powers bacteria. We study the crystal’s harmonic
behavior when excited by these two forces and find that they act dif-
ferently on the system’s degrees of freedom, resulting in the coexistence
of multiple temperatures and revealing the non-equilibrium nature of
active lattice fluctuations. Furthermore, these fluctuations can break
bonds and generate topological defects in our system, allowing us to
explore a novelmelting route by increasing particle activity.Wefind that
in active melting, at large scales, the system appears to qualitatively
follow the two-step phase transition predicted by KTHNY theory30. In
contrast, at a more local level, persistent active forces promote particle
hopping that triggers melting when the nearest neighbor fluctuations,
measured by the Lindemann parameter, are much smaller than what is
observed in equilibrium31. Overall, our system will serve as an unprece-
dented experimental test-bed for the study of many effects that have so
far remained largely theoretical predictions.

Results
Weassemble the active solidby applying amagneticfieldH to a sample
consisting of two-dimensionally confined paramagnetic colloids of
4.5 μm diameter immersed in a bath of photokinetic bacteria (see
Methods). When the applied magnetic field is perpendicular to the
sample plane, there is an isotropic repulsion energy between particles
separated by a distance a of UM = μ0χ

2H2/4πa3, where χ is the particle’s
magnetic susceptibility and μ0 is the magnetic permeability. This
repulsion maximizes the inter-particle distance, inducing the forma-
tion of a triangular lattice of non-close packed repulsive particles
(Fig. 1a,b, Supplementary Movie 1).

On the other hand, the bacteria in the bath induce active motion
into the crystal by pushing its particles26. These cells are E. coli32

expressing the light-driven proton pump proteorhodopsin (see

Methods). The sample is sealed so that, after the cells have consumed
all the oxygen in the buffer through respiration, the proton motive
force drops down and the flagellar motors stop spinning and start
responding to external green light stimuli. Using a green LED, we can
control swimming speed and thus the induced activity by illuminating
the sample with green light of different intensity I. When there is no
green light applied, bacteria do not move and the system consists of
confined Brownian particles with a diffusion coefficient DT. When we
apply green light I ≠ 0, the bacteria swim and push the particles so the
amplitude of their fluctuations around their lattice position increases
(Fig. 1c, Supplementary Movie 2). This results in colloids acquiring a
persistent motion with a characteristic time τ and an effective active
diffusion coefficient DA. The effect of the active bath on the colloids,
influenced by factors such as bacteria concentration and light intensity
I (speed), can be characterized by DA and τ26. We calibrate these
parameters for each experiment, in the absence of a magnetic field for
various green light intensities (see Methods, Supplementary Fig. 1).

In the limit of short persistence time τ, active particles with
mobility μ behave like “hotter” equilibrium systems with a higher
thermal energy (DA + DT)/μ obtained from a generalized Stokes-
Einstein relation33. Dividing this by the magnetic interaction energy
scale UM we can introduce an adimensional global temperature T*:

T * =
4π
μ0χ2

a3

H2

DT +DA

μ
ð1Þ

By independently tuning the external magnetic field and the
intensity of the green light we can control this global effective tem-
perature and at the same time the relative contributions from the
solvent and the active bath.

One of the most intriguing questions that follows from this pic-
ture is whether there is any qualitative difference between active and
thermal excitations in the solid and as a result a violation of the classic
equipartition theorem. It has been predicted34, that the equipartition
theorem can be broken in out-of-equilibrium systems such as those
constituted by active particles, if the external potential introduces
time-scales comparable with the active motion’s persistence time.
However, this has never been observed in a real system. To understand
how activity affects fluctuations in the active crystal we study its nor-
mal mode band structure10,35. We must importantly note that here we
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Fig. 1 | A colloidal active crystal powered by bacteria. a Side-view schematic of
the experimental system: 2D confined magnetic particles with moment m aligned
with an external field H forming a triangular lattice in a bacterial bath powered by
green light. bMicroscope snapshots of the assembly of the activemagnetic solid in
a bacterial bath, before and after applying a magnetic field (Supplementary

Movie 1). cMicroscope snapshot of an assembledmagnetic solid in a bacterial bath
after equilibration (Supplementary Movie 2). Corresponding trajectories of the
passive (Light OFF) and active crystal (Light ON) in the enlarged area of the high-
lighted box in orange (top). Bath activity, specifically calculated using the relative
variance of bacteria local density (bottom). All scale bars are 20 μm.
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are not discussing phonon vibrational modes. Since the crystal is
immersed in a viscous fluid, the colloids’motion is over-damped, and
the trajectory of a particle is composed of a superposition of normal
relaxation modes36. Deep in the crystalline phase particles undergo
small displacementswith respect to their equilibriumpositions thatwe
denote by ui = ri − 〈ri〉. Here ri and 〈ri〉 are, respectively, the instanta-
neous position and the (time averaged) equilibriumposition of the i-th
particle. We then consider the Fourier components uq of the dis-
placement field ui with q a vector in the reciprocal lattice defined by
the equilibrium positions 〈ri〉. Introducing the Fourier-transformed
dynamical matrix35 Dq (see Methods), the average harmonic potential
energy of the crystal can be thus written as:

U =
1
2

X

q,α,β

Dα,β
q huα

qu
β
�qi ð2Þ

When displacements are represented in longitudinal and transverse
coordinates uk

q,u?
q the dynamical matrix Dq is diagonal with eigenva-

lues kk
q,k

?
q so that the total potential energy is a sumof quadratic terms

and, if in equilibrium, energy equipartition imposes that:

ks
qp

s
q = kBT ð3Þ

with ps
q = hjus

qj2i the mean squared amplitude of displacement fluc-
tuations with wavevector q and polarization s = ∥, ⊥. In other words,
when dynamics is only driven by thermal forces, every mode provides
an independent and consistent measurement of the equilibrium tem-
perature through Eq. (3). In active systems, non-equilibrium fluctua-
tions may give rise to strong deviations from Boltzmann statistics
when the persistence time of the active noise competes with other
internal relaxation times. When the active noise is Gaussian, i.e. we
consider Active Ornstein-Uhlenbeck Particles (AOUPs), the expression
for the mean potential energy of a harmonic oscillator becomes a
simple generalization of the equipartition formula34. This result can be
generalized to a harmonic crystal for which it becomes37:

ks
qp

s
q = kB T +TA ks

q

� �h i
ð4Þ

with TAðks
qÞ a mode-specific effective active temperature given by

TAðks
qÞ=

DA

μkB

1

1 +μks
qτ

ð5Þ

Asimilar notionof effective temperatures has been introduced for
glassy systems38, where multiple temperatures can be measured by
“thermometers” that probe the system’s dynamics on different time-
scales. In the present case, the relaxationmodes in the crystal play the
role of thermometers that measure different effective temperatures,
revealing the non-equilibrium nature of the active system. Specifically,
stiffer modes that relax on a characteristic time 1=ðμks

qÞ shorter than
the persistence time of the active noise τ, will be “colder” relative to
softer modes such as those at longer wavelengths. This coexistence of
multiple effective temperatures has been theoretically predicted but
never observed in real active systems. To find evidence for this effec-
tive temperature spectrum we need to measure the mode-specific
potential energy ks

qp
s
q. Mode stiffnesses ks

q can be obtained by mea-
suringmode amplitudes ps

q in a passive systemwhere green light is off
andbacteria are non-motile. In Fig. 2d–f we report experimental ks

q as a
density map on the first Brillouin zone. Then we turn on activity
compute the mean squared amplitudes of relaxation modes ps

q and
obtain the effective active temperatures as defined by Eq. (4):

TAðks
qÞ

T
=
ks
qp

s
q

kBT
� 1 ð6Þ

Using Eq. (6) to extract TAwe test Eq. (5) in Fig. 2g for an experimental
active crystalwhere τ=0.1 s. To reducenoise,weaverage allpk,?

q whose
corresponding ks

q fall in a given interval. The ratioTA/T in Fig. 2g shows
no systematic deviations from the horizontal line. In other words,
when τ is small, all modes probe the same effective temperature. In
contrast, when we tune light intensity to maximize τ, we find a mode
specific temperature that decreases by a factor two with increasing
relaxation rates μks

q. This decay is consistent with the prediction in Eq.
(5) shown by the solid line. By fitting the data with τ and DA/DT as free
parameters, we obtain τ = 0.5 s and (DA/DT) = 3, in reasonable agree-
ment with independent measurements of the same constants in the

m mm

m
m

Fig. 2 | Coexistence of multiple temperatures in the active crystal. Map in the
reciprocal space (qx, qy) of the a longitudinal kk

q and b transverse k?
q eigenvalues of

the dynamical matrix and c their sum obtained numerically for a dipolar two
dimensional crystal.Map in the reciprocal space (qx, qy) of thed longitudinal kk

q and
e transverse k?

q eigenvalues and f their sum obtained in the experiment for the
passive crystal. g Relative active temperature TA/T as a function of the eigenvalues

ks
q for experiments at short persistence time τ = 0.1s (points) and theoretical fit

(continuous line). Error bars correspond to the standarddeviation. Same quantities
are reported inh for experiments at τ = 0.6 s. i, j report same plots in simulations of
AOUPs. For large τ (h, j), the active data are well fitted by a hyperbola according to
the theory for AOUPs. For low τ (g, i), the quantity TA/T is nearly constant.
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absence of amagnetic field (τ = 0.6 s andDA/DT = 2.5, seeMethods). To
check the robustness of our method, we perform the exact same
analysis for numerical simulations of a crystal composed of AOUPs39

interacting via dipolar repulsive forces in two dimensions as shown in
Fig. 2i, j. For these simulations,we choose all dynamicparameters close
to the experimental ones. Simulations display a very similar pattern of
mode-specific temperatures when τ becomes comparable to the
characteristic relaxation times of harmonic modes.

The harmonic analysis described above was performed on “cold”
crystals with global temperature values T* < 0.01. We have two routes
to explore higher temperature phases. The first one is by decreasing
the magnetic interaction energy UM, as already explored in passive
systems11 (see also Supplementary Movie 3). The second is by tuning
activity DA and melting the system through non-equilibrium fluctua-
tions (Supplementary Movie 4). Along this entirely new route, we can
explore how equilibrium and off-equilibrium temperatures cooperate
to define the phases of the system. We characterise the system’s
structural states at different DA and UM using the orientational bond
order parameter:

Ψ6 =
1
N

XN

i = 1

jΨðriÞj ð7Þ

whereΨðriÞ=
PNi

j = 1 e
i6θij=Ni,Ni is the number of neighboring particles,

and θij the angle between a fixed axis and the bond joining particles i
and j. The parameter Ψ6 quantifies the hexagonal symmetry in the
crystal lattice, achieving a maximum value of 1 when each particle is
surrounded by six symmetrically arranged nearest neighbors.We then
use the dynamic Lindemann parameter as melting criterion11:

γLðtÞ=
hðΔriðtÞ � ΔrjðtÞÞ2i

2a2
ð8Þ

where Δri is the ith particle displacement after a time t:
Δri(t) = ri(t) − ri(0), i and j are nearest neighbors and a is the inter-
particledistance. If γL(t) saturates for long t itmeans that theneighbors
are coupled and the system is a solid. On the other hand, when γL

diverges, it means the neighbors diffuse away from each other and the
system melts. Thus, with Ψ6 to quantify the sixfold orientational
symmetry and the dynamic Lindemann parameter as a melting
criterion we draw a phase diagram depending on UM and DA (Fig. 3a).
Crystalline phases are found in the top left corner corresponding to
low activity or high magnetic interaction while melting occurs when
moving either to lower UM or higher DA. This novel melting by activity
can be suddenly triggered just by turning on green light which results
in a fast and progressive decrease of orientational order (Fig. 3b). After
a couple of minutes Ψ6 decays from 0.94 to 0.67 while defects, i.e.
particles with 5 or 7 nearest neighbors, begin to appear reaching a total
fraction 30%.

We showed above through mode analysis that short wavelength
modes may have a lower effective temperature if their relaxation time
is comparable to τ. This could affect the activated hopping of particles
and inhibit melting. Therefore, we check whether the melting struc-
tural transition is solely predicted by T* or if it is influenced by τ. For
that, we calculate the orientational correlation function g6(r):

g6ðrÞ= g6ðjri � rk jÞ= hΨðriÞΨ*ðrkÞi ð9Þ

In equilibrium, 2D colloidal crystals melt in two steps according to
KTHNY theory1: firstly from crystalline or long-range orientational
order (g6(r) ~ 1) to hexatic or quasi-long-range order (g6ðrÞ∼ r�η6 ), and
then to short-range order or isotropic phase (g6ðrÞ∼ e�r=ξ6 ). When
melting occurs mainly via active fluctuations, we do not observe any
discernible discrepancies with KTHNY: by increasing T* the system
transitions fromcrystalline to hexatic and then to isotropic, both in the
case of DA = 0 and DA ≠ 0 (Fig. 3c). Furthermore, if we plot the bond
order parameterΨ6 all data of the phase diagram as a function ofT* we
see that all points fall approximately on the same curve (see
Supplementary Fig. 2). To further validate this assertion and access
larger systems and larger persistence times τ, we perform numerical
simulations on active and passive systems characterized by exactly the
same T*. Our findings reveal that for the experimentally accessible
parameters of τ ~ 1 s, the orientational correlation remains nearly
indistinguishable between the two, except for a slight increase in order

MELTING

CRYSTAL

Fig. 3 | Out-of-equilibrium phase diagram and active melting route. a Phase
diagram as a function on the active diffusion DA and magnetic interaction UM.
Hexagonal symbols correspond to the crystalline phase, and triangles to melting
systems, according to the Lindemann criterion. Each point is colored according to
the structural order (average bond order parameter Ψ6). Snapshots and particle
trajectories for different systems around the phase diagram, and effect of changing
DA and UM: passive melting when decreasing the magnetic field without activity
(Supplementary Movie 3), active melting when increasing light intensity and con-
sequently DA at constant magnetic field and UM (Supplementary Movie 4).

b Evolution of the bond order parameter Ψ6 of a crystal when light is suddenly
turned on at t = 50 s so that it is activated at DA = 0.1μm2/s. In this experiment
UM= 10−7pJ and τ=0.6 s. Topgraph shows the evolutionon thedefect fraction in the
same system, of defects consisting of particles with 5 nearest neighbors, 7 nearest
neighbors, and the total. c Orientational correlation function for different global
temperatures T* (Eq. (1)). with fits to power law (dashed lines) and exponential
decay (dotted lines).Experimental results (top). Simulation results for groups of
active and passive systems with identical total temperature (bottom).
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in the active case. However, for a larger persistence time τ ~ 10 s, the
system is still crystalline at a temperature that melts the passive
counterpart, revealing a hotter melting temperature T *

m for the active
case. Furthermore, we still observe the 2-step melting scenario for
larger τ and larger systems (Supplementary Figs. 3–4).

We have shown through harmonic analysis that the short wave-
length modes are particularly affected by active noise, exhibiting
decreased fluctuations as though they were in equilibrium at a lower
effective temperature compared to the longer wavelengths. This
observation suggests that the peculiar aspects of active melting may
emerge in measurements of local quantities, such as the Lindemann
parameter which captures fluctuations between neighbors. It was
measured in a similar system in equilibrium conditions11 a compre-
hensive Lindemann melting threshold of γm = 0.033. Beyond this
threshold, i.e. when the system fluctuates such that γ(t) > γm, the
neighbors start to diffuse away from each other and the systemmelts.
We explore this scenario both in experiments and simulations. In the
latter, similarly to ref. 11, wefind a criticalmelting value of γm =0.029 in
the equilibrium system. Remarkably, in active systems, we see that this
criterion breaks down and γL(t) starts diverging at lower critical values
(Fig. 4a). This indicates that the nearest neighbor bond fluctuations
that the crystal has just before melting are hindered in the active case
compared to those of a system in equilibrium. We see that in the
experiments active melting occurs at lower plateaus for the experi-
mental persistence time (0.1-1s) than in simulations (1-10s). This dif-
ference may be caused by the latter not capturing the longer tails of
the displacement probabilities40P(Δx) observed experimentally, which
could potentially trigger earliermelting. Specifically, we observe wider
tails in the distributions when the active diffusion DA increases (Sup-
plementary Fig. 5). In simulations we also find that for highly active
systems, i.e. with large τ, the melting effective temperature T *

m
increases, as we saw in Fig. 3c, even though the resulting maximum
plateau of Lindemann γm decreases. To understand this counter-
intuitive effect, we propose a simple schematicmodel: i.e. we consider
one single AOUP particle moving over a one-dimensional sinusoidal

potential (see Methods). At low effective temperatures the particle is
trapped in a localminimum, in analogywith particles being trapped by
the nearest neighbor cage. Themean squared displacement 〈Δx2(t)〉 in
this 1d-model is the analog of the dynamic Lindemann parameter γL(t)
in the crystal. As we increase the noise strength the particle begins
hopping between minima (which is the analogue of melting) as shown
in Fig. 4b. Also, in this case, we observe that the plateau value of
〈Δx2(t)〉 at the transition (denoted by hΔx2im) decreases sensibly upon
increasing τ and that the effective temperature needs to be higher to
induce melting at longer τ-values (Fig. 4c). In the Methods we show,
that in the 1d-model, this phenomenology is due to the combination of
two distinct effects: for long τ atmelting only a few particles overcome
the barrier by moving at nearly constant propulsion force, instead of
diffusing (i), while the vast majority of particles are trapped and their
fluctuations are “damped” upon increasing τ (ii), which is a well-known
effect in active harmonic oscillators41. With these assumptions, we
obtained a simple theoretical description of the active barrier-crossing
which fits well the data in Fig. 4c, both for the 1d model and 2d
simulations. In light of this model, we interpret the lowering of the
melting Lindemann parameter in the active case as the result of indi-
vidual persistent hopping events.

Discussion
In conclusion, we used light-activated bacteria swimming through a
colloidal crystal with tunable magnetic interactions to study how
active fluctuations excite relaxation modes in a crystal and provide a
non-equilibrium route to melting. We find that multiple active tem-
peratures coexist in an active crystal with short wavelength modes
being “colder” than long wavelength ones. When persistence is very
significant, this results in a highermelting temperature along the active
route. Moreover, compared with the passive case, a significantly lower
critical threshold for the Lindemann parameter is found in active
melting. Our findings reveal novel aspects in the behavior of active
crystals through a simple and controllable experimental system.
Future studies can investigate whether this phenomenology is robust

Fig. 4 | Active melting: anomalous Lindemann parameter and increase of the
melting temperature. a Lindemann parameter γL(t) in experiments and simula-
tions of passive (1st row) and active (2nd row) melting. The shaded orange area
corresponds to values over the critical threshold of Lindemann measured in the
passive case for the simulations γ*L =0:03. bMean squared displacement 〈Δx2(t)〉 of
an active particle trapped in a sinusoidal potential. The shaded area to the critical
threshold of the squared displacement in the passive case. All curves in a, b are

colored according to the total effective temperatureT*. Saturated γL(t) corresponds
to solid-state systems while diverging γL(t) to melting. Dashed lines in are the last
measurement beforemelting. cMelting temperatureT *

m in both simulations and 1d
model as a functionof persistence time τ (top).Maximumplateaubeforemelting of
the Lindemann parameter for the simulated crystal (γm) and of the mean-squared-
displacement for the 1d model hΔx2im (bottom). The solid line corresponds to the
theoretical prediction (see Methods).
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for different types of active noise42 and how activity affects defect
dynamics. Moreover, the experimental system we presented could be
used further to study active magnetic glasses and the physics of the
active glass transition21,22 by using polydisperse magnetic particles. On
the other hand, earlier theoretical work16, in accordance with our
observations, shows that crystals made of active particles melt fol-
lowing qualitatively the KTHNY two-step melting scenario observed in
equilibrium. However, it was shown that other effective temperatures
can be introduced which deviate from each other as persistence
increases. Understanding how these earlier definitions43 are related to
those used here would be an important step toward a complete
comprehension of the dynamics and thermodynamics of active solids
and pave the way for practical applications of light-responsive smart
materials in real-world scenarios.

Methods
Microscopy and light projection
We use a custom inverted optical microscope equipped with a 20x
magnification objective (Nikon) and a high-sensitivity CMOS camera
(Hamamatsu Orca-Flash 4.0 V3). Green light of tunable intensity is
projected into the sample using a green LED.

Magnetic field
An external constantmagnetic field perpendicular to the sample plane
is generatedbypassing a constant current through a custom-made coil
connected to apower amplifier.Themagnitudeof themagneticfield at
different currents was calibrated using a Teslameter (Exonder, MS-
GAUSSMETER HGM09).

Sample preparation
For all the experiments we used the E. coli wild-type (tumbling) strain
AB1157 transformed with a plasmid encoding the proteorhodopsin
(PR), and depleted of the unc cluster that codes for F1 Fo-ATPase as
described in ref. 44. E. coli colonies from frozen stocks are grown
overnight at 30∘C on LB agar plates supplemented with ampicillin
(100 μg/mL). A colony is picked and cultivated overnight at 30°C at
200 rpm in 10 mL of LB with ampicillin. The next day, the overnight
culture is diluted 100 times into 5 mL of TB containing ampicillin, and
grown at 30∘C, 200 rpm for 4h. Then all-trans-retinal (20 μM) and
L-arabinose (1mM) are added to ensure expression and proper folding
of PR in themembrane. The cells are collected after 1 hour of induction
by centrifugation at 1300 g for 12 min in a 15 ml tube at room tem-
perature. The supernatant is removed and the bacterial pellet is
resuspended in 1 ml motility buffer, containing 0.01% of Tween® 20.
The suspension is then transferred to a 1.5 ml tube and the cells are
washed by centrifugation of 5 min three additional times. Finally, the
cells are resuspended at the desired concentration and vortexed for
20 seconds. This medium allowed the cells to be motile without
allowing growth or replication, so the concentration of the cells
remained constant throughout the experiments.

The used magnetic colloids (Dynabeads M-450, Thermo Fisher
Scientific) have spherical shape and a diameter of 4.5 μm. They are
highlymonodisperse (narrow size distribution, coefficient of variation
< 1.5%) and are dopedwith ferrite (~20%), which gives themadensity of
ρ = 1.6 g/cm3, and a magnetic volume susceptibility χ = 0.411,45. These
magnetic microspheres are composed of a dispersion of super-
paramagnetic nanoparticle grains made from iron oxides (Fe3O4 or γ-
Fe2O3), which are uniformly and randomly distributed within a sphe-
rical porous host matrix and separated enough to not interact and to
show superparamagnetic behavior.

Magnetic particles are diluted 100 times and washed in a
basic solution of water and 1% of Tris-Base (pH 9) and Tween® 20
(0.2%). They are then sonicated for 15 mins, collected with a magnet,
and prepared at the desired concentration in water and Tween®
20 (0.2%).

Slides (76 mm × 26 mm) and cover glasses (24 mm × 24 mm) are
cleanedwith water and soap and then coatedwith Tween® 20: they are
sandwiched with 8 μL of Tween® 20 in-between and left during 48h at
37 ∘C and then baked during 45 min at 60 ∘C.

To achieve the desired confinement approximately equal to the
particle diameter ~ 4.5 μm, 2 μL of the resulting mixture containing
both particles and bacteria ( ~1:1) is deposited onto the microscope
slide. Subsequently, gentle pressure is applied to the cover glass until
the solution fully wets its surface. The sample is then sealed with
vaseline.

Oxygen in the sample is depleted by bacteria in a few minutes.
Once this has happened, the bacteria swim only where there is green
light, and their speed increases with the intensity of the light.

The field of view measures 666 μm × 666 μm, accommodating
typically more than 1000 particles with an inter-particle separation
ranging between 20-25 μm.

Active magnetic crystal measurements
In the absence of a field, the particles have no net magnetic
moment and perform simple thermal diffusion. When a field
of strength H is applied, their induced moment becomes m = χH
where χ is the particle’s magnetic susceptibility46. The dipolar inter-
action potential between two dipoles mi and mj at a distance
rij = ri − rj is U = � μ0=4πð½3ðmi � rijÞðmj � rijÞ=r5ij � � ðmi �mjÞ=r3ijÞ, where
μ0 = 1.26 ⋅ 10−6N/A2 is the vacuum magnetic permeability.

To assemble the magnetic crystal a constant and high magnitude
magnetic field (H ~ 10mT) perpendicular to the sample plane. The
system was then equilibrated for around 1h until a monocrystalline
statewas reached. Then thebacterial bathwasactivatedbyusing green
light and measurements at different green light intensities, magnetic
field were made. For the measurements of the melting, an initial
crystalline phase was assembled and then the parameters were chan-
ged and then left equilibrated. The measurements of the passive
melting were made without bacteria but in the same buffer.

To calibrate the experimental parameters DT, DA and τ we adopt
the following procedure. Since the over-damped dynamics of the i-th
colloids in the active crystal can be modelled with the following sto-
chastic differential equation:

_ri =μFi +ηi + ξ i ð10Þ

where Fi = ∑i≠j f(rij) is the force due to themagnetic dipolar interactions,
i.e. f ðrijÞ= � ∇ri

UM ðrijÞwith rij= ∣ri− rj∣. Here ξi andηi are the thermal and

active noise terms, respectively, with hξαi ðtÞξβj ðtÞi= 2DTδαβδijδðt � t0Þ
and hηα

i ðtÞηβ
j ðtÞi =DAδαβδij expð�jt � t0j=τÞ=τ, where the Greek indices

refer to the Cartesian components.
From Eq. (10) we can obtain that the mean squared displacement

in the absence of interactions (Fi = 0) is:

hΔri2ðtÞi=4DTt +4DA½t � τð1� e�t=τÞ� ð11Þ

For each experiment we calibrate the active diffusion coefficient DA

and the persistence time of the active motion τ in the absence of a
magnetic field for different green light intensities I. For that, we mea-
sure themean-squared displacement hΔri2ðtÞi for each sample at each I
and fit it to Eq. (11) (see Supplementary Fig. 1).

Analysis of active and passive mode band structure
To study the relaxation modes of the active crystal (both in experi-
ments and simulations) we proceed as in ref. 10 by first computing the
Fourier-Transformed displacement field as uq =N

�1=2P
iui e

iq�hrii

where the 〈ri〉 are the average (equilibrium) positions of theNparticles.
Here uq is computed only for the wavevectors q that lie in the first
Brillouin zone35. The correlation matrix hu*

quqi is then computed as an
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average over all configurations and the ps
q are extracted as the eigen-

values of this matrix. In the case of thermal (passive) systems the
eigenvalues ks

q can be computed from the ps
q by using the energy

equipartition theorem (3), i.e. μ ks
q =DT=p

s
q, and those are used in

analysis presented in Fig. 2. We recall that the ks
q are the eigenvalues of

the dynamical matrix Dq (as defined in ref. 35) which is the Fourier-
transform of the real-space matrix Dðhrii � hrjiÞ. This is the matrix of
the second derivatives of the total potential energy U evaluated in the
particles equilibrium positions (i.e. at zero displacement):

Dα,βðhrii � hrjiÞ=
∂2U

∂uα hrii
� �

∂uβðhrjiÞ

�����
u =0

ð12Þ

where α and β represent the Cartesian components. To compute the
theoretical eigenvalues ks

q (shown in Fig. 2a and b) for the crystal with
long-rangedmagnetic dipolar interactions we proceed as in ref. 10.We
first compute the matrix from Eq. (12) in the perfect triangular Bravais
lattice, we then perform the Fourier-transform and we finally extract
the eigenvalues of the resulting Dq.

Simulations
We perform numerical simulations of N = 2216 self-propelled AOUP
particles in 2d. An Ornstein-Uhlenbeck (OU) process provides a good
representation for the active noise in these passive tracers in an active
bacterial bath, since they have short timedisplacements that are nearly
Gaussian distributed39 and decorrelate exponentially with time (See
Supplementary Fig. 6). The simulations do not incorporate hydro-
dynamic interactions because, in our experimental setup, they are
effectively screened by the presence of two confining glass plates
separated by about 5μm. Furthermore, inter-particle distances are
much larger than particle radii (r/a ~ 10), diminishing significantly the
influence of hydrodynamic interactions. Particles positions evolve
according to Eq. (10), using the Euler scheme with time step dt = 10−3s.
For a better comparisonwith experimental results we adjust the size of
the simulation box to achieve a density approximately matching that
observed in experiments, i.e. the resulting lattice spacing in the crystal
is set to a = 20μm. The simulation box has size Lx × Lywhere Lx =a

ffiffiffiffi
N

p

and Ly = ð
ffiffiffi
3

p
=2ÞLx (periodic boundary conditions apply). Furthermore,

we fix the amplitude A of the pair potential uðrijÞ=A=rij3 to the value
A = μ0χ

2H2/2π employed in experiments at high magnetic field (H ≈ 10
mT). Finally, the potential is truncated at ten lattice units, which yields
accurate results as detailed in Ref. 47. To investigate the Lindemann
parameter and the orientational correlation function at different T*
and τ values we average results over three independent runs for each
state point. The thermal diffusivity is kept fixed at the value
DT = 0.03μm2/s, i.e. the value estimated from experiments in the
absence of activity and of the magnetic field, and only DA and τ are
varied. The melting temperature, denoted as T *

m, and the corre-
sponding critical Lindemann parameter at melting, γm, are defined as
follows: T *

m represents the temperature at which the Lindemann
parameter curve starts to diverge, showing an inflection point after the
plateau within the observation time. The value of the Lindemann
parameter at this inflection point is identified as γm.

1D model
The equations of motion for one-single AOUP moving in a cosine
potential are given by

_x =μ f ðxÞ+η ð13Þ

_η = � η=τ + ðDA
1=2=τÞ ξ ð14Þ

where f ðxÞ= � ∂xA cosð2πx=LÞ, τ is the relaxation time of the noise,DA

is the active diffusivity and ξ is a delta-correlated Gaussian noise

source, i.e. hξðtÞξðt0Þi =2δðt � t0Þ. Simulations of themodel (13) and (14)
are performed in a box extending between 0 and L (periodic boundary
conditions apply). In all simulations, we fix the parameters μ = 1, L = 1,
and A = 2 × 10−2 and averaged over 103 particles. Eqs. (13) and (14)) are
numerically integrated by using the Euler scheme with a time step
dt = 10−3 and for a maximum time interval of 3 × 106 steps (data are
collected only after 106 steps to ensure that the system reaches the
stationary state). We perform simulations scans by varying system-
aticallyDA to observe the hopping transition at different τ-values. This
is identified by checking if a non-zero slope at long times is present in
the mean-squared-displacement 〈Δx2(t)〉 (see Fig. 4c). We denote the
active diffusivity needed to observe the transition as DM and find that
this is an increasing function of τ. We also find that the plateau value of
〈Δx2(t)〉 at the transition (indicatedby hΔx2im) decreases appreciably as
τ increases (Fig. 4c).

1D theory
To rationalize the results of the 1d model we first consider that at the
transition only a very small fraction of particles actually escapes from
theminimumof the cosine potential (located at x = L/2), while the vast
majority of the particles fluctuate around theminimum.Moreover, it is
clear that these rare barrier-crossing events happen very differently at
short and large τ. Indeed for τ ≈ 0, we expect the hopping particle to
execute a random walk, reversing their active force η many times,
before the barrier is crossed. The transition for τ = 0 is observed for
values of D0

M such that the effective temperature is of the order of the
potential barrier, i.e. D0

M=μ≈2A. Differently as τ → ∞ the barrier is
crossed by rare particles going straight with high and constant η such
that η=ηM≈μ fmax (where fmax = 2πA=L is the maximum force that the
cosine potential opposes to the particles). Since η is Gaussian-
distributed with variance DA/τ we have ηM ≈α

ffiffiffiffiffiffiffiffiffiffiffiffi
DM=τ

p
≈μ fmax where

α is a parameter specifying how rare are hopping particles, i.e. how
many “standarddeviations” they differ from themeanη =0 (e.g. ifα = 3
less than 1% of the particles overcome the barrier at the transition).We
thus have that in the long-τ limit DM grows linearly with τ:
DM ≈ ðμ2fmax

2α�2Þ τ. Interpolating between the long and short τ
regimes we thus approximate: DM≈D

0
M + ðμ2fmax

2α�2Þ τ. Equivalently,
by introducing the adimensional temperature T* = DA/(2μA), we have
T *
M≈ð2μAÞ�1½D0

M + ðμ2fmax
2α�2Þ� τ. We fix D0 in this formula to the dif-

fusivity at the transition found in simulations with τ = 0 and use it to fit
the data in Fig. 4c with α as a free parameter. The linear fit interpolates
well thedata andwefindα ≈ 3.8. Finally, to predict the τ-dependenceof
hΔx2im, we recall the almost all particles are fluctuating around the
minimum so that, linearizing Eq. (13) as in ref. 41, we get the plateau
value: hΔx2im=DM=½μ kð1 +μ k τÞ�= ½D0

M + ðμ2fmax
2α�2Þ τ�=½μ k ð1 +μ k τÞ�,

where k = 4π2A/L2 is the curvature of the potential minimum. This
equation (nowwithout any free parameters)fits well the data in Fig. 4c.

Data availability
Source data for all figures, both in the main text and in the Supple-
mentary Information, are providedwith the paper as a SourceData file.
All the raw data that support the findings of this study are available
from the corresponding authors upon request. Source data are pro-
vided with this paper.

Code availability
The codes are corresponding to this study are available from the
corresponding authors upon request.
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