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Abstract 

Current trends in 3D visualization merged with internet applications and sensor technologies will soon 
break the barriers to the widespread acceptance of 3D Internet, and they will enable a full user immersion 
in the virtual world. However this evolution will impact dramatically on the existing infrastructures since 
the fruition of 3D content in real time by a huge number of people poses new issues related to the system 
responsiveness and to the ability of managing context information. In this paper we observe that actions 
related to the acquisition of context from the physical and from the virtual worlds, as well as actuation in 
both worlds can be considered as a special case of context management and actuation. For this reason we 
propose a architecture for the management of such aspects within a unique framework, and an 
experimental testbed that validates the architecture. 
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Introduction 

After having been confined to stand alone applications for long time, the use of 3D 
visualization technologies in the representation of reality is now mature enough to 
merge with internet applications [1]. This trend can already be observed in some 
popular applications such as Second Life [2] or World of Warcraft [3] and it is 
progressively changing the way in which people will experience the future Internet (or, 
as often it is called, 3D Internet). Furthermore, recent technologies such as networks of 
embedded sensors and actuators immersed in the physical environment appear now 
mature enough to overcome another limit to the widespread acceptance of 3D Internet 
in the everyday life, which has been the lack of suitable, non invasive interfaces letting 
the user to interact with the virtual world as if she was immersed in the physical 
environment. For these reasons, although the use of 3D is currently limited to a few 
applications (that however are of interest for million of people [2]), it can be expected 
that most future internet applications, such as e-mail, web browsing, VoIP, virtual 
shops, file sharing, social networking etc… will rely on this technology.  

Enabling the interaction between physical and 3D virtual worlds of billions of users is 
an extreme challenge to the current technologies. For this reason this (r)evolution will 
not come for free and will impact radically on the existing infrastructures (including 
home networks or Personal Communication Networks), which do not appear ready to 
face this challenge. In fact, on the one hand the fruition of 3D content in real time by a 
huge number of people with an even higher number of applications will pose to the 
networks issues related to the available bandwidth, security, latency and real-time 
communication constraints; on the other hand it will be necessary to encapsulate 
information from a huge number of sensors and to drive actuators (in other words, to 
manage the user’s context) to bring the user’s experience beyond the possibilities 
offered by the nowadays virtual worlds.  

All these issues naturally fit the concepts of Quality of Service (QoS) and Context 
Awareness (CA) that traditionally have been considered as separate problems. However 
in 3D Internet the model changes completely. In fact the user has an identity both in the 
real environment and in the virtual environment in form of avatars. From the point of 
view of the avatars the network is the glue of its virtual environment, and all the actions 
related to the network status (that normally are considered QoS-related) now become 
actions on the avatar’s context. Under this respect aspects such as the management of 
QoS are just a part of the more general problem of context management of the user 
(intended as both physical and virtual).  

In this paper we present a architecture for the management of such aspects within a 
unique framework, where, for example, network probes monitoring the network are a 
special kind of sensors, and mechanisms and policies for the QoS management or 3D 
graphic engines are a special kind of actuators on the virtual world. In particular we 
define network probes able to monitor low level flows on the network, and a 
virtualization layer that can filter, aggregate, and present the information coming from 
the network probes and from physical sensor networks in order to make this information 
suitable for high level decisions of the QoS manager. Differently than the conventional 
approach, with our framework the context management system can gather and treat 
uniformly all information related to the physical and virtual environment of the user.  



We propose a scenario and a case study to discuss how the proposed architecture 
enables the integration of physical and virtual information, namely the user’s position 
(physical information) and the network status (virtual information), and how it can 
result in better and more accurate decisions of the 3D applications. Finally we present 
an experimental testbed aimed at validating the proposed architecture. 

Related Works 

Several works approach the problem of attaining the desired QoS in virtual worlds, 
either at the user, application, or at the network level [13]. At the user level, the QoS 
metrics are features experienced by the user during active participation in the virtual 
system; they are mostly qualitative, like immersion, presence, comfort, learning time, 
overall satisfaction. At the application level, the QoS takes into account the performance 
of the connection between users and applications (for instance interactivity), or 
simulation performance metrics (3D and acoustic rendering, tactile feedback etc,). 
Finally, at the network layer, QoS is expressed in terms of bandwidth, latency, 
throughput etc. 

Until now, QoS in virtual worlds has mainly been approached at the user or at the 
application level, by building architectures where the transmission of information is 
adapted in order to meet predefined goals based on the user’s interest for certain objects 
[14, 15], or based on partitioning schemes [16], i.e. schemes for the assignment of 
avatars to users, and only in a few cases the QoS at the network level is considered and 
mapped from the other levels [13]. However none of these approaches consider the 
dynamic nature of the network, whose status may change quickly during a 3D session 
since the network itself surrounds the user and it is part of its context. 

Background Concepts 

Context-aware systems provide services which enable other applications to adapt 
their behaviour upon the current context. At the begging the context was mostly 
identified by the user location. Nowadays user localization continues to be one of most 
important context information, but now the word context is used to refer any 
environmental parameter where the meaning of the term “environmental” is as broad as 
possible. Environmental parameters may refer to user physiological/emotional data, user 
actions/movements, user identity, status of the surrounding environment, location, time, 
profiles, agendas and data referable to the user, and even presence and context of other 
users [10]. A reference architecture for context-aware system includes the following 
layers: sensors, raw data retrieval, pre-processing, storage/management, and application. 
In particular, the sensor layer includes: the hardware sensors (physical sensors), virtual 
sensors which offer data available from applications or services (e.g., data deducted by a 
specific use of a browser by the user), and logical sensors which combine information 
obtained from physical and virtual sensors (e.g., the location of the user associated to an 
action on a browser). In [10] the authors suggest a classification of context-aware 
systems based on the way the contextual information is collected and shared among the 
context-aware applications. The proposed categories, depending on the context-aware 
system implementation, are: direct sensor access, middleware infrastructures, or context 
servers.  



Quality of service (QoS for short) is a generic term used to indicate methods and 
infrastructures for granting a given service level to selected traffic. The service level can 
be related to parameters such as, for example, bandwidth or latency.  

Quality of Service mechanisms can be implemented locally or end-to-end. Local 
implementations manage the access to the physical channel and reside at the data link 
layer. Currently, each link-layer technology has its own mechanisms. For example, 
IEEE 802.11e [4] defines a limited number of access categories for queuing and 
scheduling of packets in WiFi networks. The presence of different mechanisms for each 
networking technology prevents the possibility of a uniform end-to-end service level 
when multiple heterogeneous networks are traversed. Thus, higher layers represent a 
possible interoperability solution aiming at offering a uniform vision of QoS towards 
users and applications; such role is held by the network layer. 

Dealing with QoS at the network layer has significant advantages: traffic flows can 
be effectively distinguished (for both hosts and applications) and the same mechanisms 
can be used across heterogeneous networks. There are two different approaches from 
IETF, namely the Integrated Services (IntServ) [5] and the Differentiated Services 
(DiffServ) [6]. In Intserv the applications and the network negotiate and agree a service 
level for each traffic flow, while Diffserv uses only a given set of classes to differentiate 
the treatment of each single packet. Diffserv is simpler and more popular than Intserv, 
and can satisfy most QoS needs, but lacks end-to-end semantics, error signalling and 
admission control. Local and end-to-end QoS mechanisms can interoperate by mapping 
policies within the network layer into lower layer mechanisms. 
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Figure 1: A conceptual architecture 

A Conceptual Architecture 

The structure of a virtual world application must take into account the interaction 
between the real and the virtual world. Sometimes virtual worlds require some kind of 
sensing of the real word, especially when transmissions and mixed reality are involved. 
For example, user localization as well as movement and gesture recognition are useful 
to drive a synthetic model based on the actual user activity; on the other hand, 



acquisition of environmental data can be used to bring sensory effects to the user in 
order to increase the overall experience of the user.  

In this section we describe a conceptual architecture that can enable such interaction. 
The conceptual architecture (shown in Figure 1) is composed by three entities: an 
Integration Layer, a Context Management layer, and a Decision Engine that is a 
collection of distributed embodied agent able to interact with the physical and virtual 
worlds. 

The Integration Layer is in charge of abstracting from the complexity of specific 
sensor and actuator technologies. In fact, the interaction with sensors or actuators 
requires interfacing with a number of heterogeneous technologies, such as ZigBee [7] 
for sensor networks and SNMP [8] or other specific protocols for network monitoring; 
each of these technologies requires specific interfaces and protocols. For this reason we 
propose a unifying layer called Integration Layer that enables a consistent and common 
way of controlling sensors and actuators. To this purpose this layer embeds two 
components called Actuator and Sensor. The Sensor component provides a common 
representation of a number of physical, logical, or virtual sensors. Example of physical 
sensors are accelerometers, thermometers, infra-red detectors, cameras, etc., while 
virtual sensors provide context information from the virtual world, as it is the case of 
network probes, for example. Logical sensors combine information obtained from 
physical and virtual sensors (e.g., the location of the user associated to an action on a 
browser). The Actuator component is responsible for the management of the physical 
and virtual actuators: we can think at physical actuators as leds, step-by-step engines or 
robots, while examples of virtual actuators are QoS managers or 3D engines. In the 
latter case, the actuator may provide functions for the user’s avatar animation. 

The Context Management layer interacts with the Integration Layer to obtain the 
raw data from the sensors and provides refined information to the Decision Engine. The 
Context Management is composed by a set of Reasoners, each of which is an intelligent 
entity in charge of inferring behavioural information from raw data or from the context 
inferred by other Reasoners. Consider for example a user that wears accelerometers on 
her arms. The Reasoners acquire the data produced by the accelerometers from the 
Integration Layer. A first Reasoner collects the data measured by the three 
accelerometers, and infers that the arm is moving. A second Reasoner collects the arm 
movement and inspecting the historical data (kept by the Storage component), it 
recognizes that the user is raising her arm, thus the user’s context is now updated with 
this information.  

The Decision Engine is a collection of distributed embodied agent that exploit the 
refined information from the Context Management layer to react with suitable actions 
by controlling the Actuators; in some sense, it completes the chain “sensing–
contextualization–decision–action”. The Decision Engine may be thought as the 
business logic that implements the real application. In the previous example, when the 
user raises her arm and the Context Management becomes aware of a change in her 
context, the Decision Engine reacts to the change in the context by requesting some 
actions in the physical and/or virtual world to the Actuator components. 

Case Study and Use Cases: A 3D conference 

This section sketches a reference scenario for the analysis of a use case of a 3D 
Internet application.  



A 3D scenario: Let us consider the case of a conference, for example a university 
class, that takes place in a 3D environment, where the third dimension is a requirement 
to overcome the limitations of the current 2D technologies in terms of lack of deep 
immersion in the system. The conference room is a virtual room suitable for the 
conference. In the 3D conference there is no 2D video, but only a synthetic model for 
each person, which is reproduced in the right place of the virtual room. Each user 
chooses the framing to view the scene, perhaps from her location inside the virtual 
environment. In the real world the user may enrich her experience by means of sensors 
that monitor her physical activity. The monitoring of the user helps her to fully plunge 
into the virtual conference, for example, if she turns her head the angle of vision follows 
her movement, or when she starts talking the system requires the network to enable a 
high quality audio streaming. 

Use case: Consider in the above scenario the case where Jennifer is leading a 3D 
conference and she is showing her slides. In the real world she is in a room wearing her 
augmented reality visor, so that she can look at all the other participants as if they were 
in the same room. Jennifer wears also some sensors: a compass on the head and 
accelerometers on her arms. During the Jennifer presentation Tom raises his arm in the 
real world, thus his avatar in the virtual world also raises its arm. Hence Jennifer points 
her arm in the real world to the Tom’s avatar in the virtual world to let him talk. These 
actions reserve network resources to begin a multicast audio streaming to enable Tom 
make his question, and at the same time the Tom’s microphone gets enabled. 

Use case analysis: The physical sensors on Jennifer and Tom are interfaced to the 
Context Management that embeds motion reasoners to infer when they are raising or 
pointing their hands. These movements are communicated to the Decision Engine that 
replicates them in the virtual world by means of the 3D actuators. Another Reasoner, for 
example a Real2VirtualWorld Reasoner joins the “point to direction” with the “3D 
world model” to infer that Jenifer is pointing to Tom and communicates this 
information to the Decision Engine. 

At this point the Decision Engine realizes that Jennifer wants Tom to make his 
question, thus it acts on the QoS managers to reserve bandwidth for the audio streaming, 
and drives another actuator for the activation of the Tom’s microphone. 

 
Figure 2. The SAIL layers. 



The Concrete Architecture 

The role of the conceptual architecture is to illustrate the whole picture in which our 
work fits. In the current stage of our work, only the part of this architecture related to 
the acquisition of context information from sensors and control of physical actuators 
(called SAIL, Sensors and Actuators Integration Layer), and a simple Reasoner have 
been refined and implemented. 

The Sensors and Actuators Integration Layer – SAIL enables applications to 
acquire context information independently of the nature of the information: physical 
variables (e.g., temperature, light, and humidity), network status (e.g., bandwidth, 
latency, quality of service), user motion (e.g., localization, gesture) and user profiles 
(e.g., preferences, personal data). Each source of information is modelled as a sensor 
and exported by an UPnP-based interface; applications become aware of available 
sensors (either physical, virtual or logical) through the description and publication 
methods of UPnP and gather information by querying the sensors. In the following we 
describe the SAIL architecture together with the QoS management that, we believe, will 
play a crucial role in the future 3D Internet. 

SAIL is organized in three layers, namely the Access, Abstraction, and Exporters 
Layers, constructed over an OSGi framework [11] and shown in Figure 2. The SAIL 
Access Layer defines a minimal set of functionalities that any sensor should provide, 
either on its own or by means of an application adapter. This layer interacts directly 
with the sensors/actuators to implement the Sensor Node or the Actuator Node. To this 
end, it comprises a set of components called Sensor Actuator Drivers (SADs), each of 
which drives a sensor or an actuator. The SAD exports the sensors and actuators 
functionalities in terms of interfaces specified by the Abstraction Layer.  

The Abstraction Layer is implemented by a single component called SAIL Base 
Driver (SBD). The SBD defines the interface that must be implemented by the SAD. 
The SBD can be thought of as a high-level driver which registers the SAD in the OSGi 
framework. The SBD also implements an API that is used by the Integration Layer. 

The Exporters Layer exports the OSGi services registered by the Abstraction Layer to 
client applications. To this purpose it encapsulates different exporters, called Sensor 
Technology Exporters (STEs), suitable to provide access to the OSGi services using 
different technologies such as UPnP, SIP, web services etc...  

 
Figure 3. The Network Probes and SAIL. 

The QoS Management – The QoS management functions are distributed into several 
components. In particular we identify a set of sensors aimed at network monitoring 



(called Network Probes), a QoS Reasoner, and a set of QoS managers. With respect to 
the conceptual architecture, a Network Probe is a virtual sensor that monitors and 
categorizes the network traffic around the user. The Network Probe makes a flow-based 
classification at the application layer and keeps track of the flows above the transport 
layer. In particular, for each flow the probes measure all parameters defined by Cisco 
NetFlow, the de-facto standard in the IP traffic monitoring: total number of 
packets/bytes, packets’ QoS class, average and current bandwidth, etc. To this purpose 
the probes employ a classification engine that determines the application protocol of 
each flow detected. Other information can be retrieved from aggregated data, such as 
number of active and terminated flows, statistical properties of any given class of flows 
(mean and instantaneous arrival rate and flow duration), bandwidth for different QoS 
classes. The classification engine is built upon the Click Modular Router [17], and 
specific modules have been developed in order to recognize the application protocol 
generating the flow. In the current testbed, the classification module is based on a 
patter-matching schema derived from L7-filter [9], but other filters are being considered 
for implementation. 

The result of the activity of the Network Probe is acquired as context information 
handled by the QoS Reasoner, that in the current stage of development exploit simple 
heuristics to infer new context information. For instance the QoS Reasoner can infer the 
maximum available bandwidth between two peers that are located in different networks 
and that are monitored by two different Network Probes. The QoS managers grant 
access to the QoS facilities (if any) offered by the lower communication layers. The 
information obtained by the Network Probes fits the virtual sensor model of SAIL, 
where a different sensor is created for different aggregations of the traffic. In particular 
a Network Probe is a virtual sensor associated to the following measurements: mean and 
current bandwidth, number of active flows, mean and current arrival/departure rates, 
and number of bytes/packets arrived. Such measures are available for different levels of 
aggregation, namely per-L7 protocols and per-QoS classes, thus providing the Decision 
Engine Manager with a powerful set of information and the ability to distinguish among 
different classes of service, protocols and applications. Figure 3 depicts the virtual 
sensor abstraction in a Network Probe and shows its relationship with SAIL. 

The Experimental Testbed 

In order to test and validate the proposed architecture we set up a preliminary test bed 
based on a set of Iris sensors [12] equipped with accelerometer, light, temperature, and 
audio transducers, and three PCs connected in a wireless LAN: one for the management 
of the sensors, one for network monitoring and the QoS managers, and one for the 
Context Management and the Decision Engine. A set of 5 Iris form a body network to 
capture the user’s arms and legs movements by means of the accelerometers (as shown 
in Figure 4). Another set of 10 sensors are used to locate the user’s position in the 
environment. The PC controlling the sensors is equipped with SAIL and with an 
exporter that provides information from the accelerometers and the location of the user 
by means of UPnP (since the experiments were physically limited to a room). The 
second PC runs the network probes and the QoS managers; it also runs SAIL to export 
the information obtained from the network probes. The monitoring information 
provided by the network probes are updated dynamically according to a configurable 
period. The data can be accessed according both to push or pull models. In the push 



model, the Sensor Node automatically sends the data to the upper layers, while in the 
pull model the data has to be explicitly requested. The latter method is particularly 
useful when the decision engine needs more details about the network status. 

 The third PC runs the Reasoners and the Decision Engine. The Reasoners exploits 
UPnP to interconnect with the network probes, to the sensors and to the QoS managers, 
and it provides the information to the Decision Engine. The latter implements a few 
sample applications that activate different kind of streams directed to different monitors 
depending on the user’ position and on her actions detected by the body sensors. 

This testbed was also used to evaluate the overall architecture against its performance 
and effectiveness. In these preliminary experiments we evaluated the reactivity (in terms 
of latency) to the queries issued by the Decision Engine to the sensors and network 
probes and the overhead induced by the queries. In particular, the latency measures the 
time elapsed between the instant of time in which the query is issued and the instant of 
time in which the answer from the sensors is received. Table 1 summarizes the results 
obtained both for light and heavy traffic, for different levels of aggregation. “Single 
protocol” refers to a query inspecting the network probes sensors about all flows 
belonging to the same application protocols, while “All protocols” refers to a query 
about all active flows. With the current implementation the answer delay is below half a 
second on average. The network overhead for these queries was 1490 bytes on the 
average, with a standard deviation of 210.  

Table 1. Latency of UPnP queries to the sensors. 
 Light load Heavy load 
 Single 

protocol 
All 
protocols 

Single 
protocol 

All protocol 

Mean (sec) 0.217409 0.476036 0.4702 0.7391 
Standard deviation 0.009774 0.052382 0.2423 0.3945 

 

 
Figure 4. A detail of the body area sensor network. 

Conclusions and Future Work 

We presented an architecture for enabling seamless interaction between virtual and 
physical worlds. The architecture aim at overcome the complexity of the interaction 
between these worlds by encapsulating different kind of sensors related to both world 
into a unified Context Management. In particular this server can manage both physical 



sensors and virtual sensors. The architecture has been validated by means of a testbed 
that include a set of Reasoners, and set of actuators and a simple Decision Engine acting 
as an embodied agent. A first set of preliminary experiments prove that this architecture 
is suitable to support the coexistence of such sensors and that it can offer a reasonable 
response time.  

We are currently working to encapsulate other kind of sensors and actuators, in 
particular to include 3D engines as actuators, and to improve the overall system 
performance. In the future we also plan extensive simulations and tests in order to 
improve the accuracy of the detection of events in both physical and virtual worlds and 
to evaluate the performance of the system.  
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