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We study universal clusters in quasi-two-dimensions (q2D) that consist of a light (L) atom interacting with
two or three heavy (H) identical fermions, forming the trimer or tetramer bound state. The axial confinement
in q2D is shown to lift the threefold degeneracy of three-dimensional trimer (tetramer) in p-wave channel and
uniquely select the ground state with magnetic angular momentum |m| = 1 (m = 0). By varying the interaction
or confinement strength, we explore the dimensional crossover of these clusters from 3D to 2D, characterized by
a gradual change of critical H-L mass ratio for their emergence and momentum-space distribution. Importantly,
we find that a finite effective range will not alter their critical mass ratios in the weak coupling regime. There, we
establish an effective 2D model to quantitatively reproduce the properties of q2D clusters, and further identify
the optimal interaction strengths for their detections in experiments. Our results suggest a promising prospect
for observing universal clusters and associated high-order correlation effects in realistic q2D ultracold Fermi
mixtures.
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The knowledge of few-body bound states is essential for
tackling complex many-body problems, since their emergence
is usually a precursor of dominant few-body correlation in
according many-body systems. In the study of few-body
physics, dilute atomic gases have provided an ideal platform
and various few-body clusters have been revealed therein
[1,2]. Among all of them, the (1 + N) system that consists of a
light (L) atom interacting with N heavy (H) identical fermions
emerges as a rare and fascinating case to host universal clus-
ter bound states [3–11]. Unlike the Efimov states [5,12,13],
these universal clusters are insensitive to short-range details
of H-L interactions and are expected to be collisionally stable.
Physically, their formation can be attributed to the light-
atom-mediated long-range attraction between heavy fermions
[3,14], and only beyond a critical heavy-light mass ratio ηc

such attraction can overcome the Pauli pressure of heavy
fermions to support such universal binding. Up to date, the
critical ηc have been successfully extracted in three dimen-
sions (3D) [3–5] and 2D [6–8] for N � 4 and in 1D [9–11]
for N � 5. The existence of such universal clusters has been
shown to intrigue exotic new many-body phases of fermionic
matter [15–20]. A particularly interesting case is 2D, where
ηc for (1 + N) clusters are sufficiently low to be accessible
by currently available ultracold Fermi mixtures [21] such as
40K - 6Li [22–24], 161Dy - 40K [25,26], and 53Cr - 6Li [27–30],
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and where quartet superfluid may emerge [19]: a high-order
superfluid state beyond the conventional pairing paradigm in
two-component fermion systems.

The experimental detection of two-dimensional universal
clusters in ultracold gases yet requires two key issues to be re-
solved. First, in ultracold systems there is no pure 2D, but just
quasi-2D (q2D) under strong axial confinement. How clusters
behave in q2D is thus an important question for their practical
detection, as previously addressed for Efimov states [31,32].
In particular, a conceptual challenge here is to understand
the structural change of universal clusters along the three- to
two-dimensional crossover: in 3D, the ground state trimer and
tetramer are known to be threefold degenerate in the p-wave
channel [3–5], whereas in 2D such a degeneracy vanishes and
the clusters are associated to different angular momenta [6–8].
In this context, the quasi-two-dimensional study is essential to
bridge distinct few-body physics in different geometries. The
second key question concerns the finite effective range, which
has been shown to affect the cluster energy in 3D [4,5]. Here
this aspect is crucial for currently available Fermi mixtures
[22–30] that generally have narrow Feshbach resonances with
large effective range R∗ (much larger than van der Walls
length [34]). Testing the robustness of quasi-two-dimensional
clusters against a large R∗ is thus fundamental to their realistic
detections.

In this work, we positively address these two ques-
tions by exactly solving the (1 + N ) problems in q2D
with N = 2 (trimer) and N = 3 (tetramer). By considering
either a harmonic or uniform axial confinement, we un-
veil the general structure of quasi-two-dimensional clusters
as well as their connection to pure three-dimensional and
two-dimensional ones upon changing the confinement or in-
teraction strength. As shown in Fig. 1 for R∗ = 0, starting
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FIG. 1. Critical heavy-light mass ratios ηc for (a) universal trimer
and (b) tetramer with different magnetic angular momenta m =
0, ±1 in quasi-2D. In (a) we consider two axial confinements as
harmonic trap (HT) [33] and uniform trap (UT), and in (b) we
only consider UT. Lz is the axial trap length, and as is the three-
dimensional s-wave scattering length (assuming R∗ = 0). Horizontal
red and blue lines mark ηc in our numerics for various clusters in
pure 3D and 2D, which were previously studied in Refs. [3–8].

from three-dimensional trimer [3] and tetramer [4,5], which
are both threefold degenerate with angular momenta L =
1, m = 0,±1, the application of an axial trap lifts such
degeneracy and leads to a splitting of ηc between m = 0
and m = ±1 channels. The resulting ground state of quasi-
two-dimensional trimer (tetramer) is uniquely associated with
|m| = 1 (m = 0), well connecting to pure two-dimensional
case [6–8]. Besides ηc, the crossover of these clusters can
also be inferred from their momentum distributions (Fig. 2).
Importantly, a finite R∗ is found to hardly affect ηc in the weak
coupling regime (Fig. 3), suggesting the robustness of these
clusters even under large R∗. Focusing on this regime, we
establish an effective two-dimensional model to quantitatively

FIG. 3. Critical mass ratios ηc of ground-state trimer (|m| = 1) at
different effective range R∗/Lz = 0, 0.5, 1. Here we take the axial
harmonic trap. Discrete points are exact numerical results and dashed
lines are theoretical predictions from the effective two-dimensional
model. Horizontal red and blue dotted lines show ηc for pure 3D [3]
and 2D [6].

reproduce the properties of these clusters, and further ex-
tract the optimal parameters for their experimental detections
(Fig. 4). By identifying a feasible route towards the observa-
tion of universal clusters, this work paves the way for future
exploration of novel few- and many-body phases in ultracold
fermionic matter.

We start from the Hamiltonian of (1 + N)-body system in
q2D (h̄ = 1):

H =
(

− ∇2
rl

2ml
+ Vl (zl )

)
+

N∑
i=1

(
−∇2

rh,i

2mh
+ Vh(zh,i )

)

+ g
N∑

i=1

δ(rl − rh,i ). (1)

FIG. 2. Momentum distribution of heavy fermions (nh(q)) for different clusters at η = 9 in 3D and q2D. The values of nh increase as the

color changes from white to black. Red color denotes the location of maximal nh, with coordinate (q⊥ =
√

q2
x + q2

y , qz ) shown accordingly. For

q2D, we have considered the axial harmonic trap with Lz/as = −1.6. The tetramer distributions in q2D are from the effective two-dimensional
model assuming a frozen motion along z (at the lowest harmonic level), and all other distributions are exact results. The momentum unit is
1/ā, with ā = (2mr |ε2|)−1/2 the typical dimer size.
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FIG. 4. Universal trimer and tetramer in realistic q2D 6Li- 53Cr system (R∗ � 6000a0) under an axial harmonic trap. (a) shows ε3/|ε2| as a
function of R∗/as for different Lz/R∗. Inset shows the corresponding |ε2|/ω. (b) shows �1+N,N = ε1+N − εN (N = 2, 3) as functions of R∗/as

for different Lz/R∗. Discrete points are exact numerical results and continuous lines are predictions from the effective two-dimensional model.
(c) shows functions { f , F32, F43} and {G32, G43}. (d1), (d2) show, respectively, the optimal R∗/as and the deepest {�32, �43} computed from
the effective two-dimensional model as functions of Lz/R∗.

Here rl and ml (rh,i and mh) are the coordinate and mass of the
light atom (the ith heavy fermion). Vσ (σ = l, h) is the axial
trapping potential, and we will consider two types of V : har-
monic trap (HT) Vσ (z) = mσω2z2

σ /2 with typical length Lz =
1/

√
2mrω (mr = mhml/(mh + ml ) is reduced mass), and uni-

form trap (UT) with finite length Lz and periodic boundary
condition. The bare coupling g is renormalized via 1/g =
mr/(2πas) − 1/V

∑
Q 2mr/Q2, with as the three-dimensional

s-wave scattering length. A finite effective range (R∗ > 0) can
be incorporated in the energy-dependent scattering length [34]

a−1
s (E ) = a−1

s + R∗(2mrE ), (2)

with E denoting the energy of two colliding atoms in the
center-of-mass (CoM) frame.

We now exactly solve the (1 + N) problems in q2D. For
(1 + 1) dimer, by separating the CoM from relative motions
we obtain [35] F (E2) = 0, where E2 is the energy of relative
motion and

F (E ) = mr

2πas(E )
− 1

V

∑
Q

2mr

Q2
− 1

S

∑
m,p

|φm(0)|2
E − εz

m − ε⊥
p

.

(3)

Here φm(z) is the mth eigenstate of relative motion along z
with energy εz

m, k is the transverse momentum with energy
ε⊥

k = k2/(2mr ), and S is the transverse area. The dimer bind-
ing energy is given by ε2 = E2 − εz

m=0.
When solving the cluster bound states, we use different

methods for different axial confinements. For HT, we solve
the (1 + 2) trimer by separating out the CoM motion as
done previously [36]. Introducing the relative coordinates
r = rh,1 − rl and ρ = rh,2 − (mlrl + mhrh,1)/(ml + mh), and
imposing the Schrödinger equation H (r, ρ)
3 = E3
3, we
arrive at [35]

F
(
E3 − εz;ρ

n − ε
⊥;ρ
k

)
fn,k = −1

S

∑
n′,k′

Ank;n′k′ fn′,k′ , (4)

Here ε
⊥;ρ
k = k2/(2mρ ) [mρ = mh(mh + ml )/(2mh + ml )],

εz;ρ
n = (n + 1/2)ω, and Ank;n′k′ is the element produced

by the Green’s function when exchanging rh,1 ↔ rh,2.

Physically, fn,k is the Fourier transformation of atom-dimer
wave function. The trimer binding energy is then given by
ε3 = E3 − ω.

For UT, the situation can be greatly simplified since the
eigenstates along z are still plane waves. In this case, we
are able to solve both (1 + 2) trimer and (1 + 3) tetramer.
Introducing n and k as the indices of longitudinal and trans-
verse momenta, which gives the single-particle energy εσ

nk =
[n2(2π/Lz )2 + k2]/(2mσ ) (σ = l, h), we obtain the following
coupled equations [35]:

fn2k2...nN kN

⎛
⎝ mr

2πas(E )
− 1

V

∑
Q

2mr

Q2
+

∑
nk

(LzS)−1

Enkn2k2...nN kN

⎞
⎠

= (LzS)−1
∑

k

∑N
i=2 fn2k2...niki ...nN kN δnniδkki

Enkn2k2...nN kN

, (5)

with En1k1n2k2...nN kN = −E1+N + εl
−n1...−nN ,−k1...−kN

+∑N
i=1 εh

niki
and E = E1+N − [(n2 . . . + nN )2(2π/Lz )2 +

(k2 . . . + kN )2]/[2(mh + ml )] − ∑N
i=2 εh

niki
. Here E1+N

directly gives the binding energy ε1+N . After determining f
functions from Eqs. (4), (5), the cluster wave functions can
also be obtained [35].

In our numerics, we have simplified Eqs. (4), (5) by
noting that the system preserves the total magnetic angular
momentum mtot ≡ m. It then follows that Eqs. (4), (5) can
be decomposed into different m sectors, and each m sec-
tor can be solved separately [35]. This also allows us to
sort out the intrinsic relation between quasi-two-dimensional
clusters and pure three-/two-dimensional ones, as discussed
below.

Assuming R∗ = 0, in Fig. 1 we show the critical mass
ratios (ηc = mh/ml ) for the emergence of trimer and tetramer
in q2D, as given by the conditions ε3 = ε2 and ε4 = ε3, re-
spectively [35]. In the limit Lz/as → +∞, ηc approaches
η3D

c (horizontal red lines) for three-dimensional trimers [3]
and tetramers [4,5], which all belong to the p-wave channel
with threefold degeneracy (L = 1 and |m| = 0, 1). However,
as Lz/as becomes finite, ηc starts to split between |m| = 0
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and 1, owing to the fact that the rotating symmetry is partly
broken by the axial trap and L is no longer a good number. The
resulting ground state (with a lower ηc) is solely associated
with |m| = 1 for trimer and m = 0 for tetramer. As Lz/as →
−∞, ηc of various states continuously decrease and finally
saturate at pure 2D values η2D

c (horizontal blue lines), as
previously studied in Refs. [6–8]. The picture in Fig. 1 reveals
the intimate connection of quasi-two-dimensional clusters to
their three-/two-dimensional counterparts, and this picture is
robust against the specific choice of axial confinement, as seen
from the results of HT and UT in Fig. 1(a).

Beside ηc, the dimensional crossover of quasi-two-
dimensional clusters can be reflected in the momentum
distribution of heavy fermions, nh(q). In Fig. 2 we assume
η = 9 and show nh(q) for various clusters along the 3D to
2D crossover. Notably, different m states feature completely
different nh(q). For three-dimensional trimers, their angular
dependence follows nh(q) ∝ |Y1m(�q)|2 for each m sector.
As a result, the maxima of nh(q) locate along z axis for
m = 0, while laying in xy plane for m = ±1, see Fig. 2. For
three-dimensional tetramers, m = 0 and m = ±1 states also
exhibit distinct nh(q), whose maxima respectively locate in xy
plane with a finite |q⊥| and at the origin q = 0. When crossing
over to the two-dimensional regime, the general structures of
nh(q) do not change, except that the distributions along z are
frozen at the lowest axial mode [37]. The unchanged structure
also explains why m = 0 trimer disappears in 2D, due to
the incompatible z distributions between three-dimensional
and two-dimensional limits, as also seen from the tendency
ηc → ∞ in 2D limit in Fig. 1. In contrast, all other clusters
inherit similar distributions from 3D to 2D and thus can all
survive in q2D. Furthermore, similar to the two-dimensional
case [8], the high-order correlations in quasi-two-dimensional
clusters can induce crystalline patterns in their two-body den-
sity distributions [35].

We now move to the finite range effect. Similar to three-
dimensional clusters [4,5], we find that in q2D a finite R∗
generally increases ηc and disfavors cluster formation. How-
ever, it can hardly affect ηc in the effective two-dimensional
regime (Lz/as  −1). As shown in Fig. 3 for |m| = 1 trimer,
as Lz/as → −∞, all ηc for different R∗/Lz saturate to η2D

c ,
the critical value in pure 2D with R∗ = 0 [6]. We have nu-
merically checked that the saturation ηc → η2D

c universally
applies to clusters under UT [35]. This remarkable behav-
ior suggests the detectability of these clusters in realistic
quasi-two-dimensional systems even with large R∗. For spe-
cific 40K -6Li mixture, we note that the critical boundaries
{R∗/Lz, Lz/as} in Fig. 3 agree with those in Ref. [36].

To understand above behavior, we construct an effective
two-dimensional model by utilizing the reduced scattering
length a2D and effective range R2D, which enters the two-
dimensional scattering amplitude as:

T2D(k) = 2π

mr

[− ln
(
k2a2

2D

) + iπ + R2Dk2
]−1

, (6)

here k is the relative collision momentum. For HT, the re-
duced two-dimensional parameters were derived previously in

Refs. [7,38–40], and here we obtain [35]

a2D =
√

π

0.905
Lz exp

[
−

√
π

2

(
Lz

as
+ R∗

2Lz

)]
;

R2D =
√

2πR∗Lz + (ln 2)L2
z , (7)

{a2D, R2D} for the case of UT are presented in Ref. [35].
Now the universal trend ηc → η2D

c for any R∗ in effec-
tive two-dimensional regime can be understood. From scaling
analysis, in this regime ηc only depends on a single param-
eter R2D/a2

2D, which approaches zero as Lz/as → −∞ since
a2D → ∞ while R2D is finite. As a result, the finite range plays
no effect here, and η2D

c is recovered for all R∗ (or R2D). On the
other hand, in the same regime the absolute binding energies
of these clusters can be very small, since all |εn| ∝ a−2

2D → 0.
Therefore, it is important to examine how deep the clusters
can be bound under realistic R∗, Lz, and as, from which
one can identify the optimal parameters for their practical
detections.

To do that, we have considered the realistic 6Li- 53Cr
system with a large R∗ � 6000a0 [27–30] and calculated
the absolute binding energies of q2D clusters under HT.
Figure 4(a) shows that as decreasing Lz, the range of R∗/as

for trimer formation (ε3/|ε2| < −1) expands from a narrow
region near resonance to a considerably broader one on as < 0
side. Figure 4(b) further shows �32 ≡ ε3 − ε2, which displays
a nonmonotonic dependence on R∗/as. For tighter axial trap
(smaller Lz), the maximum of |�32| becomes larger and its
location moves towards weaker coupling, i.e., more negative
R∗/as.

To understand these behaviors, we exploit the effective
two-dimensional model to solve the (1 + N ) problem [35]:

fk2...kN

(
−

∑
k

2mr

k2 + a−2
2D

+ Sm2
r

π
R2DE +

∑
k

1

Ekk2...kN

)

=
∑

k

∑N
i=2 fk2...ki−1kiki+1...kN δkki

Ekk2...kN

, (8)

with Ek1k2...kN = −ε1+N + εl
−k1...−kN

+ ∑N
i=1 εh

ki
and

E = ε1+N − (k2 . . . + kN )2/[2(mh + ml )] − ∑N
i=2 εh

ki
.

Utilizing {a2D, R2D} in Eq. (7), we find Eq. (8) yield �32

in very good agreement with exact results for Lz/R∗ � 1,
suggesting the validity of this model even for moderate
confinement [35]. We further exploit this model to compute
�43 ≡ ε4 − ε3, and it shows a similar nonmonotonic behavior
as �32, see Fig. 4(b). From the effective two-dimensional
model, it is clear that such nonmonotonicity is due to the
enhanced finite-range effect, i.e., the growing R2D/a2

2D as
1/as is tuned to strong couplings.

We now identify the optimal interaction strength for de-
tecting (1 + N ) clusters and their associated deepest �1+N,N .
Based on the effective 2D model, we introduce a dimension-
less parameter

x = R2D/a2
2D, (9)

and express ε2 and ε3 as

ε2 = − 1

mrR2D
f (x); ε3 = ε2F32(η, x). (10)
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Both f and F32 are dimensionless functions and can
be obtained from Eqs. (6), (8). Then we have �32 =
−1/(mrR2D)G32(η, x), with

G32(η, x) = [F32(η, x) − 1] f (x). (11)

Similarly, for the tetramer we can define F43(η, x) ≡ ε4/ε3 and
�43 = −1/(mrR2D)G43(η, x), with

G43(η, x) = [F43(η, x) − 1]F32(η, x) f (x). (12)

In Fig. 4(c) we show the functions f , F1+N,N and G1+N,N

(N = 2, 3) for Li-Cr system. By increasing x from 0 (two-
dimensional limit), f monotonically increases while F1+N,N

decreases from a finite value down to 1, where (1 + N ) cluster
vanishes. As a result, G1+N,N depends nonmonotonically on x,
and its maximum occurs at xm, which is a universal constant
solely relying on η. Here xm and its according G1+N,N respec-
tively give the optimal interaction strength and the deepest
binding energy for (1 + N ) cluster. Recalling Eq. (7), we
finally obtain the optimal R∗/as and its associated �1+N,N for
given Lz/R∗, see Figs. 4(d1), 4(d2). One can see that the op-
timal condition to detect �1+N,N is the weak coupling regime
with strong axial confinement. For instance, at Lz = 0.2R∗,
the deepest energy detunings for trimer and tetramer can
be as large as |�32| ∼ 550 Hz and |�43| ∼ 300 Hz, respec-
tively. Interestingly, the optimal R∗/as that maximize |�32|
and |�43| are very close and almost indistinguishable: this can
be attributed to the intimate relation between two-dimensional
trimer and tetramer [8], as also inferred by their very close η2D

c
[6,8].

In summary, we have revealed the basic structure of univer-
sal (1 + N) clusters along the 3D-2D crossover, as classified
by different angular momenta and manifested in the evolution
of critical mass ratios and momentum distributions. Impor-
tantly, it is shown that a finite effective range does not affect

the critical mass ratio for cluster formation in the effective
two-dimensional limit, but leads to a nonmonotonic binding
energy as changing coupling strength. The optimal coupling
and deepest binding energy have been successfully extracted
from an effective two-dimensional model, offering an essen-
tial guide for future detection of these clusters and associated
high-order correlation effects in currently available ultracold
Fermi mixtures.

We expect that the effective two-dimensional model es-
tablished here can serve as a convenient tool for tackling
general quasi-two-dimensional problems with an arbitrary ax-
ial confinement. For a general case, our analyses on finite
range effect and optimal detection conditions [Eqs. (9)–(12)]
are universally applicable once the reduced {a2D, R2D} are
given. Finally, we remark that the disappearance of ground-
state trimer (tetramer) at critical ηc (or at critical R∗/Lz and
Lz/as for given η) corresponds to the cluster state hitting the
atom-dimer (atom-trimer) scattering threshold. Beyond such
a critical boundary, the trimer (tetramer) turns into a p-wave
resonance between one dimer (trimer) and a heavy fermion
[36,41]. This opens a new avenue to explore p-wave physics
in effective Bose-Fermi or Fermi-Fermi mixtures.

The work is supported by the National Natural Science
Foundation of China (No. 12074419, No. 12134015), the
Strategic Priority Research Program of Chinese Academy
of Sciences (XDB33000000). T.S. acknowledges support
from the Postdoctoral Fellowship Program of CPSF (No.
GZC20232945). R.L. acknowledges support from the Na-
tional Natural Science Foundation of China (No. 12404316),
the Fundamental Research Funds for the Central Universi-
ties (No. FRF-TP-24-040A) and the 2023 Fund for Fostering
Young Scholars of the School of Mathematics and Physics,
USTB (No. FRF-BR-23-01B).

[1] Chris H. Greene, P. Giannakeas, and J. Pérez-Ríos, Universal
few-body physics and cluster formation, Rev. Mod. Phys. 89,
035006 (2017).

[2] P. Naidon and S. Endo, Efimov physics: a review, Rep. Prog.
Phys. 80, 056001 (2017).

[3] O. I. Kartavtsev and A. V. Malykh, Low-energy three-body
dynamics in binary quantum gases, J. Phys. B 40, 1429 (2007).

[4] D. Blume, Universal four-body states in heavy-light mixtures
with a positive scattering length, Phys. Rev. Lett. 109, 230404
(2012).

[5] B. Bazak and D. S. Petrov, Five-Body efimov effect and uni-
versal pentamer in fermionic mixtures, Phys. Rev. Lett. 118,
083002 (2017).

[6] L. Pricoupenko and P. Pedri, Universal (1+2)-body bound states
in planar atomic waveguides, Phys. Rev. A 82, 033625 (2010).

[7] J. Levinsen and M. M. Parish, Bound states in a quasi-two-
dimensional fermi Gas, Phys. Rev. Lett. 110, 055304 (2013).

[8] R. Liu, C. Peng, and X. Cui, Universal tetramer and pentamer
in two-dimensional fermionic mixtures, Phys. Rev. Lett. 129,
073401 (2022).

[9] O. I. Kartavtsev, A. V. Malykh, and S. A. Sofianos, Bound states
and scattering lengths of three two- component particles with
zero-range interactions under one-dimensional confinement, J.
Exp. Theor. Phys. 108, 365 (2009).

[10] N. P. Mehta, Born-Oppenheimer study of two-component few-
particle systems under one-dimensional confinement, Phys.
Rev. A 89, 052706 (2014).

[11] A. Tononi, J. Givois, and D. S. Petrov, Binding of heavy
fermions by a single light atom in one dimension, Phys. Rev.
A 106, L011302 (2022).

[12] V. N. Efimov, Energy levels of three resonantly interacting
particles, Nucl. Phys. A 210, 157 (1973).

[13] Y. Castin, C. Mora, and L. Pricoupenko, Four-Body efimov
effect for three fermions and a lighter particle, Phys. Rev. Lett.
105, 223201 (2010).

[14] A. C. Fonseca, E. F. Redish, and P. E. Shanley, Efimov effect in
an analytically solvable model, Nucl. Phys. A 320, 273 (1979).

[15] C. J. M. Mathy, M. M. Parish, and D. A. Huse, Trimers,
molecules, and polarons in mass-imbalanced atomic Fermi
gases, Phys. Rev. Lett. 106, 166404 (2011).

L042004-5

https://doi.org/10.1103/RevModPhys.89.035006
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1088/0953-4075/40/7/011
https://doi.org/10.1103/PhysRevLett.109.230404
https://doi.org/10.1103/PhysRevLett.118.083002
https://doi.org/10.1103/PhysRevA.82.033625
https://doi.org/10.1103/PhysRevLett.110.055304
https://doi.org/10.1103/PhysRevLett.129.073401
https://doi.org/10.1134/S1063776109030017
https://doi.org/10.1103/PhysRevA.89.052706
https://doi.org/10.1103/PhysRevA.106.L011302
https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1103/PhysRevLett.105.223201
https://doi.org/10.1016/0375-9474(79)90189-1
https://doi.org/10.1103/PhysRevLett.106.166404


LIU, SHI, ZACCANTI, AND CUI PHYSICAL REVIEW RESEARCH 6, L042004 (2024)

[16] M. M. Parish and J. Levinsen, Highly polarized Fermi gases in
two dimensions, Phys. Rev. A 87, 033616 (2013).

[17] S. Endo, A. M. García-García, and P. Naidon, Universal clusters
as building blocks of stable quantum matter, Phys. Rev. A 93,
053611 (2016).

[18] R. Liu, C. Peng, and X. Cui, Emergence of crystalline few-body
correlations in mass-imbalanced fermi polarons, Cell Reports
Phys. Sci. 3, 100993 (2022).

[19] R. Liu, W. Wang, and X. Cui, Quartet superfluid in two-
dimensional mass-imbalanced fermi mixtures, Phys. Rev. Lett.
131, 193401 (2023).

[20] R. Li, J. von Milczewski, A. Imamoglu, R. Ołdziejewski, and R.
Schmidt, Impurity-induced pairing in two-dimensional Fermi
gases, Phys. Rev. B 107, 155135 (2023).

[21] Here we do not consider the Bose-Fermi mixture, since in this
system there are additional Efimov-type clusters formed by a
fermion and a few bosons.

[22] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K.
Dieckmann, Quantum degenerate two-species fermi-fermi mix-
ture coexisting with a Bose-Einstein condensate, Phys. Rev.
Lett. 100, 010401 (2008).

[23] E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A.
Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke,
J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga,
and P. S. Julienne, Exploring an ultracold fermi-fermi mixture:
Interspecies feshbach resonances and scattering properties of
6Li and 40K, Phys. Rev. Lett. 100, 053201 (2008).

[24] A.-C. Voigt, M. Taglieber, L. Costa, T. Aoki, W. Wieser, T. W.
Hänsch, and K. Dieckmann, Ultracold heteronuclear fermi-
fermi molecules, Phys. Rev. Lett. 102, 020405 (2009).

[25] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, E. Kirilov,
and R. Grimm, Production of a degenerate Fermi-Fermi mixture
of dysprosium and potassium atoms, Phys. Rev. A 98, 063624
(2018).

[26] C. Ravensbergen, E. Soave, V. Corre, M. Kreyer, B. Huang,
E. Kirilov, and R. Grimm, Resonantly interacting fermi-fermi
mixture of 161Dy and 40K, Phys. Rev. Lett. 124, 203402 (2020).

[27] E. Neri, A. Ciamei, C. Simonelli, I. Goti, M. Inguscio, A.
Trenkwalder, and M. Zaccanti, Realization of a cold mixture
of fermionic chromium and lithium atoms, Phys. Rev. A 101,
063602 (2020).

[28] A. Ciamei, S. Finelli, A. Trenkwalder, M. Inguscio, A. Simoni
and M. Zaccanti, Exploring ultracold collisions in 6Li - 53Cr

Fermi mixtures: Feshbach resonances and scattering properties
of a novel alkali-transition metal system, Phys. Rev. Lett. 129,
093402 (2022).

[29] A. Ciamei, S. Finelli, A. Cosco, M. Inguscio, A. Trenkwalder,
and M. Zaccanti, Double-degenerate Fermi mixtures of 6Li and
53Cr atoms, Phys. Rev. A 106, 053318 (2022).

[30] S. Finelli, A. Ciamei, B. Restivo, M. Schemmer, A. Cosco,
M. Inguscio, A. Trenkwalder, K. Zaremba-Kopczyk, M.
Gronowski, M. Tomza, and M. Zaccanti, Ultracold LiCr: A New
pathway to quantum gases of paramagnetic polar molecules,
PRX Quantum 5, 020358 (2024).

[31] J. Levinsen, P. Massignan, and M. M. Parish, Efimov trimers
under strong confinement, Phys. Rev. X 4, 031020 (2014).

[32] E. K. Laird, T. Kirk, M. M. Parish, and J. Levinsen, Long-lived
trimers in a quasi-two-dimensional Fermi system, Phys. Rev. A
97, 042711 (2018).

[33] ηc of m = 0 trimer under harmonic trap is not shown here given
the numerical results are not convergent.

[34] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L042004 for more details on
the derivations of few-body equations and reduced two-
dimensional scattering parameters, as well as on the properties
of universal clusters under an axial uniform trap.

[36] J. Levinsen, T. G. Tiecke, J. T. M. Walraven, and D. S. Petrov,
Atom-dimer scattering and long-lived trimers in fermionic mix-
tures, Phys. Rev. Lett. 103, 153202 (2009).

[37] For HT, the typical momentum scale of nh(q) along z is qz ∼
(mrω)1/2, more elongated than the dimer scale ∼(mr |ε2|)1/2 due
to ω � |ε2| in the effective two-dimensional regime.

[38] D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a
tightly confined Bose gas, Phys. Rev. A 64, 012706 (2001).

[39] T. Kirk and M. M. Parish, Three-body correlations in a two-
dimensional SU(3) Fermi gas, Phys. Rev. A 96, 053614 (2017).

[40] H. Hu, B. C. Mulkerin, U. Toniolo, L. He, and X.-J. Liu,
Reduced quantum anomaly in a quasi-two-dimensional fermi
Superfluid: Significance of the confinement-induced effective
range of interactions, Phys. Rev. Lett. 122, 070401 (2019).

[41] M. Jag, M. Zaccanti, M. Cetina, R. S. Lous, F. Schreck, R.
Grimm, D. S. Petrov, and J. Levinsen, Observation of a strong
atom-dimer attraction in a mass-imbalanced fermi-fermi mix-
ture, Phys. Rev. Lett. 112, 075302 (2014).

L042004-6

https://doi.org/10.1103/PhysRevA.87.033616
https://doi.org/10.1103/PhysRevA.93.053611
https://doi.org/10.1016/j.xcrp.2022.100993
https://doi.org/10.1103/PhysRevLett.131.193401
https://doi.org/10.1103/PhysRevB.107.155135
https://doi.org/10.1103/PhysRevLett.100.010401
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevA.98.063624
https://doi.org/10.1103/PhysRevLett.124.203402
https://doi.org/10.1103/PhysRevA.101.063602
https://doi.org/10.1103/PhysRevLett.129.093402
https://doi.org/10.1103/PhysRevA.106.053318
https://doi.org/10.1103/PRXQuantum.5.020358
https://doi.org/10.1103/PhysRevX.4.031020
https://doi.org/10.1103/PhysRevA.97.042711
https://doi.org/10.1103/RevModPhys.82.1225
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L042004
https://doi.org/10.1103/PhysRevLett.103.153202
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.96.053614
https://doi.org/10.1103/PhysRevLett.122.070401
https://doi.org/10.1103/PhysRevLett.112.075302

