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Exploiting the interplay between 
cross-sectional and longitudinal 
data in Class III malocclusion 
patients
Enrico Barelli1, Ennio Ottaviani1,2, Pietro Auconi3, Guido Caldarelli4,5,6, Veronica Giuntini7, 
James A. McNamara Jr.8,9 & Lorenzo Franchi7,8

The aim of the study was to investigate how to improve the forecasting of craniofacial unbalance risk 
during growth among patients affected by Class III malocclusion. To this purpose we used computational 
methodologies such as Transductive Learning (TL), Boosting (B), and Feature Engineering (FE) instead 
of the traditional statistical analysis based on Classification trees and logistic models. Such techniques 
have been applied to cephalometric data from 728 cross-sectional untreated Class III subjects (6–14 
years of age) and from 91 untreated Class III subjects followed longitudinally during the growth process. 
A cephalometric analysis comprising 11 variables has also been performed. The subjects followed 
longitudinally were divided into two subgroups: favourable and unfavourable growth, in comparison 
with normal craniofacial growth. With respect to traditional statistical predictive analytics, TL increased 
the accuracy in identifying subjects at risk of unfavourable growth. TL algorithm was useful in diffusion 
of information from longitudinal to cross-sectional subjects. The accuracy in identifying high-risk 
subjects to growth worsening increased from 63% to 78%. Finally, a further increase in identification 
accuracy, up to 83%, was produced by FE. A ranking of important variables in identifying subjects at risk 
of growth worsening, therefore, has been obtained.

Data Mining and Machine Learning are mathematical procedures focused on developing algorithms and logical 
statements that can learn from the data and make subsequent predictions1–3. These algorithms have been used 
successfully to extract meaningful information highlighting important, potentially unintuitive system behaviours 
in various domains such as econometrics, aerospace, robotics, finance, weather forecasting, and biomedicine3,4. In 
medicine, research on computer-aided diagnosis from artificial intelligence began to be applied with hopes that 
difficult clinical diagnostic and prognostic problems might yield to mathematical formalism, and that comput-
ers might have active role as consultants5. Over the years it became clear that whenever the process is not solely 
stochastic, machine-learning algorithms could provide some insight into the likelihood of which outcome will 
occur (the odds, not the absolute certainty) by identifying new, high-order concepts and relations within com-
ponents of biomedical pathways and generating automated hypotheses within syndromes6. Important tasks in 
bioinformatics are the prediction of a response variable (i.e., disease status of a patient), based on a large number 
of predictors (i.e., signs and symptoms), and the reliable identification of the relevance of each candidate variable 
to patient outcome. Although Machine Learning tools have been developed to decipher the underlying patterns 
in thousands or millions of data, in the medical field these methods also have provided useful prognostic indica-
tions based on characteristics from a few dozen patients5–9.
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Malocclusions are isoforms of disharmony: they incur costs in terms of weakness of mechanotransduction, 
cumulative occlusal trauma, and outcome uncertainty about the ultimate facial appearance9. Class III malocclu-
sion is characterised by the protrusion of the lower dental arch and incorrect relation between the teeth of the 
two dental arches when they approach each other as the jaws close. The contemporary approach to treatment of 
Class III malocclusion is aimed to avoid orthognatic surgery and potential complications. The necessity at growth 
modification promoting mandibular restraining, maxillary growth, and dentoalveolar compensation has been 
particularly stressed9. Therefore it would be highly desirable at the early treatment planning to have knowledge of 
complex morphological, growth, and function characteristics rendering any individual patient as either favorable 
or unfavorable for successful orthodontic treatment.

The contemporary approach to treatment of Class III malocclusion is aimed to avoid orthognathic surgery 
and potential complications. The necessity at growth modification promoting mandibular restraining, maxillary 
protraction, and dentoalveolar compensation has been particularly stressed9. Therefore, it would be highly desir-
able at the early treatment planning to have knowledge of complex morphological, growth, and function charac-
teristics rendering any individual patient as either favorable or unfavorable for successful orthodontic treatment.

Class III disharmony may show a significant tendency to worsen with growth if a patient is left untreated. 
Moreover a discrepancy between maxillary and mandibular growth can result in relapse of the malocclusion 
after the pubertal growth peak, and some patients may need corrective surgery at the end of craniofacial growth. 
Accordingly, the ability to predict the outcome of this disharmony would provide a significant advantage in ortho-
dontic diagnosis and prognosis.

In clinical orthodontics traditional statistical models suffer from holding categorical data, correlate varia-
bles, missing values, and scarce amount of patient’s longitudinal data from which to derive the quality of future 
craniofacial growth and treatment outcomes. On the contrary, large numbers of subjects with unlabelled growth 
outcomes (i.e. cross-sectional subjects) are readily available, though there are few ways to use these subjects 
for growth prediction9. Only in longitudinal surveys are orthodontic researchers able to detect changes in the 
growth characteristics of the target population, at both group and individual levels. As a result, they can establish 
sequences of growth events. Moreover, cross-sectional studies typically do not provide definitive information 
about cause-and-effect relationships. Longitudinal data on untreated subjects with Class III malocclusion are rare, 
given the functional and aesthetic challenges. As the skeletal imbalance usually tends to get worse over time, indi-
viduals with this condition usually face treatment during childhood and adolescence. The intriguing characteris-
tic of a Transductive Learning (TL) procedure (also known as semi-supervised learning) resides in its capability 
of generating additional information derived from labeled (longitudinal) data through the spread of information 
to unlabelled (cross-sectional) data, i.e. subjects whose outcome is unknown10–15. Therefore, TL algorithms take 
advantage of unlabelled data, when used in conjunction with a small amount of labeled data, to produce consider-
able improvement in prediction accuracy. In each step of this methodology, a subset of unlabelled cross-sectional 
subjects is labeled according to an iterative expectation-maximisation algorithm15. Recently, Auconi et al.16 
applied two commonly used statistical methods, Classification Trees (CT) and Discriminant Analysis (DA), to 
forecast the individual risk of unfavourable dentoskeletal growth among a particular set of untreated subjects 
affected by Class III malocclusion. Among 91 subjects, Auconi and coworkers found 28 “good growers” and 63 
“bad growers”16. Two cephalometric angles (SNA and PPMP see below) revealed to be strongly related to the risk 
of unfavorable growth. However, the ability of these methods to predict the risk among new, unseen Class III sub-
jects was relatively modest (accuracy: 64%). The purpose of this study is to submit the cephalometric values of this 
same dataset to a sequence of procedures such as transductive learning, boosting, and feature engineering, with the 
aim to improve the interpretability of the growth model and the prediction of risk of unfavorable dentoskeletal 
prognosis in these subjects.

Material and Methods
Two samples of longitudinal and cross-sectional untreated Class III subjects were analysed. The longitudinal 
sample consisted of 91 untreated Class III subjects (48 females and 43 males) who were enrolled in the Auconi’s 
study16. Two lateral cephalograms were available for each subject. The mean age at T1 was 10.4 ± 2.0 years while 
the mean age at T2 was 15.4 ± 1.9 years. The cross-sectional sample comprised 728 untreated Class III subjects 
(341 males and 387 females) with an age range from 7 to 13 years. This sample was enrolled previously in descrip-
tive estimates of craniofacial growth in Class III malocclusion9,16–19. To be included in this study, the subjects of 
both samples had to satisfy the following criteria: Caucasian ancestry, no previous orthodontic treatment, no 
congenitally missing teeth, and no craniofacial syndromes. Diagnosis of Class III malocclusion was based on 
accentuated mesial step relationship of the primary second molars, anterior crossbite, permanent first molar 
relationship of at least one-half cusp Class III, Wits appraisal less than −2 mm, ANB angle less than 0 degree. 
This study was exempted from review by the Medical School Institutional Review Board of the University of 
Michigan, Ann Arbor (HUM00143467).

Cephalometric analysis.  The quantities under consideration (as in similar analyses16) are derived from 
the anatomy of the patient as shown in Fig. 1. They are based on the following 11 variables: S–N, S–Ar, NSAr, 
SNA, SNB, Co–Go, Go–Gn, N–Me, ArGoMe, Palatal Plane to S–N (PPSN) and Palatal Plane to Mandibular Plane 
(PPMP) defined below. In particular we have the following quantities with two measurements at ages T1 and T2 
(measured in years):

•	 ID: anonymised ID code unique to each patient.
•	 Growth: a binary variable with values “Good” or “Bad”, determined on the basis of CoGn-CoA.
•	 S-N: length of the anterior cranial base (Sella-Nasion) (mm).
•	 S-Ar: distance from point Sella to point Articulare (mm).
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•	 NSAr: Saddle angle (Nasion-Sella Articulare) (degrees).
•	 SNA: antero-posterior position of the maxilla to the anterior cranial base (degrees).
•	 SNB: antero-posterior position of the mandible to the anterior cranial base (degrees).
•	 ANB: angle between Down’s points A and B (degrees).
•	 PPSN: palatal plane to anterior cranial base angle (degrees).
•	 PPMP: palatal plane to mandibular plane angle (degrees).
•	 N-Me: total anterior face height (mm).
•	 Co-A: maxillary length from Condylion to point A (mm).
•	 Co-Gn: total mandibular length from Condylion to Gnathion (mm).
•	 Co-Go: length of mandibular ramus from Condylion to Pogonion (mm).
•	 Go-Pg: length of mandibular body from Gonion to Pogonion (mm).
•	 ArGoMe: Gonial angle (Articulare-Gonion-Menton) (degrees).
•	 IMPA: lower incisor to mandibular plane angle (degrees).

Figure 1.  Cephalometric landmarks.

Figure 2.  On the x-axis: Normalized importance ranking of cephalometric variables in predicting good/bad 
Class III growers. The ranking was obtained by averaging the information gain obtained through splitting on a 
specific variable across all trees, and then across all the folds of the K-fold cross-validation (K = 10). Error bars 
corresponding to the standard deviation across the folds is reported. It can be noted that, while significant, the 
error is not large enough to completely change the ranking.
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We adopted the same method described in16 to follow the Sagittal Skeletal Imbalance (SSI) during the growth 
process, as the difference between Co–Gn and Co–A, calculated both in T1 and in T2 for all 91 longitudinal Class 
III subjects20. To evaluate the progression of imbalance, the individual SSI of each Class III subject was compared, 
with the SSI standard values in a normal population (matched for age and gender) derived from the cephalomet-
ric atlas by Bhatia and Leighton21. “Good growers” were defined those subjects who approached normal values 
during the growth process (T2–T1 change), while “bad growers” were defined as those subjects who showed an 
increase of the difference with respect to normal values during T2–T1 change. Out of the 91 subjects, 28 (30.8%) 
were found to be good growers, 63 (69.2%) bad growers. A rigorous statistical analysis of the distributions and 
correlations of the used variables is out of the scope of this paper, but it can be noted from the histograms in Fig. 4. 
that the ages are roughly distributed with a prevalence of younger subjects, while the rest of the variables are 
bell-shaped. For a more detailed analysis of the population the reader is referred to Auconi et al. previous work16.

Statistical Analysis.  The longitudinal data at T1 were analysed with the following steps: 1) Classification 
Trees; 2) Regularized Logistic Models (LASSO); 3) Transductive Learning approach (Semi-supervised Learning); 
4) Boosting; 5) Feature Engineering. A logical scheme of this sequence of operation can be found in Fig. 5.

Classification Trees.  A Classification Tree is a combination of mathematical and computational techniques that 
can aid in the description, categorisation, and generalization of a given set of data, to help identifying a strategy 
that most likely will reach a goal3,6,11. In the present study, Classification Trees were applied with the aim of identi-
fying the most important predictors (among the 11 cephalometric variables at T1) for the good or bad craniofacial 
growth (categorical dependent variable). Trees were produced using the Python library scikit-learn3,22.

Regularized Logistic Models (LASSO).  Logistic regression can be used to fit a predictive model of the relation-
ship to an observed data set of binary decisions Y (dependent) and numerical observed variable X (independent). 
Logistic regression can be applied to model the dependence between X and Y as a posterior probability function. 
The observed variables form a linear combination with suitable coefficients, and the weighted sum is combined 
with a nonlinear function (the logistic) to obtain a value bounded between 0 and 1. To improve the generalisation 
error and interpretability, especially when there are limited samples, the model’s coefficients can be penalised 
to keep them as small as possible (“regularisation”). This approach can be accomplished by imposing an upper 
bound on the norm of the coefficient’s vector: the most common choices are the L2 norm, which constraints the 
sum of their squares, and the L1 norm, which pose a limit on the sum of their absolute values. In this framework 
the LASSO (Least Absolute Shrinkage and Selection Operator) uses a L1 penalty assumption itself. It can be 
proven that while the L2 norm just shrinks the regression coefficents, the L1 norms forces some of them so be 
exactly zero. This can be seen easily with a geometrical intuition on cartesian plane: a sum of squares penalty 
costrains the coefficients to stay in a disk shaped area, while a sum of absolute values forces them to stay in a 
diamond shaped area. In a higher dimensional space, the diamond becomes a rhomboid. These kind of shapes 
have many corners, so when the coordinate descent algorithm that minimize the loss function hits one of them, 
the coefficents corresponding to that coordinate becomes zero23. Thus, the advantages of LASSO are both easier 
interpretation of the fitted model (sparsity) and computational convenience (convexity). The regularised logistic 
classification model was performed using the Python library scikit-learn.

Figure 3.  On the x-axis: Normalized importance ranking of cephalometric variables in predicting good/bad 
Class III growers. The ranking was obtained by averaging the information gain obtained through splitting on a 
specific variable across all trees, and then across all the folds of the K-fold cross-validation (K = 10). Error bars 
corresponding to the standard deviation across the folds is reported.
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Transductive Learning (TL) Approach (Semi-Supervised Learning).  In many real-world scenarios concerning 
predictions it often is easy to collect large amounts of unlabeled (cross-sectional) data, while it is much harder 
to assign labels that requires careful work by a domain expert. In orthodontics typically it is easy to collect 
cross-sectional data, whereas following a patient longitudinally and assigning a label at the end of the observation 
period is much more difficult. In the last twenty years, several useful algorithms have been developed to learn 
from both cross-sectional and longitudinal labelled data, such as Semi-Supervised Learning, or Transductive 
Learning11,12,14,15. To exploit the values from cross-sectional sample, an algorithm based on Graph theory24–27 
was used with the support of the implementation offered by the Python library scikit-learn. Each cephalometric 
observation was considered a vertex on the graph where an appropriate similarity measure (expressed by a radial 
basis kernel function) was defined among observations; this measure then was used to determine the weights 
related to the edges connecting each observation with the others. An iterative process by which information about 
true labels is spread between neighbours then was carried out until convergence or some stopping criterion. In 
this study the stopping criterion was chosen in order to spread the label information until the class balance in the 
cross-sectional sample was the same as in the longitudinal-sample, as this was the only reasonable assumpion to 
work with. For further mathematical and algorithmic details, the reader is referred to Chapelle et al.12 and Zhu15. 
The parameters of the algorithm, such as the radial basis function bandwidth, have been chosen with the same 
rationale as the stopping criterion cited above. This approach allows exploiting the cross-sectional dataset by 
augmenting the sample size without making use of oversampling techniques or completely “synthetic patients”28. 
A comparison was carried out between simple linear classifiers, such as logistic regression (LASSO) and Decision 

Figure 4.  Histograms of the used variables.
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Tree boosting algorithm13,25–28. While simple linear models or a single Decision Tree offer great interpretability, 
these statistical approaches may fail to learn complex nonlinear relationships between input and output data28,29.

Boosting.  Every predictive model has its strength and weaknesses. If one creates lots of models in lots of different 
ways and then combine them together, the “ensemble” of models uses several learning algorithms to obtain better 
predictive performance. Ensembles tend to yield better results when there is a significant diversity among the 
models22,25–27. The key concept of Boosting is to train the predictive algorithms in sequential rather than in paral-
lel way. Every datum is weighted, and each new classifier is trained by giving more weight to previously misclas-
sified data. In this way, the combination results are more efficient and the errors tend to decrease. This procedure 

Feature engineering
preprocessing 

Transductive learning 
 

Cross validation 

Choose model

Evaluate results

Yes/No

Yes/No

LASSO/GB

Set hyper-
parameters

Figure 5.  Logical scheme of the analysis sequence.
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allows to use very weak classifiers that produce a very strong classifier through Boosting22). The reweighting 
procedure is guided by gradient descent on the logistic loss function. The number of trees in the model, which 
can be seen as the number of iterations of the procedure, is a parameter to be chosen with cross validation as 
all the other parameters of the trees construction. This has to be done as, in contrast with other ensembles of 
trees such as random forests30, adding too many trees can lead to overfitting. Boosting can be interpreted as an 
optimisation algorithm that belongs to a family of Machine Learning procedures that converts weak predictive 
analytics to strong ones. The most common implementation of Boosting is AdaBoost13,22. The Boosting method 
utilised in this study belongs to the family of Gradient Boosting, and a very efficient implementation is offered by 
the XGBoost library26.

Mean cv 
accuracy

SD cv 
accuracy

Mean 
cv f1 
score

SD 
cv f1 
score

Mean cv 
precision

SD cv 
precision

Mean 
cv 
recall

SD cv 
recall

LASSO 0.626 0.123 0.536 0.165 0.433 0.142 0.710 0.210

LASSO (TL) 0.620 0.186 0.506 0.244 0.450 0.253 0.666 0.365

LASSO 
(TL + FE) 0.684 0.128 0.553 0.159 0.505 0.117 0.666 0.258

GB 0.648 0.187 0.445 0.297 0.444 0.307 0.495 0.336

GB (TL) 0.782 0.147 0.628 0.287 0.627 0.305 0.650 0.300

GB (FE + TL) 0.834 0.088 0.710 0.164 0.768 0.201 0.700 0.221

Table 1.  Comparison of various configurations of experiments on the K-fold cross-validation (K = 10), mean 
and standard deviation (SD) across the folds are reported. Gradient Boosting is more accurate than Logistic 
L1. The higher f1 score shows that it also balances errors in a better way. While through direct inspection of the 
logistic model a clear interpretation of how the prediction can be made, the accuracy and balance of the model 
is much poorer. The addition of TL reduces the standard deviation of the results of the GB algorithm.

Figure 6.  GB (with TL and FE) Mean ROC curve (with the standard deviation represented by the blue shadow) 
across the k-fold cross-validation (K = 10).

Age ArGoMe CoGo NMe NSAr PPMP PPSN Sar SN SNA SNB GoGn

7 130.54 (5.50) 46.64 (3.68) 105.19 (5.87) 120.91 (5.47) 26.92 (4.47) 7.95 (3.58) 29.17 (2.65) 68.04 (3.47) 80.30 (3.48) 79.45 (3.35) 72.43 (4.81)

8 129.78 (6.04) 48.64 (3.97) 108.86 (6.28) 122.09 (5.01) 26.46 (4.95) 8.36 (4.95) 30.30 (2.88) 69.50 (3.62) 79.72 (3.57) 79.05 (3.46) 74.69 (4.63)

9 129.24 (6.36) 49.56 (4.12) 110.26 (6.73) 121.42 (4.90) 26.38 (4.96) 8.34 (3.11) 30.66 (3.22) 69.56 (3.81) 80.06 (3.39) 79.46 (3.32) 75.43 (4.69)

10 130.52 (6.33) 50.41 (4.59) 112.52 (5.95) 121.45 (5.04) 26.10 (5.00) 7.90 (2.86) 31.96 (2.76) 70.52 (3.73) 81.14 (3.94) 80.61 (3.61) 77.21 (4.92)

11 130.57 (5.17) 52.89 (4.74) 117.85 (6.66) 122.66 (4.68) 27.91 (5.40) 8.65 (2.86) 32.22 (2.75) 71.01 (3.82) 80.00 (3.85) 79.63 (3.25) 80.20 (4.85)

12 130.56 (6.73) 54.66 (6.42) 120.30 (7.51) 122.47 (4.75) 27.16 (6.18) 9.05 (3.75) 32.62 (3.70) 72.42 (3.75) 80.29 (4.16) 79.99 (3.73) 82.05 (6.21)

13 129.45 (6.09) 55.69 (5.75) 122.32 (8.18) 122.36 (5.49) 26.66 (4.88) 8.79 (2.92) 33.91 (3.60) 72.10 (3.62) 80.65 (3.56) 80.36 (3.08) 82.77 (5.88)

Table 2.  Mean and standard deviation (Std) of the sample grouped by age of the patient.
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8Scientific Reports |          (2019) 9:6189  | https://doi.org/10.1038/s41598-019-42384-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Feature Engineering.  In Data Mining applications a common way to improve accuracy is combining existing 
variables to create new ones. Features that look irrelevant in isolation may be relevant in combination. A simple 
powerful procedure, when using linear classifiers to introduce non-linearity terms, is to add polynomial features, 
such as squares or other given functions of the existing variables, or multiplications between feature pairs, often 
called interaction terms. Linear combinations also can be used, with careful attention when considering models 
that suffer from collinearity. This process often is called Feature Engineering (FE)10,22. For the Data Mining prac-
titioner, the guidance in FE application is dictated by prior knowledge from a domain expert. FE process produces 
a new list of variables to be used. We added the age at T1 in the data set, and we aggregated two differences GoGn–
SN, SNB–SNA as proxy of horizontal maxillomandibular imbalance, and a sum of ArGoMe + PPMP + PPSN 
angles as a proxy of vertical imbalance. To reduce the clutter in the ranking of variable importance, some highly 
correlated variables were removed, this operation was guided by prior domain knowledge about craniofacial 
growth.

Results
By using a single Classification Tree on cephalometric data of 91 longitudinal Class III subjects, we obtained an 
accuracy score of 63%, as occurred in the previous work of Auconi et al.16. Next, using the combination of TL 
preprocessing, a gradient Boosting classifier, and a logistic model LASSO, we observed improved accuracy scores 
from 63% to 78% (See Table 1). To ensure a fair comparison, the input data to the logistic model was standardized 
(zero mean, unit variance), while input data for boosting were the original ones. This is done because LASSO can 
suffer from numerical problems when the dynamic range of the variables is very different and in this case it spans 
two orders of magnitude. Moreover without standardization the resulting coefficents would depend on the unit of 
measure of the variables, making interpretation harder. On the other hand the tree-based boosting procedure is 
independent from the features’ scaling, and it does not suffer for this numerical problems. The f1 score is reported 
along with accuracy, precision, and recall in Table 1. The f1 score is the harmonic mean of precision (positive 
predictive value, the fraction of relevant instances among all the retrieved instances) and recall (the fraction 
of relevant instances that have been retrieved over the total amount of relevant instances). A mean ROC curve 
across the folds of the 10-fold cross validation is reported in Fig. 6 for the best found model (GB with TL and FE). 
This curve, built by varying the probability threshold used to decide for “Good” or “Bad” classes, allow the prac-
tioner to further tune the predictions to be more or less conservative with false negatives as needed. These results 
increased the ability to predict patients at risk of unfavorable growth reported in16, and offered as a side-product 
a classification by TL on the overall unlabelled cross-sectional dataset. Moreover, the procedures allowed the 
estimation of the generalization error using a 10-fold cross validation. In addition, the results confirmed that a 
simple linear model provided a modest accuracy score of 62%. To assess statistically the significance of the test, a 
Welch test has been performed on the K = 10 outcomes to check the mean equality hypothesis. The test provides a 
p-value < 0.001. The variable’s importance ranking (Fig. 2) obtained through the Boosting procedure can be used 
by the practicing orthodontist to explore the importance of the variables in affecting the model predictions. The 
variable’s importance ranking (Fig. 2) obtained through the Boosting procedure can be used by the practicing 
orthodontist to explore the importance of the variables in affecting how the model uses the variables to make 
its predictions. The practioner then can reason about these rankings and verify if they have a match with his/
her experience and the literature. As far as we, as practioners, can say not only PP–MP and SNA angles, but also 
NSAr and S-N starting values were important features in differentiating the quality of craniofacial growth among 
Class III subjects. The Feature Engineering procedure obtained by the aggregation of some cephalometric meas-
ures to make them more expressive about the risk of maxillomandibular imbalance produced a further increase 
in accuracy of the model (up to 83%; Table 2). The same procedures as in the Table 2 was carried out for both 
the Gradient Boosting classifier and the Logistic L1 (LASSO). After FE, a new ranking of variables was obtained 
(Fig. 3). The horizontal skeletal imbalance GoGn–SN (Go-Gn minus S-N) was another important finding in char-
acterising growth. Class III subjects showing early maxillomandibular horizontal imbalance tend not to recover 
the gap during the growth process. The little predictive information importance of the aggregation of three angles 
of vertical imbalance ArGoMe, PPSN, and PPMP was noteworthy, while the relevance of the single PP–MP angle 
was confirmed. Likely, among the skeletal angles of vertical imbalance, the signal of unfavourable growth is nested 

ArGoMe CoGo NMe NSAr PPMP PPSN Sar SN SNA SNB GoGn

ArGoMe 1 −0.22 0.16 0.07 0.56 0.10 −0.09 0.04 −0.11 −0.22 −0.28

CoGo −0.22 1 0.62 0.04 −0.25 −0.01 0.50 0.50 0.11 0.23 0.54

NMe 0.16 0.62 1 0.09 0.32 0.21 0.56 0.52 −0.14 −0.21 0.62

NSAr 0.07 0.04 0.09 1 −0.05 0.38 −0.05 −0.08 −0.41 −0.43 0.02

PPMP 0.56 −0.25 0.32 −0.05 1 −0.21 −0.09 −0.11 −0.22 −0.42 −0.05

PPSN 0.10 −0.01 0.21 0.38 −0.21 1 −0.16 0.06 −0.35 −0.47 0.01

Sar −0.09 0.50 0.56 −0.05 −0.09 −0.16 1 0.31 0.11 0.16 0.45

SN 0.04 0.50 0.52 −0.08 −0.11 0.06 0.31 1 −0.13 −0.03 0.52

SNA −0.11 0.11 −0.14 −0.41 −0.22 −0.35 0.11 −0.13 1 0.79 0.17

SNB −0.22 0.23 −0.21 −0.43 −0.42 −0.47 0.16 −0.03 0.79 1 0.28

GoGn −0.28 0.54 0.62 0.02 −0.05 0.01 0.45 0.52 0.17 0.28 1

Table 3.  Correlation matrix between the variables.
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in the latter angle. The orthodontic practitioner can find the predictive algorithm derived from this study and free 
to use for their patients at the following webpage http://malocclusion3.pythonanywhere.com/.

Discussion
Biomedical researchers and practitioners always have dreamed of prognostic predictive models that bind the 
observable reality with its mechanism of origin, especially if made up of a small number of easily identifiable 
parameters. In order to progress, a medical discipline must have data and reasoning commensurate with the com-
plexity of the phenomena of interest. Data Mining and Machine Learning are disciplines of data science that aim 
to uncover unknown relationships and patterns from datasets whenever this is possible4,5,28,29,31. From the begin-
ning, these approaches to medicine have been sources of controversies: the main doubts concerned to what extent 
medical knowledge could be truly compressed and automatically coded into rules, and whether these aggregates 
could lead to an unavoidable amount of over-simplification4,5. Actually, early techniques seemed to have modest 
practical value in handling the complexity of biomedical features appropriately, and in recognizing clinical vari-
ation of a disease, such as change in severity over time. It was difficult to capture relevant diagnostic information 
in strict rule-based systems with an acceptable degree of reliability, or to cope with rules interacting with many 
other rules in a complex and unpredictable way32. These concerns have been overcome due the construction of 
reliable innovative models such as Decision Trees, Bayesian networks, and Boosting procedures. While it must be 
remembered that inference is always done in a probabilistic setting, even more and more realiable algorithms and 
sophisticated validation procedures can still be failing6,9,10. When considering scenarios in clinical orthodontics, 
it is easy to claim that hypotheses about causal laws that affect the onset and the progression of disharmonies are 
probabilistic, and hence fallible33,34. In current clinical practice, the orthodontist’s judgments are constrained by 
limited and subjective experience, incomplete knowledge, and oversimplified taxonomy of malocclusions that 
underestimate relevant individual qualitative aspects of disharmonies. Causes can be reversed, cause and effects 
are interchangeable, treatment effects can be the result of multiple causes, and the learned cause does not neces-
sarily imply to be the only cause18. Consequently, orthodontic researchers and practitioners had to develop a kind 
of “inexact reasoning” based on a set of hypotheses concerning the probabilistic relationships between combina-
tions of early orthodontic signs, malocclusion progression, treatment decisions, and outcomes29,31,34. Practicing 
orthodontists must consider questions like: “Can I find correlations between specific craniofacial characteristics 

Figure 7.  Histograms and scatterplots of some of the variables by age group.
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and patterns of future growth?”, “What are the most influential skeletal sites useful for my treatment purposes?”, 
and “What co-occurrence of dentoskeletal characteristics make my treatment difficult?”. With the progression of 
treatment and better understanding of the characteristics of the patient, paradoxically these questions become 
more complex and difficult to answer. It is within this context that the cognitive tasks of ML could play a role in 
orthodontic diagnosis and prognosis. At the beginning, various algorithms are applied to generate a prediction 
model to find relationships that correlate with events and non-events3. The success of the predictive model derives 
from the accuracy of this process; there often are several parameters that need to be set. The first stage of the prog-
nostic process involves making an initial judgment about whether a Class III patient is likely to have a bad/good 
growth progression, based on previous experience and knowledge of literature. Unlike to the medical practitioner, 
the orthodontist does not have the option of exploiting a post-test probability (such as, for example, an exercise 
stress-test for the coronary disease). Predictive models, by their very nature, are based on the past and assume 
that the patterns of the past are repeated. In orthodontic discipline this assumption is obviously problematic. In 
the present work we re-analysed the same longitudinal data set of Auconi et al.16, exploiting the combination with 
a cross-sectional data of 728 untreated Class III subjects (see Table 3 for the complete correlation matrix of the 
variables considered) through a TL learning procedure. Subsequently, we submitted the data to a B and FE pro-
cedures. This sequence increased the predictive capability of adverse growth from 62% to 83%, through a further 
deepening of the data structure and a careful matching between longitudinal and cross-sectional cephalometric 
characteristics (see in Fig. 7 the histograms and scatter plots by age group). Despite the increasing popularity of 
several predictive models from Machine Learning applied to medicine, some statisticians have argued against the 
superiority of these sophisticated methods in comparison to early easier methods such as Discriminant analysis 
(the “illusion of progress”)35. Moreover, as already has happened in other biomedical fields, also in orthodontic 
discipline there is the concern that the allure of novel computational investigative methods could lead to misuse 
of information and inconsistent clinical analyses, further distracting the clinician from properly looking at the 
morphological and functional individuality of the patient35–39. This work shows that constructing an appropriate 
predictive model of Class III progression, and providing a more in-depth understanding of critical issues related 
to dentoskeletal disharmonies during the growth process can support the daily work of clinical orthodontist, 
reducing the bias of subjective judgment.

Data Availability
The orthodontic practitioners can find the predictive algorithm derived from this study and free to use for their 
patients at the following webpage http://malocclusion3.pythonanywhere.com/.
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