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Abstract8

The Diffused Vortex Hydrodynamics (DVH) is a Vortex Particle Method widely validated
in the last decade. This numerical approach allows cost-effective simulations of viscous
flows past bodies at moderate and high Reynolds numbers, by taking into account only the
rotational part of the flow field. In the present work a novel multi-resolution technique is
presented in order to limit the number of particles in the computational domain, further
improving the solver efficiency. The proposed technique preserves the total circulation
and uses the Benson et al. (1989) deterministic algorithm to regularize the particle spatial
distribution during the diffusion step. Simulations of the planar flow past five cylindrical
sections at Re = 10, 000 are discussed: flat plate, triangle, square, circular cylinder and a
symmetrical airfoil. Although the simulations are carried out in a two-dimensional frame-
work, complex vorticity patterns develop because of the flow separation and the Reynolds
number considered. Comparisons with a Finite Volume solver are carried out and dis-
cussed, such highlighting the advantages of the present numerical approach.

Keywords: Vortex Particle Method, Diffused Vortex Hydrodynamic (DVH), viscous flow9

past a body, multi-resolution, Vortex wake dynamics.10

1. Introduction11

The study of planar flows is of great importance in a wide class of problems where12

stratified conditions take place as, for example, in meteorological forecasting or in free13

surface flows where the Reynolds numbers are high and the Froude numbers are very14

small.15

The experimental investigation of planar flows can benefit from the improvements of16

the flowing soap film apparatuses combined with the use of a high-speed camera and low-17
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pressure sodium lamp, thus allowing the visualization of complex interference patterns18

(Fayed et al., 2011). These kinds of experimental devices are also used for the visualization19

of the vortex wake of a flapping foil (Schnipper et al., 2009) or of a flexible filament subject20

to forced vibrations (Jia et al., 2015). Thanks to these recent experimental developments,21

many numerical studies on planar flows past fixed, moving or deformable frontiers can22

be found in the recent literature (see, for example, Reichl et al. (2005); Das et al. (2016);23

Krishnan et al. (2016); Ye et al. (2017); Badrinath et al. (2017); Bose and Sarkar (2018);24

Mandujano and Málaga (2018); Colagrossi et al. (2019)).25

Planar viscous flows are also considered for the chaotic transition of two-dimensional26

dynamical systems, see e.g. Pulliam and Vastano (1993); Kurtulus (2015, 2016); Rossi27

et al. (2018); Durante et al. (2020, 2021). In those cases, the flow separation is responsible28

for the shedding of vortex structures which lead to the generation of complex wake patterns29

in the far field.30

The numerical simulations of viscous flow past a body at Reynolds numbers Re ≥ 104
31

generate complex wake fields even in a two dimensional framework and, for this reason,32

they require significant computational resources for resolving all the vorticity scales within33

the numerical domain. Because of this, the solution of these kinds of flows by means of34

mesh-based methods presents severe limitations due to the high computational costs.35

In order to accurately resolve the flow field inside the regions of interest, a Chimera36

overlapping grid approach proves to be a good compromise between accuracy and compu-37

tational costs (see e.g. Muscari (2005); Muscari et al. (2006)). However, since the regions38

where the gradients are higher are not known a priori, the main drawback remains the39

overestimation of the total number of mesh elements.40

The adaptive mesh refinement (AMR) technique, widely exploited nowadays, may41

help in confining the mesh cells’ clustering to domain subsets where higher gradients42

appear, thus allowing to resolve with a high level of detail both the near and the far fields.43

As a main drawback, the AMR algorithms are not easy to implement and parallelize on44

clusters or GPUs (see Hannoun and Alexiades (2007)). Furthermore, in order to allow45

a well balanced parallelization, an immersed boundary approach may be the best option46

for taking into account the presence of bodies within the flow field (see Rossinelli et al.47

(2015)). This strategy, although numerically efficient, represents a significant hindrance48

for the description of complex geometries, as outlined in Cohen (2002).49

Simulations of planar flows past solid bodies are easier by means of Vortex Particle50

Methods (VPMs). With this technique the governing equations are solved with a Lag-51

rangian formulation: the velocity field is first evaluated through a Fast Multiple Method52

(FMM) (see Yokota and Barba (2013)) for the Poisson equation and then used to move53

the vortex particles in the numerical domain. The advantage of this approach is that the54

VPM can be formulated in a pure meshless framework and that the boundary layer regions55
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can be described in a body-fitted fashion, such overcoming the drawbacks of immersed56

boundary methods. Furthermore, the Lagrangian formulations ensure accurate computa-57

tions of the advection term, by avoiding the discretization of the non-linear term. As a58

drawback, the Lagrangian approach leads to uneven spatial distributions with rarefaction59

or clusterization of the particles that eventually worsen the global accuracy of the numer-60

ical simulations (see e.g. Barba et al. (2003)).61

A possible remedy to this problem is the particle redistribution technique, which con-62

sists in the interpolation of the vorticity field on a regular mesh (see e.g. (Shankar and63

Van Dommelen, 1996), (Barba, 2005).64

In the present work, a recently developed VPM called Diffused Vortex Hydrodynam-65

ics (DVH) is considered (for details see also (Rossi et al., 2015a,b, 2016; Colagrossi et al.,66

2016)). The DVH is a meshless method that uses the operator splitting technique intro-67

duced by Chorin (1973), which consists in a stepped solution of the Helmholtz vorticity68

equation. The time evolution of the vorticity field is subdivided in two sub-steps: a pure69

advection and a pure diffusion. For the advection, the velocity field is evaluated through70

a FMM (see e.g. Graziani and Landrini (1999)), whereas the diffusion is performed on71

regular point lattices, by considering a superposition of elementary heat equation solu-72

tions as explained in Benson et al. (1989). The no-slip boundary conditions are enforced73

through the generation of a vortex sheet, as clarified in Chorin (1973) and in Giannopoulou74

et al. (2019). The DVH is also coupled to a packing algorithm (Colagrossi et al., 2012)75

exploited for building a “Regular Point Distribution” (RPD) fitted to a solid surface. This76

procedure is computationally cheap and arranges lattice points around complex contours77

by maintaining their relative distance approximately constant. Thanks to this algorithm,78

the DVH calculations are body-fitted even when complex body shapes are involved.79

In order to fulfill the no-slip boundary conditions, new vortices are generated on the80

body surface at every time step; hence, the total number of vortices within the flow field81

may rise as much as to become computationally unfeasible. In order to overcome this82

issue, a new multi-resolution algorithm is introduced in the present work. The flow field is83

split in sub-domains where the particle size is reduced while moving away from the body.84

In this way it is possible to control and limit the total number of vortex particles also for85

long simulations. This technique demonstrates to be a good trade off between accuracy86

and computational time.87

In order to challenge the multi-resolution algorithm with complex flows, five different88

geometries at Re=10,000 are investigated. Blunt and sharp surfaces are taken into account89

and the results are compared with a Finite Volumes mesh-based solver. In particular, in90

four cases an in-house solver (called Xnavis) was used. Some key features of this solver91

are outlined in section 4.92

As explained in the following sections, the wide range of resolved vortex scales makes93
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the simulations presented in this work excellent candidates for comparative or benchmarks94

investigations.95

The present article is structured as follows:96

• Section 2 contains a description of the DVH method together with a remark on the97

choice of diffusive and advective time steps;98

• Section 3 presents the new multi-resolution algorithm;99

• Section 4 briefly recalls the main features of the Xnavis solver.100

• Section 5 contains the discussion of the flow past five different geometries and the101

comparison with the FVM Xnavis.102

Conclusions wrap up the paper.103

2. A brief recall of the Diffused Vortex Hydrodynamics (DVH) method.104

In the present work the fluid is considered incompressible and its motion governed by105

the two dimensional Navier-Stokes written in vorticity formalism:106

Dω
Dt
= ν∆ω ∀r ∈ Ω, (1)107

where D/Dt is the material derivative, ω is the vorticity, ν is the kinematic viscosity and108

Ω is the fluid domain.109

In order to solve eq. (1), at each time step the operator splitting scheme (Chorin, 1973,110

1978) is used subdividing each time step of the numerical integration in two sub-steps.111

The first consists in an inviscid advective step governed by the Euler equation:112 

Dω
Dt

= 0

Dr
Dt

= u(r, t)

∇2u = −curl(ω), ω = ω e3 ,

(2)113

where e3 is the unit vector along the z direction. The advective step is followed by a114

diffusive sub-step governed by the heat equation:115

∂

∂t
ω(r, t) = ν∆ω(r, t). (3)116
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The vorticity field is discretised as a sum of N vortices, each of them represented by a117

positive smooth approximation of the Dirac δ distribution, δϵ , and a circulation Γi:118

ω(r, t) =
N∑

i=1

Γi(t)δϵ(r − ri). (4)119

Each vortex particle is advected by the velocity field during the advection step (2). The120

particle Lagrangian motion may induce excessive clustering or rarefaction of the particles121

distribution during their evolution, leading to a poor vorticity evaluation when using equa-122

tion (4). To avoid this problem, in the DVH model “Regular Point Distributions” (RPDs)123

are used during the diffusive step. RPDs are sets of almost equispaced points without any124

topological connection between each other. During the diffusive step, each vortex particle125

is associated with a specific RPD and gives vorticity contributions to these points using the126

elementary solution of the heat equation, following the deterministic algorithm described127

in Benson et al. (1989). This special set of points will then become the new set of vortex128

particles overwriting the previous one. This procedure prevents the excessive clustering129

or rarefaction of the vortex particles, and avoids the remeshing procedure which would be130

required otherwise (see e.g. Barba et al. (2003)).131

2.1. Generation of the Regular Point Distributions (RPDs)132

RPDs around bodies are generated using the packing algorithm described in Col-133

agrossi et al. (2012) allowing to arrange points around complex shapes preserving the134

volume around each point. This algorithm places the points around the body on a regular135

(Cartesian) mesh with constant spacing ∆r, while the packing algorithm, using a simple136

particle-interaction model, rearranges the points around the body preserving the volume137

around each point.138

An example of RPD generated around a solid body can be seen in Fig. 1. It is worth139

noting that the distribution of points generated can be not symmetric even for symmetric140

bodies, meaning that symmetries in the RPD should be explicitly enforced, if needed. The141

small asymmetries present in the RPD distribution may trigger the vortex shedding without142

the necessity to perturb the flow field during the transient stage as discussed in section 5.143

Far from the solid body simple Cartesian meshes are used as RPDs. The multi-144

resolution algorithm allows the introduction of sub-domains in the wake region where145

the resolution can be coarsened while moving downstream. The a detailed discussion of146

the multi-resolution can be found in section 3.147
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Figure 1: Un-Packed (left) Vs Packed (right) configurations around a composed object.

2.2. Advection step: velocity field evaluation and enforcement of the no-slip boundary148

conditions149

Following the Helmholtz–Hodge Decomposition (HHD) theorem, the velocity field150

can be split into a curl-free and a divergence-free component:151

u = ∇ϕ + ∇ × Ψ = u∞ + uϕ + uω (5)152

where the curl-free component is given by the sum of the free stream velocity u∞ and the153

velocity induced by presence of the body uϕ. The velocity induced by the vortex particles154

is indicated with uω and can be evaluated using the Biot-Savart law:155

uω(r, t) =
N∑

i=1

Γi(t) Kϵ(r, ri) (6)156

where Kϵ is the mollified Biot-Savart kernel. Evaluation of equation (6) are sped up157

through a classic FMM (see e.g. Graziani and Landrini (1999)).158

uϕ is evaluated through an indirect Boundary Element Method (BEM) discretizing the159

body surface with a set of Nb element of length ∆s. Each element represents a source with160

strength σ j and a point vortex with circulation γ j:161

uϕ(r, t) =
Nb∑
j=1

[
Kϵ(r, r j) × e3

]
σ j ∆s +

Nb∑
j=1

[
Kϵ(r, r j)

]
γ j ∆s . (7)162
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In equation (7) the source strengths and circulations are both unknown. In order to163

evaluate them, a two-step procedure is followed: the impermeability condition is enforced164

first on the body surface followed by the no-slip condition. In the first step the circulations165

γ j are assumed constant and equal to166

γ̂(t) = −
Γ(t) − Γ∞(t)

P
, (8)167

where P is the perimeter of the body, Γ(t) is the total circulation in the fluid domain at time168

t (i.e. Γ(t) =
∑

i Γi(t)) and Γ∞(t) is the circulation at infinity. For all the problems addressed169

in the present paper Γ∞ ≡ 0.170

Substituting the relation (8) in (7) we get:171

u′ϕ(ri, t) =

 Nb∑
j=1

[Kϵ(ri, r j) × e3]∆s

σ j +

 Nb∑
j=1

Kϵ(ri, r j)∆s

 γ̂ j (9)172

Assuming σ j constant on each panel, it is possible to enforce the impermeability con-173

dition using the equation (9) and projecting the decomposition (5) along the body normal,174

obtaining the following algebraic system:175

�i j σ j = −u∞ · n j − uω j · n j + �i j γ̂ j i, j = 1, . . . ,Nb (10)176

where � and � are squared Nb × Nb matrices. σ j is then the solution of system (10) with177

the aforementioned assumption (8).178

After the computation of the sources, the distribution of γ j is computed by enforcing179

the no-slip condition according to Chorin (1978). It is worth noting that this distribution180

generates a velocity component that cancels out the tangential velocity on the body:181

γ j = −u∞ · τ j − uω j · τ j + �i jγ̂ j + �i j σ j j = 1, . . . ,Nb (11)182

where τ is the anticlockwise tangent unit vector on the body surface.183

The velocity u is then used to advect the vortex particles with a fourth-order Runge-184

Kutta time integration, where each vortex particle maintains its initial circulation:185 

dΓi

dt
= 0

dri

dt
= u(ri, t)

u = u∞ + uω + uϕ

(12)186

The interested reader is addressed to Rossi et al. (2015a); Giannopoulou et al. (2019) for187

further details.188

7



2.3. Diffusive step189

During the diffusive step, the heat equation (3) is solved using the deterministic al-190

gorithm described in Benson et al. (1989): each vortex particle gives a vorticity contribu-191

tion on RPDs by a superposition of elementary solutions of the heat equation, giving the192

vorticity field:193

ω(r, t) =
N∑

i=1

Γi(t)
4πν∆td

exp
[
−
|r − ri(t)|2

4ν∆td

]
H[Rd − |r − ri(t)|] (13)194

where H[·] is the Heaviside function, Γi and ri are the circulation and the position of the195

i-th vortex at time t, ∆td is the diffusive time step and Rd, called the diffusive radius, is the196

distance at which the Gaussian distribution is truncated for numerical purposes (see Rossi197

et al. (2015b, 2016)). The following expression relates the ratio Rd/∆r to the number of198

RPD nodes Nnode inside the diffusive radius:199

Nnode =

⌊
π
(Rd

∆r

)2⌋
(14)200

where ⌊·⌋ is the floor function. A typical number for Nnodes for 2D simulations is 51 cor-201

responding to a ratio Rd/∆r = 4. It is important to highlight that Nnode, and consequently202

the ratio Rd/∆r, together with ∆r are the two key discretization parameters for the DVH203

model. Detailed convergence studies varying these parameters can be found in Rossi et al.204

(2015b).205

Figure 2: Flow past a composed object. Flow current from left to right with intensity U at Reynolds number
Re = UL/ν = 1000. The colors are representative of the dimensionless vorticity field ωL/U (red anticlock-
wise, blue clockwise) at time instant tU/L = 6. Vorticity is diffused on the RPD shown on fig. 1 .
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Figure 3: Left: Diffusion in free space. Right: Diffusion in presence of a solid boundary.

The set of points created during the diffusion process become the new set of vortex206

particles overwriting the previous one. The use of RPDs during diffusion impedes the207

excessive clustering or rarefaction of the vortex particles, avoiding remeshing procedures.208

Fig. 2 shows the vorticity field evaluated using the RPDs for the flow past a composed209

object. The vorticity is evaluated using the particles circulation Γi, generated during the210

diffusive step, through equation (13).211

A sketch of the diffusion of a single point vortex in free space can be seen in the left212

plot of Fig. 3.213

In order to solve the diffusion near a smooth solid boundary, a homogeneous Neu-214

mann condition for the vorticity field, together with a flat plate approximation of the solid215

contour, will be used: for every vortex with a distance from a solid contour less than Rd216

an image vortex inside the body is created symmetrically along the direction of the local217

normal. The contribution to the vortex diffusion is now taken into account by diffusing218

the image vortex, hence reflecting inside the domain the otherwise outgoing vorticity. A219

sketch of the diffusion of a single point vortex in presence of a solid boundary can be seen220

in right plot of Fig. 3.221

This approximation is no longer valid for bodies with geometrical singularities. In this222

case a suitable visibility mask must be introduced, as explained in Rossi et al. (2016).223
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2.4. Choice of diffusive and advective time steps224

The DVH method uses the operator splitting scheme, solving the vorticity field evol-225

ution in two steps: advection and diffusion. For this reason two different time steps have226

been introduced in the DVH method: advective ∆ta and diffusive ∆td time steps.227

Considering U and L as the reference velocity and length of the problem, the Reynolds228

number is defined as Re = UL/ν.229

According to the derivation described in Rossi et al. (2015a), each RPD can be asso-230

ciated to a specific diffusive time step ∆td, depending on the Reynolds number chosen for231

the study as well as on the specific RPD spatial resolution L/∆r:232

∆td
U
L
≃ 0.34

Re
(L/∆r)2 , (15)233

The advective time step ∆ta can be chosen by considering both the flow velocity U and234

the discretization ∆r:235

∆ta
U
L
= Co

1
(L/∆r)

(16)236

where the Courant number Co isO(10−1) in order to avoid too large particles displacements237

with respect to the particle spacing.238

During a time interval ∆td, more than one advection step can be performed. This is239

true especially far from the boundary layer regions, where coarser spatial discretizations240

are used.241

In order to synchronize diffusion and advection steps, ∆ta and ∆td are in integer ratio,242

meaning that ∆ta is rearranged in the following way:243

N∆t =

⌊
∆td

∆ta

⌋
→ ∆ta =

∆td

N∆t
(17)244

This correction can be interpreted as a modification of the Courant number used during245

the simulation with respect to the one initially introduced. Equation (17) highlights that,246

in order to complete a splitting step, a vortex has to perform a specific amount of advective247

time steps equal to the diffusion time step duration.248

3. A novel multi-resolution algorithm for the DVH method249

The present DVH method adopts a novel multi-resolution technique in order to simu-250

late long vortex wakes generated by the flows past bodies. The multi-resolution is obtained251

with the superposition of domains with different spatial discretization.252

An example of multi-resolution is given in figure 4, where each domain used is rep-253

resented with a different color. The packing algorithm is used for generating the RPD254
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in the closest body domain only, while in the other domains the points arrangements are255

simply uniform Cartesian lattices. In order to balance accuracy and computational costs,256

the further downstream the domain is, the coarser the resolution (typically halved at every257

domain change).258

Each domain is characterized by its own spatial discretization ∆r, a diffusive time259

step ∆td described by equation (15) and a diffusive radius Rd. Each domain will perform a260

diffusive step every ∆td which means that all the vortex particles lying within its boundaries261

have to perform a diffusive step on the underlying RPD. It is important to note that the262

advective time step ∆ta is the same for all the RPD used and is evaluated by considering263

the smallest ∆r adopted in the simulation. Furthermore, each domain is associated to a264

specific extension, which is crucial for the diffusion of vortices moving across two adjacent265

domains.266

To better explain the transition of a vortex from a domain to another, two different267

domains, A and B, with two different spatial resolutions such that ∆rA < ∆rB, are here268

considered. Note that if ∆rA < ∆rB, then also ∆tdA < ∆tdB and RdA < RdB. Moreover, in269

order to assure that the operating splitting scheme is correctly applied in each domain, the270

definition (17) should hold for each different domain, meaning that271

∆tdA

∆ta
= N∆tA , N∆tB =

∆tdB

∆ta
(18)272

In order to simplify the multi-resolution algorithm, all the N∆t are in integer ratio, NAB,273

Figure 4: Example of multi-resolution simulation using different RPDs with decreasing resolution.
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with each other:274

∆tdB

∆tdA
=

NABN∆tA

N∆tA
→ ∆rB =

√
NAB∆rA (19)275

where we have used the relations (15) and (17).276

Domain discretization is halved while changing domain in the streamwise direction, in277

order to avoid too large differences between diffusive time steps of adiacent domains, thus278

setting ∆rB = 2∆rA and NAB = 4.279

It is important to highlight that also the diffusive radius Rd changes while changing the280

resolution. The ratio Rd/∆r and the number of RPD nodes Nnode is kept constant during281

the simulation and throughout the computational domain, therefore, as shown by equation282

(14), Rd grows linearly with ∆r. In our example, when passing from domain A to domain283

B the ratio of the diffusive radii will be RdB/RdA = 2.284

To understand the effect of the multi-resolution technique, it is useful to analyse what285

happens to a single vortex moving downstream in the wake past a solid body. Usually, a286

vortex particle generated on domain A moves along the wake during its advection until it287

undergoes diffusion, after N∆tA iterations. At that point two possible scenarios may arise:288

the vortex particel still lies in domain A, where it was generated, or it moved to domain B.289

In the first scenario the vortex particle will diffuse, as described in section 2.3, on the RPD290

of domain A with ∆tdA as diffusive time step. If the vortex is near the boundary of domain291

B, i.e. its distance from the domain frontier is less then RdA, an extension of domain A at292

least equal to RdA is used to generate vortices falling beyond the frontier with domain B.293

This strategy avoids the diffusion of a single vortex on RPDs with different discretizations294

and it guarantees the same diffusion process accuracy close to domains boundaries.295

In the second scenario, the vortex generated in domain A cross the boundary with296

domain B before it is ready to diffuse (Case 1). It is important to note that a vortex particle297

can also cross a domain boundary in the other direction, i.e. a vortex generated in domain298

B (with coarser resolution) can move to domain A before it is ready to diffuse (Case 2).299

Note that, when the diffusive step is performed in domain B the same happens also for300

domain A, whereas vice versa does not hold always true, being N∆tB = 4N∆tA .301

Considering Case 1, two possible scenarios can take place depending on the number302

of time steps elapsed from the vortex generation:303

• Case 1a) The vortex moves from domain A to domain B and only domain A is304

ready to diffuse while it is not the case for domain B. In this situation an extension305

of domain A will be introduced in order to allow for the vortex diffusion, using ∆tdA306

and RdA as diffusive time step and diffusive radius respectively, as shown in the left307

plot of figure 5. In bottom left plot of figure 5, a one dimensional representation308

of the Gaussian distribution used for the diffusion process together with the RPD of309
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Figure 5: Left: diffusion on domain A using the domain extension (Case 1a). Center: diffusion on domain
B of vortices generated on domain A for which n∆ta < N∆tdB (Case 1b). Right: diffusion on domain A of
vortices generated on domain B for which n∆ta > N∆tdA (Case 2).

the two domains and the domain extension are depicted. The Gaussian distribution310

have been truncated at a distance RdA from its center. The new generated vortices are311

classified as still generated in domain A and they will continue to diffuse according312

to ∆tdA until domain B will be ready to diffuse. The width of the domain extension is313

therefore calculated each time by considering the positions of the outermost vortex314

still belonging to the domain A. The extension is needed to avoid too large deform-315

ation of the vortex distribution between two consecutive diffusion steps. It is worth316

noting that this scenario occurs when RdA < RdB.317

• Case 1b) The vortex moves from domain A to domain B and both domains are318

ready to diffuse. In this case all vortices insisting on domain B have to perform319

diffusion, including the ones generated on domain A or on its extension (as in Case320

1a), even if the number of iterations n < N∆tdA performed from their generation is321

lower than N∆tdB . In this case, vortices diffuse on the RPD of domain B, following the322

same algorithm described in section 2.3, using RdB as diffusive radius but a different323
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diffusive time step:324

∆td = n ∆ta (20)325

where n is the number of advective time steps performed from the generation of each326

vortex. A sketch of this case is depicted on the top and bottom center plots of figure327

5.328

• Case 2 In this situation, a vortex generated in domain B moves to domain A. In this329

case the number of iterations n performed from its generation is such that n ≥ N∆tdA .330

Similarly to Case 1b, this vortex diffuses on the RPD of domain A using RdA as331

diffusive radius but the diffusive time step will be given by equation (20). In the332

particular case in which n = N∆tdA , we have ∆td = ∆tdA. A sketch of this case is333

depicted on the top and the bottom right plots of figure 5.334

The Reynolds number of the problem is the crucial parameter correctly chose the RPDs335

number, size and resolution. In fact, the vorticity structures shed in the flow field becomes336

smaller while increasing the Reynolds number, as described, for example, in Durante et al.337

(2017) while studying the flow past a circular cylinder. This implies that the RPD with338

the highest resolution should be placed around the body in a body-fitted fashion and its339

resolution has to be set in such a way that Re∆r = O(1), where Re∆r is the cell Reynolds340

number, i.e Re∆r = U∆r/ν. In this way the algorithm is able to capture even the smallest341

vortex scales of the flow similarly to a Direct Numerical Simulation (DNS). In order to342

limit the computational costs, the RPD resolution is progressively reduced away from343

the body exploiting the multi-resolution approach described above. This coarsening does344

not affects the quality of the simulation: the inverse energy cascade, characteristic of 2D345

problems, induces the coalescence of small vortices into larger ones whose evolution can346

be accurately simulated with coarser resolutions.347

It is worth mentioning that the FMM algorithm used for the velocity field evaluation, is348

not influenced by the presence of multiple domains with different resolutions, as outlined349

also in Colagrossi et al. (2016); Rossi et al. (2015a). In order to assess the reliability of the350

multi-resolution algorithm, an analysis of the flow past a circular cylinder at Re=1000 is351

performed in AppendixA, where the comparison between a uniform and a multi-resolution352

flow field is carried out. Moreover, in AppendixB a convergence study related to the multi353

resolution approach is performed and the convergence rate is estimated.354

4. Brief recall of the FVM code355

Xnavis is a general-purpose finite volume, multi-block structured mesh solver, de-356

veloped at CNR-INM (formerly CNR-INSEAN). In this solver the Navier-Stokes equa-357

tions are approximated by a finite volume technique with pressure and velocity co-located358
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Figure 6: Example of a Chimera overlapped grids technique used with the current FVM code. Different
topologies are highlighted with black edges. The field of the characteristic cell dimension (i.e. the square
root of area) inverse is drawn for highlighting the mesh stretching and the resolution of the different blocks.
For the sake of clearness, only the near body area is magnified and the contour color scale is logarithmic.

at the cell center. In this section the 2D version of this solver is briefly described. The359

interested reader may also refer to Di Mascio et al. (2001); Muscari (2005); Muscari et al.360

(2006); Broglia et al. (2014); Broglia and Durante (2018) for a more detailed discussion.361

The residual on each control volume is computed as an interface flux balance; the fluid362

domain Ω is partitioned into Nl adjacent or overlapping blocks Ωl, each one subdivided363

into Ni × N j disjoint hexahedrons Ωl
i j.364

Conservation laws are applied to the control volume (i, j), whereas the surface integrals365

are evaluated by means of a second order formula. The velocity gradients computation,366

required to evaluate the stress tensor at the cell interface, is performed using a standard367

second order centered finite volume approximation (Hirsch, 2007).368

A pseudo-compressible approach is adopted for the pressure field evaluation, in order369

to avoid the direct resolution of the related Poisson equation. The evolution at every time370

step is obtained in the form of a pseudo-time steady condition using a three-points back-371

ward second order formula. Grid refinement/coarsening have been introduced in the nu-372

merical computations presented in this paper using overlapping grid. The overlapping grid373

approach (or “Chimera” method) implemented in Xnavis is obtained through a modifica-374

tion of both the boundary conditions and the internal point treatment for those zones where375

the overlapping occurs. An example of the overlapping grids designed for the present sim-376

ulations is sketched in figure 6. The approach is based on the search of the “donors” (the377

set of cells donating the solution) in those cells (“chimera cells”) for which an overlap is378

found. Once the donors are identified, a convex set of eight donor cell centers is searched379

and a trilinear interpolation is used to transfer the solution from the “donor” set to the380

“chimera” cell. Differently from standard chimera approaches, however, the cells marked381

as “chimera” are not removed from the computation, but the interpolated solution is en-382

forced by means of a forcing term added in the Navier–Stokes equations in a “body-force”383

15



fashion. For more details, the interested reader may refers to Muscari (2005) and Muscari384

et al. (2006).385

5. Flows at Re=10,000 around five different cylindrical sections386

In this section the flow past five different geometries at Re = 10, 000 is analysed.387

In particular, the study is focused on a transverse flat plate, a triangular, a squared and388

a circular cylinder and a NACA0012 airfoil at several angles of attack. The reference389

length for the various geometries is indicated with c: the length of the plate, the side of390

the equilateral triangle, the side of the square, the diameter of the cylinder and, finally, the391

chord of the NACA0012 airfoil. The Reynolds number is defined as Re = U c/ν, where U392

is the free stream velocity and ν the kinematic viscosity of the considered fluid.393

Table 1 reports some details of the five geometries studied in the present work. The394

third column indicates the spatial resolution adopted in the RPD domain closest to the395

body. the highest spatial resolution c/∆r1, where ∆r1 is the mean distance of the points396

belonging to the RPD, is used in this domain in order to accurately resolve the boundary397

layers. A resolution of c/∆r1 = 1250 is adopted for the flat plate, the triangle and the398

square, in order to accurately resolve the flow near the corners. A lower resolution c/∆r1 =399

800 is used for the circle because of its smooth shape.400

The resolution used to simulate the NACA0012 airfoil is the highest among all the401

bodies presented in this work c/∆r1 = 1600. Such a high resolutio is needed for an402

accurate description of the flow field around the trailing edge (see also Durante et al.403

(2020)).404

The fourth column of table 1 reports the simulations end time. Different tend are adop-405

ted according to the time behaviours of the drag and lift forces. For example a longer sim-406

ulation time has been considered for the circular section with respect to the other geomet-407

ries. In this case the forces spectrum is is characterized by lower frequencies which needs408

longer times to be correctly captured. Finally, the number of domains used is shown in the409

last column. It is interesting to note that, while for the first three geometries Ndomin = 10, a410

different number of domains has been considered for the circle and the airfoil. The reason411

of this choice is the use of different tend which leads to a different wake length (i.e. longer412

for the circle and shorter for the NACA) with respect to the other test-cases.413

A free stream with constant intensity U along the x-axis is considered in all the sim-414

ulations. In order to avoid an impulsive start, the final value of U is reached through an415

acceleration ramp described by:416

u∞(t) =


U
2

[
1 − cos

(
πt
tr

)]
t ≤ tr

U t > tr

and a∞(t) =


Uπ
2tr

sin
(
πt
tr

)
t ≤ tr

0 t > tr

(21)417
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N Geometry c/∆r1 tendU/c Ndomain

1 Transverse flat plate 1250 100 10
2 Equilateral triangle 1250 100 10
3 Square 1250 100 10
4 Circle 800 300 15
5 NACA0012 1600 80 8

Table 1: List of the different geometries considered. The third column is the highest spatial resolution c/∆r1
adopted close to the body (first domain), where ∆r1 is the mean distance between the vortices within the first
domain. The fourth column is the dimensionless final time of the simulation. The fifth column reports the
number of domains adopted.

Figure 7: Sketch of the vorticity far field for the flow past a triangular cylinder at Re=10,000 with the
DVH (top) and FVM (bottom) at the final simulation time. For x > 10c the coarsening of the FVM mesh
induces an evident numerical dissipation that makes the comparison between the solutions meaningless in
this region.

17



where tr = c/U and a∞ is the free stream acceleration.418

The results obtained using the DVH method are compared with the ones of the FVM419

code described in section 4 in which the same velocity ramp has been adopted. The com-420

parisons are made in terms of vorticity field, lift Cl and drag Cd coefficients as well as of421

pitching moment Cm. The force coefficients are defined as:422

Cd =
Fx

1/2ρU2 c
, Cl =

Fy

1/2ρU2 c
, Cm =

Mz

1/2ρU2 c2 (22)423

where ρ is the fluid density, Fx and Fy are the force components acting on the body along424

the x and y directions. The pitching moment Mz refers to the origin of the reference frame,425

which always coincides with the geometric center of the body.426

The comparison between FVM and DVH in terms of vorticity field is reasonable up to427

10 characteristic lengths from the body. As highlighted in figure 6, a refinement block past428

the body was designed for the FVM code in order to guarantee that the resolution is fine429

enough for the wake description. After that block, as clarified in figure 7, the coarsening430

of the structured mesh causes a rapid dissipation of the vortex structures, thus making the431

comparison meaningless.432

5.1. Computational resources433

All the DVH and FVM simulations have been performed on four workstations equipped434

with eighteen cores Intel® Xeon® Gold 6128 CPU @ 3.40GHz.435

For the DVH an OpenMP parallelization was implemented, the maximum number
of particles used is of order 106 for all the simulations with an allocated memory not
exceeding 1 Gbyte. The efficiency η, defined as:

η = (Total CPU time × N◦cores) / (N◦ iterations × N◦vortices)

is about 100µs for the DVH solver. Although the in-house developed DVH code may436

be further optimized, its efficiency is aligned with other vortex particle solvers mainly437

because of the Fast Multipole Method used for the solution of the Poisson equation (see438

e.g. Rossinelli et al. (2015)).439

For the FVM solver, the efficiency η is referred to the number of cells:

η = (Total CPU time × N◦cores) / (N◦iterations × N◦cells)

and it turns to be about 65µs. The multi block domain decomposition of the FVM mesh440

grid allows a more efficient MPI parallelization, which ensures a high scalability up to441

hundreds of cores and is nearly linear on the 18 cores considered here.442

The CPU time of the test-cases discussed, together with some major parameters, are443

reported in table 2 for both solvers.444
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It is worth to underline that the design of the multiple domains is rather similar for the445

firsts three geometries, namely the flat plate, the triangle and the square. An analogous446

blocks design was adopted in Xnavis. It is interesting to note that the number of vortices447

Nmax generated for the flat plate is significantly higher than the triangle and the square,448

even if the same spatial resolution c/∆r1 was adopted. The reason behind this relies on the449

particular development and arrangement of the wake. As shown in figure 11, the transverse450

flat plate produces big and intense dipole structures that delay the crossing of a vortex451

particle to a coarser domain. The particles remain confined in the same high resolution452

domain by the upward current generated by the dipole for a significant simulation time453

and thus, the total number of vortex particles keeps growing due to the diffusion step.454

Regarding the Xnavis numerical domain, the resolution close to the body surface is455

similar to the one adopted with the DVH, although in the body fitted blocks a stretching456

must be used to match, as far as possible, the near body mesh with the wake one, thus457

avoiding a discontinuity in the spatial resolution between chimera cells. Xnavis numerical458

domains were designed without considering any specific wake peculiarity, depending only459

on the body complexity and some heuristic considerations. For this reason, the number460

Xnavis cells is rather smaller when compared to the number of vortices adopted in the461

DVH for the flat plate while it is generally greater in the other cases.462

The simulations of the flow past a NACA0012 airfoil at varying angle of attack are463

directly compared with data available in literature using a different mesh-based solver.464

Beside the above considerations, when comparing the CPU costs of the DVH and of a465

FVM solver, the following aspects need to be pointed out:466

• DVH uses a vorticity while the FVM a velocity-pressure formulation of the Navier-467

Stokes equation, meaning that the FVM will compute the vorticity field with a lower468

degree of accuracy.469

• A vortex particle scheme is self-adaptive, because the vorticity formulation allows470

to discretize only the rotational flow regions. Conversely, in the FVM the mesh must471

be ad hoc designed, with an a priori estimation of high velocity gradients areas.472

DVH Xnavis (FVM)
N Nmax Vortices Niterations CPU time (18 cores) Ncells Niterations CPU time (18 cores)
1 5,200,000 62,500 29 days 1,530,000 100,000 8 days
2 2,400,000 62,500 11 days 2,260,000 100,000 10 days
3 1,607,000 62,500 13 days 2,940,000 100,000 12 days
4 1,895,000 60,000 9 days 2,260,000 300,000 28 days
5 2,710,000 64,000 16 days – – –

Table 2: Comparison between DVH and FVM numerical costs.
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• In DVH the far-field conditions are automatically satisfied (see e.g. Giannopoulou473

et al. (2019)), whereas in FVM a wide background block with a significant mesh474

stretching must be introduced, in order to make the domain frontiers effects negli-475

gible.476

• The spatial resolution of the finite volume meshes needs to be coarsened to limit477

the total number of cells and avoid velocity gradients near the domain boundaries478

(which would imply spurious reflections of the solution and numerical instabilities).479

• The spatial distribution of FVM numerical cells can be easily controlled by means480

of mesh stretching. Therefore it is possible to significantly increase the spatial res-481

olution inside the boundary layers. In all the simulations presented in this work,482

similar resolutions in the body fitted regions have been used for the two solvers.483

• Finally, FVM requires a non-negligible cost in terms of human work for grid design484

and the pre-processing, which may become critically long while increasing grid485

complexity.486

5.2. Flow past a transverse flat plate487

A flat plate of length c is oriented transversely with respect to the incoming flow.488

During the transient stage, the shear layer detaches from the flat plate edges becoming489

unstable already at the beginning of the simulation breaking into small vortices. This490

instability, however, does not prevent the formation of two recirculation zones behind the491

flat plate. As shown in figure 8-a, the small vortices generated by the shear layer instability492

form a larger symmetric dipole structure which grows with time in the stable configuration493

shown in figure 8-b. In figure 8-c, the symmetry of the vortex dipole is broken so that494

the shedding mechanism starts just afterwards, as shown in figure 8-d. From this plot495

it is possible to observe that the shear layer detaching from the upper edge is not stable496

anymore and a fragmentation in small vortex patches occurs. The shedding mechanism497

characterized by the formation of a wider vortex patch surrounded by little dipoles may be498

here recognized in figures 8-e and 8-f. The same phenomenon was also found numerically499

in Durante et al. (2020) for the flow past an inclined thin ellipse and experimentally in500

Pierce (1961) for different geometries.501

It is important to highlight that the peculiar arrangement of the small dipoles during the502

shedding is a specific characteristic of Re = 10, 000, so that the capabilities of a solver in503

reproducing these complex kind of vorticity patterns can be benchmarked with such kind504

of simulations.505

In order to show how challenging these kind of simulations can be, a comparison506

between the results obtained using the DVH solver and the FVM is shown in figure 9.507
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Figure 8: Flow past a transverse flat plate at Re=10,000. From up-left to bottom-right the time evolution
of the vorticity wake field. The related time instants are: a: tU/c=2.25, b: tU/c=4.75, c: tU/c=30.00, d:
tU/c=34.75, e: tU/c=49.75, f: tU/c=74.75.

Both DVH and FVM capture the main flow features, but the richness in terms of vortex508

scales observed in the DVH solution (left frame of figure 9) is not appreciable in the509

corresponding FVM one (right frame of figure 9).510

As stated in section 5 and shown in figure 7, the vorticity fields obtained with both511

algorithms can be compared (at most) up to a distance of about ten characteristic lengths512

from the body, i.e. x < 10c, where the FVM numerical dissipation is still limited. In this513

case, however, the structured mesh of the FVM solver suffers from a significant numerical514

viscosity even near the body, as shown in figure 9, although the body fitted grid resolution515

is comparable with the DVH.516

In figure 10 the lift and drag coefficients time histories are represented. In these plots517

a long transient is visible, corresponding to frames a, b and c of figure 8, lasting up to518

tU/c ≃ 34.75. The drag coefficient fast growth that can be appreciated at the beginning519

of the simulation is caused by the acceleration ramp used to avoid an impulsive start: the520

free stream acceleration,in fact, generates an added mass effect which increases the drag521
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Figure 9: Flow past a transverse flat plate at Re=10,000. Comparison between DVH (left) and FVM (right)
vorticity fields.

Figure 10: Flow past a transverse flat plate at Re=10,000. Drag (top) and Lift coefficients (bottom) from
DVH simulations.

coefficient. At the same time the lift coefficient remains close to zero. Afterwards, while522
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the recirculation zones widen, the drag coefficient Cd lowers up to its minimum value523

around Cd = 0.5. When the shedding begins, the drag increases again and start to oscillate524

rapidly and irregularly with small amplitudes, as shown in top plot of figure 10. Two525

different behaviors can be appreciated when looking at Cl time history (bottom plot of526

figure 10): large amplitude and low frequency oscillations are superimposed with small527

fast ones.528

The fast oscillations appearing in drag and lift coefficients can be better appreciated in529

top frames of figure 11, where the magnifications of the Cd and Cl time histories are shown.530

These oscillations are caused by the fragmentation of the shear layer into small vortices531

Figure 11: Flow past a transverse flat plate at Re=10,000 and tU/c = 99.81. The vorticity wake field on
bottom. On top the drag (left) and lift (right) signals with a red dot corresponding to the shown time instant.
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observed during the shedding which, in turns, locally induces fast velocity fluctuations.532

In bottom plot of figure 11 the vorticity field at the end of simulation is depicted. The far533

field, constituted mainly by large vorticity structures generated by the merging of the small534

vortices, can be appreciated. The multi-resolution algorithm adopted in the present work535

shows a remarkable ability in maintaining also smaller vorticity patches at 10 - 12 lengths536

from the plate, i.e. x = 10c − 12c.537

In table 3 the mean drag Cd, lift Cl and pitching moments Cm, evaluated for tU/c > 60538

are reported together with their standard deviations. In order to highlight the ability of539

the DVH body fitted approach in accurately reproducing the forces acting on the body, the540

results are compared with those obtained with the FVM method, showing a good agree-541

ment. The mean values for Cl and Cm have not been reported, being them close to zero as542

expected.

Cd Cl Cm

DVH 3.50 ± 0.65 ±0.054 ±0.378
FVM 3.46 ± 0.50 ±0.067 ±0.386

Table 3: Flow past a transverse flat plate: comparisons of means and standard deviations of forces and torque
times signals for DVH and FVM codes.

543

5.3. Flow past a triangular cylinder at Re=10,000.544

The flow past an equilateral triangular cylinder (with side c) at Re = 10, 000 is here545

analysed. The triangle is oriented with the height aligned with the free stream and the546

corresponding vertex pointing in the opposite direction, as shown in figure 12.547

The simulations carried out with both solvers are compared in figure 12, where the vor-548

ticity fields are reported at time instants with similar wake development. As already seen549

in section 5.2 for the flat plate, the shear layers detaching from the sides of the triangle dur-550

ing the transient form a large dipole behind the body, as shown in left column of figure 12.551

It is worth noting that for the FVM the dipole is rather stable during its growing, whereas552

for the DVH the clockwise and anticlockwise recirculating areas are characterized by an553

evident oscillatory behaviour (left top frame of figure 12). The reason behind this discrep-554

ancy relies on the numerical strategies used for simulating the vorticity dynamics: with555

the DVH the RPD close to the body is not symmetric with respect the x-axis. Conversely,556

the FVM uses a structured grid that matches the symmetry of the body.557

This also implies that the solutions obtained with a Finite Volume Method are generally558

“stable” for longer times and the shedding inception is usually delayed when compared559

with the DVH solutions.560
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Figure 12: Simulation of the initial stages of the flow past a circular cylinder at Re=10,000. On top row the
DVH simulation while on bottom row the FVM one. From left to right, the non-dimensional times tU/c
sketched are: 6, 10.3 and 12.9 for DVH and 10.8, 30 and 34.1 for FVM.

Figure 13: Vorticity far field for the flow past a circular cylinder at Re=10,000 at tU/c=100.

This difference is also visible from the force time histories in figure 14, where the561

transients related to the dipole formation and growth are longer for the FVM than for the562

DVH. Specifically, the transient for FVM is about three times longer than for the DVH.563
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Figure 14: Flow past a triangular cylinder at Re=10,000. Comparison of drag and lift coefficients time
histories between DVH (top) and FVM (bottom) algorithms.
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The onset of shedding mechanism is depicted in the center plots of figure 12.564

Differences in the shed vorticity between the DVH and the FVM are evident: as pre-565

viously highlighted, the solution of the FVM shows greater stability in the shear layers566

detachment, whereas they are fragmented forming little dipoles in the DVH solution.567

Besides these differences, the two approaches show a good agreement when comparing568

the vorticity field for later stages, both being able to capture correctly the same vorticity569

scales in the near field, as shown in right frames of figure 12.570

In figure 13 the DVH vorticity field at tU/c = 100 is depicted. The near field is571

characterized by small scales generated by the shear layer instability, while the far field572

is dominated by the large dipoles generated by the merging mechanisms typical of planar573

flows (see e.g. Boffetta and Ecke (2012)).574

The figure 14 depicts the Cd and Cl time histories for both solvers. Besides the already575

discussed difences in the transient regime, the two codes show good agreement in evaluat-576

ing the lift and the drag coefficients, showing a similar shedding frequency. As for the flat577

plate, also in this case the small oscillations are related to the shear layer instability that,578

breaking into small vortices, induce a high frequency component in the force signal.579

A comparison of Cd, Cl and Cm mean and standard deviation between DVH and FVM580

is shown in table 4. Because of the symmetry of the problem, the mean values for Cl and581

Cm are close to zero and, for this reason, are not reported. The time average has been582

performed without considering the transient regime, tU/c > 16 for DVH and tU/c > 36583

for the FVM respectively and show a fair agreement between the solvers.

Cd Cl Cm

DVH 2.33 ± 0.47 ±0.447 ±0.252
FVM 2.33 ± 0.67 ±0.429 ±0.240

Table 4: Flow past a triangular cylinder: comparisons of means and standard deviations of forces and torque
time signals for DVH and FVM codes.

584

5.4. Flow around a square cylinder at Re=10,000.585

In this section the flow past a square cylinder at Re = 10, 000 is investigated. The586

reference length c is the square side.587

Figure 15 shows the DVH and FVM vorticity fields developed during the initial stage588

of the motion. The boundary layers develop over the top and bottom sides. They become589

unstable close to the left vertices inducing a rolling of the detached vortex structures along590

the horizontal sides, while the detachment on the right vertices forms two recirculating591

zones. Looking at the middle and right plots of figure 15, the flow separation rapidly leads592

to the onset of vortex structures strongly interacting with each other and with the square593
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Figure 15: Simulation initial stages of the flow past a square cylinder at Re=10,000. From the left to right,
the non-dimensional times tU/c sketched are: 2, 3 and 4. On top row the DVH simulation while on bottom
the FVM one.

Figure 16: Vorticity far field for the flow past a square cylinder at Re=10,000 at tU/c=75.

sides. The small eddies generated over the top and bottom sides move downstream and594

directly interact with the recirculating zones, causing the rapid inception of the shedding595

mechanism.596
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Figure 17: Flow past a square cylinder at Re=10,000. Comparison of drag and lift coefficients time histories
between DVH (top) and FVM (bottom) algorithms.
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As previously highlighted, the DVH fields are not symmetric because the adopted RPD597

iso non-symmetric, as visible on center and right frames of figure 15. Conversely, in the598

FVM fields the symmetry is strictly preserved during this initial stage of the flow. Beside599

those differences between DVH and FVM, both the solvers exhibit a very similar transients600

of the forces as depicted in figure 17.601

It is interesting to note that, in this case, the various vortex scales shed in the flow field602

remain well separated even in the far field. In other words the eddies merging phenomena603

is less intense and, as a consequence, no main shedding frequency is observed in the604

lift and drag time histories, as shown in figure 17. The forces evaluated using the two605

solvers are in good agreement and table 5 reports the comparison of the mean Cd, Cl and606

Cm together with their standard deviation. The solvers accordance is confirmed on these607

quantities also. As already commented in sections 5.2 and 5.3, the mean values of Cl and608

Cm are not reported being close to zero for symmetry reason.

Cd Cl Cm

DVH 1.25 ± 0.26 ±0.687 ±0.131
FVM 1.19 ± 0.29 ±0.717 ±0.118

Table 5: Flow past a square cylinder: comparisons of means and standard deviations of forces and torque
time signals for DVH and FVM codes.

609

5.5. Flow around a circular cylinder at Re=10,000.610

In the present section the flow past a circular cylinder of diameter c at Re = 10, 000611

will be discussed.612

As remarked in Durante et al. (2017), in a two dimensional framework and at this613

Reynolds number the flow remains within the lower sub-critical regime: the shear layers614

start to fluctuate and only few eddies are formed downstream by their mutual interaction.615

As visible in left plot of figure 18, the boundary layers start detaching from the cylinder616

surface undergoing a roll-up which will generate the two recirculation areas. This dipole617

arrangement remains stable up to about tU/c = 10 for the DVH and about tU/c = 20 for618

the FVM. Afterwards the wake becomes unstable, as visible in top-right plot of figure 18,619

and the shedding begins.620

In figure 18 a comparison of the vorticity fields computed with both solvers is presen-621

ted. In this case, the shape does not present geometrical singularities so that the vorticity622

is shed through vortex patches comparable to cylinder size. DVH and FVM solution are623

in good agreement in terms of vortex scales shed in the flow field.624

The figure 19 show the near and far DVH vorticity fields at the end of the simulation.625

The multi-resolution technique adopted in the DVH is able to follow the small eddies626
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Figure 18: Simulation initial stages of the flow past a circular cylinder at Re=10,000. On top row the DVH
simulation while on bottom row the FVM one are depicted. From left to right, the non-dimensional times
tU/c sketched are: 2, 4 and 12 for DVH and 2.5, 5.2 and 11 for FVM.

Figure 19: Vorticity far field for the flow past a circular cylinder at Re=10,000 at tU/c=300.

generated by the fragmentation and roll-up of the shear layers and advected toward the far627

field. The above mechanism leads to an irregular shedding with a rather disordered wake628

arrangement typical of this Reynolds numbers regime (see also Durante et al. (2021) for629
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Figure 20: Flow past a circular cylinder at Re=10,000. Comparison of drag and lift coefficients time histories
between DVH (top) and FVM (bottom) algorithms.
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an in-depth discussion).630

The figure 20 depicts the time histories of the DVH and FVM forces. The comparison631

between the solvers appears rather encouraging. The lift forces, in particular, exhibit a632

remarkably similar behaviour with a carrier frequency of f ∗ = 0.175 f c/U common to633

both methods (i.e. the differences are order 10−4) with the typical features observed and634

discussed in Durante et al. (2022).635

When looking at both DVH and FVM lift time signals it is possible to note that the636

oscillatory behaviour stops for some cycle. This intermittence is one of the key points637

discussed in Durante et al. (2022). It is worth noting that this behaviour is correctly repro-638

duced by both solvers, although it requires highly refined meshes near the cylinder surface639

in order to to be appreciated.640

Finally, table 6 reports a comparison between DVH and FVM in terms of mean Cd, Cl641

and Cm along with their standard deviations. The geometrical regularity of the body makes642

the outcomes of the two solvers remarkably similar both in terms of average values as well643

as of their standard deviations. The standard deviations of the pitching moments are very644

small, as expected for this geometry.

Cd Cl Cm

DVH 1.55 ± 0.43 ±1.261 ±0.002
FVM 1.54 ± 0.43 ±1.257 ±0.002

Table 6: Flow past a circular cylinder: comparisons of means and standard deviations of forces and torque
times signals for DVH and FVM codes.

645

5.6. Flow past an airfoil at varying AoA646

In this section the flows past a NACA0012 at varying angle of attack α = 0◦, 4.5◦, 6◦,647

9◦ and 15◦ are discussed. The DVH results are, for these cases, directly compared with648

the data available in literature. In particular, the numerical works of Sun et al. (2018) and649

Lee et al. (2015) and the experiments of Ohtake et al. (2007) are taken as reference.650

Figure 21 depicts the vorticity fields obtained at the end of the simulation for all the651

angle of attack analysed. In figure 23 the Cl time histories are shown. As discussed in652

Durante et al. (2020), for this case the lift time history is more interesting than the drag in653

order to discuss the wake pattern.654

At α = 0◦ (top plot of figure 21) the top and bottom boundary layers remain attached to655

the airfoil and only a weak instability is visible in the wake at about 4 chord downstream.656

This instability is too far from the body to induce an appreciable effect on the lift force.657

Conversely, for α = 4.5◦ the vortex shedding is more intense and takes place just on the658

airfoil trailing edge. The effect of this shedding is visible in the Cl time history (top plot659
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Figure 21: Vorticity far field for the flow past a NACA0012 profile at Re=10,000 and varying angle of attack.

of figure 22) where, after a transient, regular and periodic oscillations produce an ordered660

dipole arrangement of the wake up 10 chords from the airfoil.661

For α = 6◦ the vortex shedding is characterized by a set of dipoles which, further662

downstream, bend the wake upward. The periodic shedding of these dipoles has a strong663

effect also on the Cl time history, where periodic oscillations with large amplitude are664

established.665

At α = 9◦ the flow separation occurs on the suction side almost in the middle of the666

foil chord. The separation and following reattachment induce the shedding of dipoles667
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Figure 22: Flow past a NACA0012 airfoil at Re=10,000. Lift coefficients time histories for different angles
of attack calculated with DVH algorithm.

characterized by clockwise moment. In this case a filamentation phenomenon can be668

observed caused by a strong interaction between the shed dipoles. This particular wake669

pattern has an effect on the Cl time history where a doubling period is observed. These670

kinds of phenomena are also discussed in Rossi et al. (2018); Durante et al. (2020).671

Figure 23 shows the comparison of the mean Cl and Cd computed using the DVH672

method with the experimental data by Ohtake et al. (2007) and the numerical results by673

Lee et al. (2015) and by Sun et al. (2018). The DVH results show a fair agreement with674
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Figure 23: Flow past a NACA0012 airfoil at Re=10,000. Comparison of drag and lift coefficients with the
literature, for varying angle of attack

the other numerical results for both the lift and drag coefficients. A comparison with the675

experimental data, however, is possible only up to an incidence angle of about α = 6◦: for676

larger angles of attack the 3D effects dominates the flow generating a smaller lift force.677

Finally, in figure 24 the airfoil is pitched at α = 15◦ and the vortex shedding becomes678

chaotic with the presence of both large and small vortical structures, as also visible in the679

lift coefficient time history reported in the bottom plot of the same figure.680

6. Conclusions681

In the present work a novel multi-resolution algorithm for the Diffused Vortex Hydro-682

dynamics model is introduced. This technique allows to perform long time simulations,683
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Figure 24: Vorticity far field for the flow past a NACA0012 profile at Re=10,000 and α = 15◦.

maintaining the full description of the wake field but significantly limiting the final num-684

ber of vortex particles used for the simulation. The multi-resolution preserves the total685

circulation and takes advantage of the Benson algorithm to regularize the particle spatial686

arrangement during the diffusion step.687

The present algorithm is based on the use of synchronized diffusive and advective time688

steps. Furthermore, sub-domain extensions are adopted with the aim of performing the689

diffusion step without the mixing of different spatial resolutions. The procedure guarantees690

the same accuracy of the diffusion process even close to the sub-domain boundaries.691

Five distinct benchmark test cases are considered for the validation of the proposed692

algorithm. Specifically, the viscous flow past a body at Reynolds number equal to 10,000693

is studied for five different geometries. The analysis focuses on the global forces as well694

as the near and far vorticity fields. A Finite Volumes solver has been used as reference695

solution. The advantages of the DVH formulation with multi-resolution algorithm are696

highlighted with respect to the standard mesh-based solvers in terms of CPU costs as well697

as of computational efficiency.698
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AppendixA. Single Vs Multi resolution703

In the present appendix we highlight how the multi-resolution algorithm affects the704

solution of the numerical scheme. The wake fields at the Reynolds number investigated705

in the former sections (Re=10,000) required from 800 to 1600 vortex particles for unit of706

length, making unfeasible the use of a single uniform resolution for the whole numerical707

domain this Reynolds number.708

For this reason, we prefer to address a simpler case at Re=1000 with a circular cylinder.709

For this case the time behaviour of the lift is periodic and, as a consequence, the vortex710

wake shows a regular arrangement. A single resolution, corresponding to N = 100 vortex711

Figure A.25: Flow past a circular cylinder at Re=1000. Single resolution N=100 (top) versus multi-
resolution (bottom) vorticity fields.
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particles along the reference length, is compared with a multi-resolution where N = 100712

is adopted for the body fitted domain only.713

In figure A.25 the wake field is depicted in terms of vorticity. The frames show flow714

fields obtained with uniform resolution versus a multi-resolution. As visible, the dipoles715

arrangement is very similar also for x/c > 20, where the interaction is stronger.716

Lift force signal for both uniform and multi-resolution cases are shown in the top frame717

of figure A.26. During the transient the signals coming from uniform and multi-resolution718

are superimposed, while small discrepancies appear when the wake looses its symmetry,719

i.e. tU/c > 28.720

The lift L and the drag D forces on the body are directly calculated from the vorticity721

Figure A.26: Flow past a circular cylinder at Re=1000. Single versus multi resolution lift coefficient at
N = 100 on top frame. Number of vortex particles within the numerical domain during the time evolution
on bottom frame: single versus multi resolution.

39



field as (see Riccardi and Durante (2007) and Durante et al. (2021)):722

L = ρ
d
dt

 Nv∑
j=1

x j Γ j

 , D = ρ
d
dt

 Nv∑
j=1

y j Γ j

 (A.1)723

where x j and y j are horizontal and vertical components of the j-th vortex position. This724

means that the agreement between single and multi resolution of the lift time signals de-725

notes that the vorticity distributions share some similarities. In particular, the first mo-726

ments of the vorticity are well preserved when passing from uniform to multi-resolution.727

It is worth noting that the DVH scheme, thanks to the vorticity diffusion procedure dis-728

cussed in section 2, preserves exactly the total circulation, i.e. the zero moment of the729

vorticity (for more details on this topic see Rossi et al. (2015b)).730

In the bottom frame of figure A.26, the total number of vortex particles within the731

numerical domain is reported. It is important to highlight that the total number of vortex732

particles generated with the uniform resolution is one order of magnitude larger than with733

the multi-resolution at tU/c ∼ 75. It may also be appreciated that with a multi-resolution734

the total number of vortex particles never exceeds 200,000 whereas it rises over 5 millions735

with a uniform resolution in the time range tU/c ∈ [0, 75], significantly affecting the DVH736

capabilities for long-time simulations.737

AppendixB. A convergence test using the proposed multi-resolution algorithm738

In the present appendix the convergence of the numerical scheme is discussed. As for739

the AppendixA, we refer the investigation to the flow past a circular cylinder at Re=1000.740

The lift force time signal is shown for three different resolutions (i.e. N=50, 100, 200)741

in figure B.27. In order to highlight the different rates of convergence for different time742

ranges, the transient stage and the periodic regime are reported in two separate frames.743

From both plots it may be appreciated a clear superposition between medium (N=100)744

and fine (N=200) resolutions, whereas the differences with the coarse resolution (N=50)745

are more evident.746

In order to quantify those differences a convergence order is estimated for tU/c ∈747

[0, 25] and tU/c ∈ [82, 102]. The convergence rate for the lift force is measured in terms748

of L1 norm:749

ε12 =

∫ t1

t0

∣∣∣ L(2) − L(1)
∣∣∣ dt (B.1)750

where L(1) is the lift value computed at the finest resolution, N=200, and L(2) the value751

computed with a particle distribution for which N is halved, N=100. In order to obtain a752
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convergence rate, a coarser resolution with N halved again, N=50, is used and the com-753

puted value of the lift force is indicated with L(3).754

The convergence rate is then given by:755

C(L) =
log(ε12/ε23)

log 2
. (B.2)756

In the periodic regime (right frame of figure B.27) the convergence rate is about 2 while757

in the transient time range (left frame of figure B.27) rises up to 3.8.

Figure B.27: Flow past a circular cylinder at Re=1000. Lift coefficients convergence in terms of the time
signals for three resolutions. On the left the transient stage, on the right the periodic stage.
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