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ABSTRACT Time series data is increasingly used in a wide range of fields, and it is often relied on in
crucial applications and high-stakes decision-making. For instance, sensors generate time series data to
recognize different types of anomalies through automatic decision-making systems. Typically, these systems
are realized with machine learning models that achieve top-tier performance on time series classification
tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human
standpoint. Recently, we observed a consistent increase in the development of explanation methods for time
series classification justifying the need to structure and review the field. In this work, we (a) present the
first extensive literature review on Explainable Al (XAI) for time series classification, (b) categorize the
research field through a taxonomy subdividing the methods into time points-based, subsequences-based and
instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation
of explanations and interpretability.

INDEX TERMS Explainable artificial intelligence, time series classification, interpretable machine learning,
temporal data analysis.

I. INTRODUCTION

Machine learning (ML) models have achieved unprecedented
performance in recent years. While the models become more
accurate and complex, the lack of model explainability or
interpretability is one of the key challenges of ML research.
Such a challenge may prevent the use of ML in applications
that call for interpretable decisions, such as high-stakes fields
like healthcare or autonomous systems [1]. For this reason,
and due to the state-of-the-art performance of these mod-
els in many other areas, there is a need to overcome this
problem. The research field of eXplainable Al (XAI) [2], [3]
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or interpretable machine learning [4] tackles explainability
challenges to give insights into model behavior.

A large part of the work in explainability is done on tab-
ular data or in the field of computer vision, where deep
neural networks (DNN) typically achieve state-of-the-art per-
formance. While computer vision is undeniably an impor-
tant research field of machine learning, we argue that there
might be a bias in XAI research toward image data due to
(i) the availability of data, e.g. Imagenet [5] or CIFAR-10 [6]
and — more importantly — (ii) the inherent semantics present
in images: explaining the classification of a rooster based
on the rooster comb is easily interpretable and verifiable,
while a time series is often not intelligible without domain
knowledge [7].
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FIGURE 1. The number of papers published per year on XAl for time
series classification started to increase significantly in 2019, suggesting
an increase in the topic’s relevance. The search was performed on Scopus
using the search terms presented in Table 1.

We believe that time series should receive the same
research attention since they are omnipresent, e.g., in
technical systems [8], [9], the medical domain [10], or busi-
ness applications [11]. Further, due to the tremendous amount
of data generated by sensors over time, machine learning
models yield superior results at many tasks due to their capa-
bility to capture long- as well as short-term patterns in the
data [12]. Thus, such models can outperform experts in cer-
tain time series tasks, enabling their application in various
use cases, e.g., in predictive maintenance [8], [13], heart-
beat anomaly detection [10], or texture recognition [14].
The research field of XAl for time series classification has
become more popular since around 2019, a variety of valuable
papers have been published in recent years (see Figure 1).
This trend was the motivation to structure the field with a
review of the most important works and to deduce open
research directions to close gaps.

The primary goals of this work are to (i) give an overview
of the current body of literature on XAl for Time Series Clas-
sification (TSC), (ii) categorize the research field through a
sound taxonomy, and (iii) deduce new insights, identifying
open research challenges in order to inspire new research
in this emerging field. We achieve these goals by surveying
papers in the field. Thus, we conduct a semi-structured liter-
ature review by including works we consider influential and
a systematic search with Scopus to systematically create an
overview of the field.

We further introduce applications and evaluations which
incorporate the reviewed approaches or can be applied to
them. Specifically, we present a set of applications where the
aforementioned methods have been used in various areas to
include explainability in applications. We discuss the state-
of-the-art regarding the evaluation of the aforementioned
XAI approaches and also include references to applicable,
but not yet implemented, computer vision evaluation tech-
niques. Applications and evaluations give a valuable insight
into the state-of-the-art of the discussed XAI approaches
and introduce further opportunities on how to deploy these
techniques.

Lastly, we discuss the findings of our selected papers and
propose future opportunities for XAI for TSC. The final
discussion presents the trends and challenges we identified
in our review of the different approaches towards explain-
ability for time series models. Furthermore, based on these
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challenges and other influences, we highlight future research
directions to contribute closing the gaps we identified. Thus,
in the following, we contribute:

1) a semi-structured literature review of the most recent
explainable Al approaches for time series classifica-
tion;

2) a taxonomy of approaches for XAl deduced from the
reviewed work

3) insights into the differences and advantages of such
explainable Al techniques;

4) highlights of applications and evaluation strategies to
showcase applied XAl techniques;

5) research directions in order to inspire future research in
the field of XAI for time series classification.

The rest of the paper is organized as follows. Section II
illustrates recent surveys in the areas of XAlI, time series,
and works at their intersection. Section III reports basic
notions and definitions necessary to understand the content
of this survey. Section IV details the research methodol-
ogy adopted to retrieve the works presented in this survey.
Section V presents the proposed taxonomy and the review,
while Section VI presents applications of the XAI methods
reviewed and discusses evaluation of explanations. Finally,
Section VII discusses findings and illustrates future research
directions in XAl for TSC.

Il. RELATED WORK
The intensive request for explainability approaches [15]

largely contributed to the massive increase of research in
XAL. The proliferation of XAI methods working in different
domains has been accompanied by various surveys catego-
rizing these methodologies [2], [3], [16], [17]. An introduc-
tion to frequently used explainers in XAI can for example
be found in the books [18], [19] and in the surveys [2], [3].
However, while explainers for data types such as relational
data, images, and texts are illustrated from various perspec-
tives in different literature reviews, explainers for other data
types, like time series, are not reviewed sufficiently in detail.
In the rest of this section, we report general surveys on XAl
not specifically addressing time series, surveys on TSC, and
two preprints of surveys on explainability methods for TSC,
highlighting the differences to our paper.

In [2], a classification of XAI methods according to the
problem they are able to solve is presented. The first cate-
gorization is between (1) explanation by design or intrinsic
interpretability, and (2) black-box explanation or post-hoc
explanation. In [3], [16], and [17] the same principal cat-
egorization is adopted. The second categorization further
classifies the black-box explanation problem into model
explanation, outcome explanation, and black-box inspection.

Another significant distinction shared among [2], [3], [17],
[20], [21] is between model-specific and model-agnostic
explanation methods. In this survey, we adopt and exploit the
same taxonomy of [2], [3], [17], [20], [21] which is detailed
in the next section. However, while these surveys are gener-
alists, we focus on explainers for time series classification
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problems. We underline that some surveys related to XAI
are focused not only on machine learning but also on social
studies [22], [23], recommendation systems [24], model-
agents [25], and domain-specific applications such as health
and medicine [26] or predictive maintenance [27].

Concerning surveys for TSC not addressing XAI, the
works of [28], [29], and [30] are probably most updated and
complete. In [28] the focus is more on classical approaches,
implementing and comparing 18 algorithms starting from the
simple and popular k-Nearest Neighbor (kNN) and then illus-
trating more novel and complex classifiers. On the other hand,
in [29], the focus is on neural network-based approaches,
and the performance of deep learning algorithms are pre-
sented with an empirical study involving the most recent
deep neural network (DNN) architectures for TSC. A detailed
analysis of time series classifiers based on Convolutional
Neural Networks (CNNs) is presented in [31]. In [30] the
focus is on multivariate time series classification, compar-
ing 16 state-of-the-art TSC algorithms. However, none of
the surveys above touches on questions related to inter-
pretability or explainability. The authors of [32] presented a
focused review on time series classifiers adopting a distance-
based approach, as well as a discussion of the strengths and
weaknesses of each method and distance measure reviewed.
Distance-based classifiers can be considered transparent if it
is possible to retrieve the most similar time series respon-
sible for the classification and if the distance measure is
simple enough. However, most advanced distance-based
approaches use complex distance measures like Dynamic
Time Warping [33], and therefore they are omitted from this
survey.

To the best of our knowledge, the only existing review
papers at the intersection of XAI and TSC are the pre-
prints [34], [35]. The authors of [34] present an overview of
XAl methods for TSC and illustrate the types of explanations
they produce. In their overview table, they categorize XAl
methods by the type of model to be explained, i.e., CNNs or
RNN s (Recurrent Neural Networks), whereas we focus on the
type of explanation returned by the explainers. In addition,
differently from [34], we also discuss evaluation measures
for explainers of time series classifiers. In [35], XAl with
respect to TSC is faced at a high level and the survey only
reports i) generalist explanation methods such as LIME [36],
SHAP [37], Grad-CAM [38] and DeepLIFT [39], ii) expla-
nation methods for neural networks. In contrast to [35],
we focus more on explanation methods designed explicitly
for TSC, including many different kinds of XAI approaches,
such as transparent models and non-neural network-based
methods, thus providing an extended overview of the
state-of-the-art.

Ill. SETTING THE STAGE

This section introduces notations and definitions useful to
comprehend the state-of-the-art. First, we report definitions
for time series classification, and then we formalize the con-
cepts related to explainability.
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FIGURE 2. Review methodology: Semi-systematic literature review
combining a systematic search on Scopus (Table 1) with a dynamic
search. Exclusion and inclusion criteria (Table 2) were applied to identify
the final set of papers.

A. TIME SERIES CLASSIFICATION

This section presents formal definitions for Time Series Clas-
sification (TSC) and recalls basic notions. We define a time
series as follows:

Definition 1: A time seriesx = {t1,t2, ..., Iy} € Rmxd jg
an ordered set of m real-valued observations (or time steps),
with dimensionality d.

We say that a time series is univariate when d = 1, i.e.,
each observation #; € R is a real value. On the other hand,
when d > 1 we name x a multivariate time series (also
referred to as multidimensional time series), i.e., each obser-
vation #; € R? is a vector containing multiple real values.
From another perspective, a multivariate time series is formed
by d univariate time series with length m. Often, the univariate
time series which are part of a multivariate time series are also
referred to as signals, or channels [40].

A set of time series, either univariate or multivariate, with
attached labels, forms a time series classification dataset.

Definition 2: A time series classification dataset D =

(X,Y) is a set of n time series, X = {xi,x2,...,X,} €
Rexmxd with a vector of assigned labels (or classes),
Y ={y.y2,...,yn} € N

For a dataset D containing [/ classes, y; can take [/ different
values. When ! = 2, D is a binary classification dataset, while
for! > 2, D is amulti-class classification dataset. We can now
define the TSC problem as:

Definition 3: Given a TSC dataset D, Time Series Classifi-
cation is the task of training a function or mapping f from the
space of possible inputs X to a probability distribution over
the class values Y.

The resulting TSC function f takes as input a time series
x and returns the label y of the class to which x belongs to
according to what f learned, i.e., y = f(x). We use f(X) =
Y as a shorthand for {f(x) | x € X} = Y. Typically, the
classifier f can be queried at will.
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B. EXPLAINABLE ARTIFICIAL INTELLIGENCE

The research field of Explainable AI (XAI) studies
approaches that unveil the logic behind automatic decision-
making systems [2], [41], [42], [43]. In general, we like
to point out that the terminology in XAl is not fully estab-
lished yet (see, e.g., the study of [44]). Some researchers
use some terms interchangeably, while others view them
as different. An example are the terms explainability and
interpretability. While we do not aim to establish a new
terminology, we give some insight into the current state of
the discussion. One definition states that XAl has the goal
of creating ““a suite of new or modified ML techniques that
produce explainable models that, when combined with effec-
tive explanation techniques, enable end users to understand,
appropriately trust, and effectively manage the emerging gen-
eration of Al systems” [45]. In [46], XAl is described as
a tool ‘““to ensure that algorithmic decisions as well as any
data driving those decisions can be explained to end-users
and other stakeholders in non-technical terms.”. Regard-
ing the two common terms explainability and interpretabil-
ity, we follow the definition of [47] stating that ‘“‘systems
are interpretable if their operations can be understood by a
human, either through introspection or through a produced
explanation”. The definition in [2] is in line with that above,
stating that interpretability describes the extent to which
a model and/or its predictions are human-understandable.
Models can be categorized into those that provide inter-
pretability themselves (sometimes referred to as white-box
models or intrinsically interpretable models) and those requir-
ing an explanation (commonly referred to as black-box mod-
els). This distinction is made in many papers [1], [2], [22].
Interpretability can be viewed as a passive characteristic
and explainability as an active characteristic of a model or
method [48].

An interesting new perspective is brought up in [49], where
the term quasi-explanations is introduced. This refers to
explanations that include terms foreign to the domain for
which the explanation is intended. In other words, the target
user will not be able to understand these quasi-explanations.
The authors of [49] state that even models frequently referred
to as intrinsically interpretable models might not be inter-
pretable for the end user. Eventually, one line of research
advocates not using black-box models for critical decisions
but rather building intrinsically interpretable models [1].
In this paper, we do not aim to take a stand for or against
using black-box models. However, we believe that when
using black-box models for important decisions, explanations
should be provided that are interpretable in the sense outlined
above.

According to the current XAl literature, XAl approaches
can be categorized according to different criteria. In our sur-
vey, we follow the categorization presented in [2] and [3]:

1) ANTE-HOC VS. POST-HOC
Ante-hoc explainable methods, such as decision trees, are
models that can be considered directly interpretable due to
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their simple structure and/or transparency by design. How-
ever, we like to note that transparency in that sense has been
discussed at three levels in [50]. Adding explainability to a
black-box does not necessarily make the model interpretable
as a whole but rather sheds light on specific parts of the model
or the model’s decisions.

Post-hoc explainability approaches are instead separated
from the model they explain and can provide insight into
what a model has learned after training without changing
its underlying structure, e.g., LIME [36]. Defining an intrin-
sic explainable method means learning a classification func-
tion f that directly unveils the reasons for the classification.
On the other hand, a post-hoc explainability method should
be applied when f is a black-box model like an artificial
neural network (ANN), a support vector machine (SVM), or a
random forest, and the reason for the decision is not directly
accessible or understandable. Thus, a post-hoc explainer typ-
ically consists of a function g that takes as input the classifier

f as well as a dataset D. We highlight that in our review,

we survey both ante-hoc [1] and post-hoc [2] approaches
that have been proposed or can be utilized for time series
classification.

2) GLOBAL VS. LOCAL

Global explanation approaches provide an explanation that
describes the overall logic of the entire model for any input
instance, i.e., g returns a generalized explanation for the deci-
sions that are valid for the whole set X. On the other hand,
local explanation approaches explain the behavior of a model
for a specific instance, i.e., g unveils the reasons for the clas-
sification only for a specific instance x.

3) MODEL-AGNOSTIC VS. MODEL-SPECIFIC

Model-agnostic explainers g can be used to explain any
type of classifier f, i.e., it does not matter if f is an ANN,
a Random Forest, or a composition of private software for
decision-making. LIME [36] is a well-known example of
a model-agnostic explainer. Model-specific explainers g are
specifically built to add interpretability to a certain type of
classifier f, i.e., g are only able to explain a classifier f
belonging to a specific family of classifiers. For instance,
Grad-CAM [38] is able to explain only differentiable clas-
sifiers like CNNs. We claim that every ante-hoc approach is,
by definition, model-specific, given that it can be used only
to explain itself, i.e. f = g.

IV. REVIEW METHODOLOGY

The overriding goals of our paper are to (i) give an overview,
(ii) categorize, and (iii) deduce new insights from the current
body of literature on XAl for time series classification. These
goals are achieved by reviewing papers in the field.

While a systematic literature search might seem like a natu-
ral choice, we found that it will yield an incomplete review in
this emerging field. Reasons are different terminologies used
in different research subfields. Examples are the papers on
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TABLE 1. Systematic search on Scopus (title, abstract, keywords). The
rows were combined with AND operators into one search query.

criterion | search terms

XAI (interpretab® OR explainab* OR XAI)

ML ("machine learning" OR "deep learning” OR "artificial
intelligence" OR "AI" OR "neural network")

TSC (classif*) AND ("time series")

type journal article OR conference paper

language | English

TABLE 2. List of inclusion and exclusion criteria, where IC refer to
inclusion and EC to exclusion criteria, respectively.

ID criterion

IC1 - only time series classification, no forecasting

IC2 - anomaly detection papers only if achieved by some sort of
classification with supervised learning

1C3 - only papers that explicitly address and enhance explain-
ability or interpretability

1C4 - only work on raw time series data including the time-
frequency domain, no hand-crafted features

IC5 - only papers that show their approach for time series or are
trivially adaptable

EC1 - no preprints

EC2 - no papers published prior to 2011

EC3 - no papers without any citations

EC4 - no surveys or reviews (these would be included in the
related work section, though)

EC5 - no papers that conduct explorative analyses on the statistics
of inner network components

EC6 - no papers massively relying on domain- or application-
specific characteristics of the time series data

EC7 - no papers on time series streams, online or real-time
classification

shapelets that are quite different from deep learning papers.
Hence, we opted for a semi-systematic literature review [51]:

1) we conducted a systematic search on Scopus using a set
of search terms (Table 1);

2) we conducted a dynamic search to uncover additional
papers in the different subfields;

3) the found papers were judged by the authors based on
exclusion and inclusion criteria (Table 2) in order to
decide whether to include a paper.

The review methodology is shown in Figure 2.

In order for the reader to be able to distinguish papers
included in the review from papers supplying background
information, we reference reviewed papers with author
names. For example, Gee et al. [52] references a reviewed
paper while [2] is referenced for background information.
Furthermore, all reviewed papers are shown in Table 3.

V. XAl FOR TIME SERIES CLASSIFICATION

In the following, we highlight the advantages and charac-
teristics of our semi-systematic literature review. We report
the papers analyzed in Table 3. The papers are organized
according to the following taxonomy (see Figure 3). First,
we discriminate on the granularity of explanation returned
depending on the portion of a time series used to illustrate the
causes for the decision process. Accordingly, we have three
families of explanation methods characterized by the type of
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FIGURE 3. The proposed taxonomy categorizes the reviewed XAl
approaches in different explanation types based on their explanations.
The explanation methods used to generate the explanations are assigned
into our categories.

explanation returned (Figure 3). In particular, we have recog-
nized time points-based explanations if the explanation refers
to specific time points in a time series, subsequences-based
explanations if the explanation refers to sub-parts of the time
series, and instance-based explanations if the explanation
adopts entire time series as explanation. We put into the others
family those explanation types that cannot be tied to any of
the previous ones. We increase the detail of the taxonomy
by further analyzing and categorizing the XAI approaches
falling into the three aforementioned families. Indeed, for
each family of XAI methods, we further differentiate the
algorithmic strategies adopted by the reviewed approaches to
return the explanation. Details are provided in the respective
subsections. In addition, in Table 3 we further categorize the
explanation methods into ante-hoc and post-hoc approaches,
into model-specific and model-agnostic approaches, and into
global and local explanations. Additional categories include
whether the approaches were explicitly designed for time
series (TS-specific or not) and whether they were designed
for univariate or multivariate TS.

Also, for every method, we report the name (if available),
the reference, the publication year, and the code language
with a hyperlink to the corresponding library.

A. TIME POINTS-BASED EXPLANATIONS

Explanations based on time points assign a relevance score or
weight to every time point of a time series. Such scores indi-
cate how much a certain time point contributed to the model’s
decision. Formally, we define time points-based explanations
as:

Definition 4 (Time Points-Based Explanation): Given a
time series x, a time points-based explanation e = {r; j | Vi €
[1,m],j € [1,d]} for the time series x contains a relevance
score r; j for every real-valued input data point #; ; of x where
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TABLE 3. List of reviewed papers and taxonomy for XAl methods for Time Series Classification. Table legend: Post/Ante-hoc: P-Post, A-Ante;
Model-Agnostic/Specific: A-Agnostic, S-Specific; Global/Local: G-Global, L-Local; TS-Specific: (v) if it is a Time Series specific method; Uni/Multivariate:
U-Univariate, M-Multivariate; Code: P-Python, M-Matlab, J-Java, JS-Javascript. Code letters are hyperlinks to official web pages. We considered all

Ante-hoc methods as Model-Specific methods.

Name Ref Year Explanation Explanation Post/Ante Model- Global/ TS-Specific Uni/Multi Code
Type Method -hoc Agnostic/Specific Local -variate (URL)
Integrated Gradients [53] 2017 Attributions P S) IL, X - P
FCN [54] 2017 Attributions P S L v U P
LIME [36] 2016 Attributions P A IL X - P
LRP [55] 2015 Attributions P S L X - P
ExcitationBP [56] 2016 Attributions P S IL, X - P
Occlusion [57] 2014 Attributions P S L X - P
SHAP [37] 2017 Attributions P A IL, X P
SmoothGrad [58] 2017 Attributions P S L X - P
DeepLIFT [39] 2019 Attributions P S L X - P
Salience-CAM [59] 2021 Attributions P S L v U -
Grad-CAM [60] 2020 Attributions P S} IL, X - P
TSViz [61] 2019 Attributions P S L v U P
TSmden (63 2001 | 3 Auibutions b 5 r v M :
SoundLIME [64] 2017 B Attributions P A L v U P
MTEX-CNN [65] 2019 é Attributions P S L v M -
PERT [66] 2021 E Attributions P A IL, v U P
FIT [67] 2020 © Attributions P S L v M P
WinIT [68] 2021 E Attributions P S IL, v M P
CEFEs [69] 2021 Attributions P S L v U -
XTF-CNN [70] 2021 Attributions P S IL; v U -
LEFTIST [71] 2019 Attributions P A L v U P
ALSTM-FCN [12] 2017 Attentions P S IL, v 0] P
GCRNN [72] 2018 Attentions A S L v U P
- [73] 2018 Attentions P S L v U P
ETSCM [74] 2019 Attentions A S L v U -
DACNN [75] 2020 Attentions A S| IL, v M -
LAXCAT [76] 2021 Attentions A S G v M -
DeepVix [77] 2020 Attentions A S G v M JS
VixLSTM [78] 2021 Attentions P S G v M -
- [79] 2021 Attentions A S IL, v M P
- [10] 2014 SAX A S G v U -
SAX-VSM [80] 2013 SAX A S G v U -
- [81] 2020 SAX A S G v M P
MR-SEQL [82] 2020 SAX A S G v 0] P
CPHAP [83] 2021 Shapelets P S L v U -
Shapelets [84] 2011 Shapelets A S G v U J
ShapeletTransform [85] 2012 Shapelets A S G v 8] -
MSD [86] 2012 Shapelets A S G v M -
LS [87] 2011 ) Shapelets A S G v U -
LTS [88] 2014 % Shapelets A S G v 0] P
LCTS [89] 2016 "j] Shapelets A S G v U J
- [90] 2018 54 Shapelets A S| G v 0] C++
- [91] 2018 § Shapelets A N G v U -
LRS [92] 2019 g Shapelets A S G v U P
ADSNs [93] 2020 2 Shapelets A S G v U P
XCNN [94] 2020 2 Shapelets A S IL, v U -
GENDIS [95] 2021 Shapelets A S G v U P
GMSM [96] 2021 Shapelets A S G v M -
MAPIC [97] 2021 Shapelets A S G v U P
DASH [98] 2021 Shapelets A S G v U P
TORRENT [99] 2021 Shapelets P S G v U -
LASTS [100] 2020 Shapelets P A IL, ; 0] P
PatchX [101] 2021 Patches A S L M -
P2ExNet [102] 2020 Prototypes A S IL, v M -
ProtoFac [103] 2020 Prototypes P S G X - P
mWDN [104] 2018 Feature-based A S G v U P
ProSeNet [105] 2019 Prototypes A S G v U -
- [52] 2019 Prototypes A S G X U JS
DPSN [106] 2020 Prototypes P S G ; U P
TapNet [107] 2020 - Prototypes P S G M P
MODL-TSC [108] 2013 % Feature-based A S G v U -
MTDT [109] 2018 T Feature-based A S G v U R
FC/TAA/LTAA [110] 2019 2 Feature-based A S G v M -
Conceptual [111] 2020 § Feature-based P A G v U -
- [112] 2021 = Feature-based A S €] v U -
Native Guide [113] 2021 Counterfactuals P A IL, v U B
TRT /TIRT [114] 2020 Counterfactuals P S L v U P
CoMTE [115] 2021 Counterfactuals P A IL, v M P
CEM [116] 2020 Counterfactuals P S L X - -
RCN [117] 2019 @ Rules A S G v U -
TCCL [118] 2020 ‘f:: Granger Causality A S G v M
- [119] 2020 o Temporal Logic A S G v U -
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the index i refers to the time point and j to the dimension in
case of a multivariate time series.

Such relevance scores can be retrieved in different ways.
The most widely adopted ones are related to approaches
based on attributions and attentions. At a high level, we can
say that attribution-based approaches exploit some external
method, which uses the TSC model to attribute output pre-
dictions to input variables. On the other hand, attention-based
approaches use some internal mechanism of the TSC model
to show which variables of the input they use. In both cases,
interpretability is achieved by considering the most important
time points and presenting these to users, e.g., visually.

1) ATTRIBUTIONS

Attributions methods are often deployed in computer vision,
as one can visualize the output as a heatmap to gain insights
into the model’s relevant regions in the input [120]. How-
ever, even attribution techniques typically used in computer
vision, such as LIME [36] or LRP [55], can be applied to
time series to better understand the model’s behavior [7],
[120]. Attributions techniques can be categorized into three
classes, gradient-based, structure-based, and surrogate-and-
sampling-based [120]. Gradient-based methods (Integrated
Gradients [53] proposed by Sundararajan et al., Grad-CAM
by Selvaraju et al. [60] adapted for time series in [54]
by Wang et al., SmoothGrad by Smilkov er al. [58],
Saliency [121]) use the gradients of the input with
regard to the output to get attributions. While structure-
based techniques (LRP by Bach et al. [55], DeepLIFT
by Shrikumar et al. [39], Excitation Backpropagation by
Zhang et al. [56]) use a score which gets backpropagated from
the output to the input. Finally, surrogate-and-sampling meth-
ods (Ribeiro et al.’s LIME [36], Lundberg et al.’s SHAP [37]
and Occlusion by Zeiler et al. [S7]) generate samples around
the given input to train an interpretable model or use a
game-theoretical weighting of the features to gain attribu-
tions. A more sophisticated approach as opposed to using
data points is, similarly to superpixels for image data, to first
segment the time series and then use each segment of the time
series as a feature [71], [100].

The authors of [7] propose to use current computer vision
techniques such as the previously introduced attribution tech-
niques like LIME, SHAP and others to explain deep learn-
ing models for time series in the same way as for images.
They evaluated LIME, LRP, DeepLIFT, Saliency, and SHAP
against each other as well as a random explanation. They
further propose evaluation techniques using a perturbation
analysis on the produced attributions. The time points within
subsequences of the input data were perturbed for a selection
of ten univariate time series datasets. A decrease in the accu-
racy caused by the perturbation is assumed to indicate that an
important part of the time series for the models’ prediction
power was altered. The results are reported for three ML
models: a CNN, an RNN, and ResNet. While there is no
clear best XAI method for the CNN or RNN in terms of the
decrease induced by the perturbation, for the more advanced
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ResNet, SHAP shows the highest average decrease across all
data sets and perturbation settings. Hence, of the evaluated
XAI methods, SHAP appears to best capture the time points
relevant for classification behavior of the model.

Also, in [59], computer vision techniques (CAM and
Grad-CAM ) are used to explain time series classifiers. In par-
ticular, Zhou et al. enhance CAM and Grad-CAM with a
backpropagation to combine saliency as well as CAM calcu-
lations and improve the generalizability of CAM. They show
on six datasets how the approach Salience-CAM outperforms
CAM with improved attributions.

In [61], Siddiqui et al. propose TSViz explaining CNNs by
showing which regions in the input data are responsible for a
decision (saliency maps) as well as the influence of the net-
work’s filters on a given decision. The explanations are based
on the layers’ gradients, i.e., they use a gradientxinput [121]
approach. In [62], Munir et al. exploit TSViz to design
TSXplain, a system for time series explanation of DNN deci-
sions. TSXplain finds the most salient regions responsible
for a certain prediction and the most important time series
through TSViz [61]. Such regions and instances are then
combined with different statistical features used to generate
natural language explanations. In a user study, the expla-
nations were provided to expert and novice users, and the
majority of users were satisfied with the explanations. The
textual explanations differ from most other explainers, and
we view them as promising. The authors acknowledge that
their explanation system is task-specific and cannot easily be
transferred to a different task. A further evolution of TSViz
is TSInsight [63] a post-hoc explainer for TSC proposed by
Siddiqui et al. TSInsight trains an autoencoder (AE) on the
input data. The AE is fine-tuned using the trained classifier’s
gradients, and the AE’s objective function is enhanced by
a sparsity-inducing norm driving the AE to reproduce the
relevant parts of the input time series.

In [64], Mishra et al. propose SoundLIME, a perturbation-
based method that, using LIME, explains TSC in the
field of music content analysis. Explanations are based
on patterns, where, as a key contribution in addition
to the temporal domain, also the frequency and the
time-frequency domain are incorporated into the expla-
nation. Assaf et al. propose MTEX-CNN [65], an end-to-end
explainable CNN that can classify multivariate time series
and simultaneously generate saliency maps. MTEX-CNN
uses a two-stage network architecture combined with specific
kernel sizes, allowing the application of Grad-CAM for visu-
alizing the attention over both time and dimensions. In [66],
Parvatharaju et al. proposed a perturbation-based method
named PERT to find interesting and relevant time points.
For a given time series, PERT first finds time series in the
data that can be used as background to perform perturbations.
Then, it learns the extent to which each time step can be per-
turbed without altering the prediction of the classifiers. The
goal of PERT is to keep the number of perturbed data points
minimal. In [67], Tonekaboni et al. propose Feature Impor-
tance in Time (FIT) to observe the temporal shift influence of
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individual features over time to estimate their importance.
FIT contrasts the predictive distribution of a model against
a counterfactual, using the contribution of the predictive dis-
tributional shift under a KL-divergence. Thus, FIT observes
the model’s behavior under the influence of fixing some vari-
ables and changing others. In [68], Rooke et al. extend FIT
by proposing WinlIT that directly uses the predictive distri-
butional shift on the explanation with lookback-windows to
further enable longer-lasting patterns. A perturbation analysis
shows that WinIT improves the explanations of FIT on a med-
ical dataset they selected, while experiments on a synthetic
dataset show that the explanations returned are correct.

While we exclude from the survey papers strongly relying
on application-specific features, in the following, we briefly
illustrate the contribution of [69], [70] that exploit domain-
knowledge, not in the feature extraction step, but to eval-
uate the explanations. In [69], a ID-CNN is trained on
univariate ECG time series, and the data is transformed
into the time-frequency domain while Grad-CAM is used
to explain the classification. Then, the difference between
the explanation and the well-known features used by clin-
icians is quantified. This quantification is used to validate
the learned representations and explanations generated by
the 1D-CNN. In [70], a dual-channel 1D-CNN is used to
detect rock fracturing in univariate time series: one chan-
nel is used to process the temporal domain, and the other
to process the frequency domain. The explanation is based
on Grad-CAM [60] and is evaluated by visualized examples
and, in addition, w.r.t. to domain knowledge. While these
approaches are not directly generalizable, we believe the
ideas are transferable to selected domains, where the under-
lying data is well-understood and shows clear, acknowledged
patterns.

In [71], Guilleme et al. propose LEFTIST a model-agnostic
local explainer. LEFTIST segments the input time series uni-
formly and creates neighborhoods by replacing some of these
interpretable components with a transform function, e.g.,
by constant values or random background from training data.
This way, the importance of the segments of the time series
is determined. The explanation is then obtained from these
components using LIME or SHAP. This method is somewhat
between a time point-based and a subsequences-based one.
Indeed, the final explanation is in the form of the impor-
tance of segments of the time series, but can also be viewed
as a saliency map highlighting time points inside each seg-
ment. We highlight that this paper includes an extensive study
on interpretability: fidelity analysis is conducted, comparing
the approach to a white-box and a more complex black-box
model. Furthermore, the interpretability is assessed as helpful
in a user study with 194 participants.

SUMMARY AND ANALYSIS

Attributions are used to attribute a relevance score to each
input value of a model. In many fields, such as com-
puter vision, these attribution techniques are straightfor-
ward to implement and fast to compute. Furthermore, these
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methods can extract regions of an input that are important
for understanding the focus of the model. In time series,
such relevance scores can also be calculated with the same
computational time as for images [7]. However, due to the
non-intelligible nature of time series, generating explanations
is much more difficult using just attributions and their rel-
evance scores [120]. When applied to time series, attribu-
tions and their primary explanation medium, heatmaps, are
often promising for domain experts but ineffective for gen-
eral users, given that the relevance scores are difficult to
interpret without additional knowledge about the underlying
data [122]. Regarding surrogate-and-sampling methods that
can be applied to time series, considering each time step as a
feature, we like to point the reader to two recent papers. [123]
discusses challenges of LIME, SHAP, and related methods,
independent of their use on time series. They emphasize
the known fact that the methods’ underlying assumption is
feature independence. However, feature independence is not
respected for adjacent observations in a time series. The
authors of [124] stress that Shapley values, which are the fun-
damentals of SHAP, assume that adding players to the game
does not decrease its overall value. However, adding features
to an ML model may decrease the model’s performance.

2) ATTENTIONS

In contrast to attributions, attentions use an internal mech-
anism to incorporate a special focus, i.e., attention, of the
network onto certain parts of the input or transformed data.
Long Short-term Memory (LSTM) encoder-decoder architec-
tures (Seq2Seq-Models) calibrate important areas of the input
for the decoder to involve the overall context [125]. Later,
attention layers were introduced, focusing even heavier on the
internal calibration of the input data towards itself (attention
and self-attention) [126]. These attention mechanisms are
often used in transformer networks to achieve state-of-the-
art performance in language tasks [126]. However, attention
should be handled with care, as it sometimes does not directly
show the relevant parts of the input for the classification and
can be attacked easily with adversarial examples [127]. Atten-
tion approaches are designed to work with different types
of deep learning architectures, as shown in the following.
Most of the approaches in this section are ante-hoc explana-
tion methods, i.e., the attention is embedded in the network
architecture.

Karim et al. [12] combine CNNs with LSTM submodules
to create a specialized time series classification model. While
the main contribution of the work is the classifier itself, the
authors propose a variant incorporating an attention mecha-
nism, allowing to explain the decision process of the LSTM
cell. In [72], Lin et al. propose GCRNN, a Group-Constrained
Convolutional Recurrent Neural Network. GCRNN com-
prises three modules: CNN, RNN, and SGL, the latter being
a fully connected module with a group lasso penalty. The
CNN module extracts high-level features while the RNN
module learns the temporal characteristics of the data. Finally,
the purpose of the SGL is to reduce the complexity of the

100707



IEEE Access

A. Theissler et al.: Explainable Al for TSC: A Review, Taxonomy and Research Directions

model by regularizing it while also allowing the inspection
of its attention regions. Interpretability is assessed based on a
model-internal metric; however, its evaluation might be future
work. In [73], Vinayavekhin et al. propose a temporal contex-
tual layer that incorporates an attention mechanism into time
series classification. In contrast to using recurrent layers, they
propose to provide the whole input sequence to the attention
layer. This layer calculates each attention weight based on
information of the input time-series. This allows the network
to directly select dependencies in the data and to assign sig-
nificant weight only to the most important time steps. The
model is evaluated with three brief case studies on sequential
data but not on the type of time series we refer to in our
paper. In [74], Hsu et al. propose ETSCM (Explainable Time
Series Classification Model) that can perform interpretable
early classification of multivariate time series. ETSCM first
employs a pre-trained deep learning method to extract the fea-
tures among the different time series dimensions and capture
their temporal structure. Then, an attention mechanism high-
lights the most important segments for the classification. The
authors were able to conduct an expert-led study. For ECG
time series, two medical doctors evaluated the interpretability
of the produced explanations. The doctors claimed that the
highlighted sections had no medical significance because no
entire intervals were highlighted. In a second dataset, the
doctors confirmed that approximately half of the provided
explanations were “correct” from a medical standpoint.

In [75], Hosseini et al. propose DACNN, a deep-aligned
CNN specifically aimed at tackling SBARS, i.e., skeleton-
based action recognition and segmentation. DACNN con-
tains so-called alignment filters that can extract and high-
light important local patterns in the temporal dimensions
of the data more efficiently than regular convolution filters.
Even if the paper shows an application-specific approach,
these filters could be utilized in a more general setting to
increase the interpretability of CNNs. In [76], Hsieh et al
introduce LAXCAT, a Locality Aware eXplainable Convolu-
tional ATtention network that is able to classify multivariate
time series transparently. The framework is composed of a
CNN feature extraction module and two attention modules
that can identify the key variables responsible for the classi-
fication and the most discriminative time intervals. In [77],
Dang et al. propose DeepVix, an LSTM model that supports
interactive operations allowing a visual representation of the
intermediate steps of the learning process. DeepVix enables
the user to perform what-if analyses on multivariate time
series to understand the most important features and cus-
tomize the neural network configurations by injecting domain
knowledge. DeepVix was extended in [78] (VixLSTM) to
incorporate Shapley Values, improving the usability of the
framework. Finally, Schwenke et al. [79] turn time series
into a symbolic form and then train a transformer model.
The data points are subdivided based on their attention score
and are either fully included, partially included, or discarded
using two user-defined thresholds. Regarding evaluation, the
authors took an interesting approach: the method is evaluated
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by training a classification model on the transformed data
and comparing its performance with a model trained on the
original data. The underlying assumption is that if the results
do not change significantly, the transformer does indeed focus
on the relevant parts. Note that while this approach segments
the time series in a first step, due to the used explanation
method, it was categorized as time points-based rather than
subsequences-based.

SUMMARY AND ANALYSIS

Similar to attributions, attentions can show relevant parts of
the input. However, attention only works if specific compo-
nents are implemented into the model’s architecture. Also,
like attributions, attentions are often visualized as heatmaps
and are somewhat hard to interpret in many cases [122]. Fur-
ther, these explanations can be misleading, as different atten-
tions (meaningful and not meaningful) can still produce the
same output [127]. An interesting insight comes from [74],
where domain experts (medical doctors) were not satisfied
with the highlighted subset of the data points because the
selection did not correspond with units typically considered
by domain experts.

3) SUMMARY OF TIME POINTS-BASED METHODS

The reviewed time points-based XAl methods comprise attri-
bution methods incorporating an attention mechanism, with
about two-thirds of the papers presenting attribution methods.
While some methods were initially not developed for time
series, e.g., SHAP and LIME, the research community has
developed specific methods for time series. The proposed
methods address univariate and multivariate time series in
equal shares.

B. SUBSEQUENCES-BASED EXPLANATIONS

Explanations based on subsequences identify sub-parts of a
time series responsible for the classification outcomes. For-
mally, we define a subsequence as:

Definition 5 (Subsequence): Given a time series x =
{t1, ..., tm}), a subsequence s = {t/, ..., ti/+l—1} of length [
is an ordered sequence of values suchthat 1 <i<m—1[+1.
We further distinguish subsequences as proper and improper
as follows. A proper subsequence of the time series x is a
direct and continuous sampling of values from x, i.e. s =
{t;, ..., tiz;—1}. In other words, the set of observations in a
proper subsequence is part of a time series. On the other
hand, an improper subsequence of the time series x is a sub-
sequence s for which there is no requirement of correspon-
dence between the observation of the subsequence and the
observations in the time series. Usually, an improper sub-
sequence holds some semantic meaning with respect to a
time series dataset, identifying, for example, important pat-
terns that are similar in different time series with small shape
changes. These kinds of patterns are sometimes also called
subsequence prototypes, not to be confused with time series
prototypes that are defined in Section V-C.
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Furthermore, subsequences can be real-valued or dis-
cretized. Real-valued subsequences are directly extracted
from the raw time series. On the other hand, discrete sub-
sequences are commonly obtained through the Symbolic
Aggregate approXimation (SAX) algorithm [128]. In short,
SAX transforms time series into strings. The algorithm uses
Piecewise Aggregate Approximation (PAA) [129] to dis-
cretize the time series, dividing it into equally sized bins and
averaging the values of each bin. Then, the PAA segments
are converted into a sequence of symbols, usually letters.
This approximation can reduce noise and capture the main
characteristics of the time series. Discretized subsequences
are, for the most part, proper subsequences because their
symbolic representation can be mapped back to the original
segments in the time series. Both for proper and improper
subsequences, interpretability is achieved by considering the
most discriminative sequences of time points.

1) PROPER SUBSEQUENCES

TSC methods relying on proper subsequences (sometimes
also named patches or patterns) are typically interpretable-
by-design approaches.

Due to possible computational problems in extracting sub-
sequences of the most suitable length, often approximations
such as SAX are performed, as detailed in the following.
In [10], Maletzke et al. propose to extract motifs, i.e. repeating
patterns, and characteristics, i.e. global statistics, from the
times series and to train interpretable symbolic models on
them. The approach identifies both local and global patterns
by extracting all subsequences of a given length from the
time series, compressing them using SAX. Then, a Collision
Matrix is built to identify subsequences likely to be motifs.
These patterns are then used with decision trees to achieve
interpretable classification. In [80], Senin et al. extract char-
acteristic patterns using SAX with an overlapping window.
From SAX patterns, a bag-of-patterns model is created. Then,
a class is described by discriminative patterns extracted from
all the time series of this class. New time series are classified
w.r.t. the discriminative patterns per class. Song et al. [81]
proposed an approach for multivariate times series that learns
a representation based on deconvolutions and bag-of-words
that were created from SAX subsequences. Classification is
conducted with logistic regression on the learned representa-
tion vectors and the bag-of-words. The approach is evaluated
with classification accuracy and with author-selected exam-
ples visualized as a network plot. The interpretability of this
plot is, however, not evaluated.

Similarly to [80], Nguyen et al. [82] represent the time
series in a symbolic form with multiple resolutions. In addi-
tion, Symbolic Fourier Approximation (SFA) [130] is used to
incorporate the frequency domain. New time series are then
classified based on the found representation using a linear
classifier. While the paper’s main focus is the improvement
of the classification accuracy, interpretability is shown for a
variant of the approach, excluding the difficult to interpret
frequency domain induced by the SFA approach.
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The approach of Cho et al. [83] extracts subsequences
by first considering highly activated nodes in a CNN, fol-
lowed by the clustering of the extracted subsequences with
a self-organizing map (SOM) approach. The subsequences
identified are those more responsible for the activations.
Therefore, this approach uses an attention approach, but the
explanation of the classification is returned in terms of subse-
quences for the various layers. In [101], Mercier ef al. trans-
form a time series sample into patches by splitting the initial
sample. These patches are used to train a DNN to classify the
overall sample. Using the highest predicted class of the DNN
for the individual patches and connecting them, they train
another ML model on these extracted predictions to classify
the overall sample. The framework returns the most important
patches and, while being interpretable, is only slightly worse
than a simple DNN directly trained on the original data.

SUMMARY AND ANALYSIS

Proper subsequences are parts of the original time series
extracted during training. They highlight time series intervals
that are important for the model and can assist in combining
domain knowledge with model knowledge extraction on data.
At first sight, they should have a high interpretable power
due to their interpretability by design, directly pointing users
to relevant parts of the original data. However, such subse-
quences, patches, or patterns are often still relatively hard
to interpret due to the non-intelligibility of time series. For
this reason, these approaches need further tweaks to perform
better, and abstractions need to be easier to interpret for users.
For example, motif-based models do not have state-of-the-art
accuracy with small, easy-to-understand decision trees [10].
A challenge with using subsequences is the segmentation
of the data. Often, fixed-length intervals are used, and the
choice of the length is critical since, for a suboptimal choice,
segmentation may not capture relevant patterns.

2) IMPROPER SUBSEQUENCES — SHAPELETS

Shapelets were first introduced in [131] as a new time series
primitive embedded in a decision tree classifier. Shapelets
are sequences of values that are most representative of class
membership, i.e., depending on their distance from the time
series, they split the dataset, maximizing the information
gain. At each step of the decision tree induction, both the
shapelet and the best dataset split point are determined. Inter-
pretable classification is then achieved by inspecting the deci-
sion tree and the shapelets in each tree node. Formally, we can
define shapelets as:

Definition 6 (Univariate Shapelet): Given a TSC dataset
D e R4 q ynivariate shapelet s € R! of length [ < m is
an improper subsequence that discriminates the target Y.

Typically, a shapelet-based method extracts a set contain-
ing k-most discriminative shapelets, denoted as S € RkxIxd
typically with k < n and d = 1 for univariate time series.
The interpretable classifiers, such as decision trees but also
logistic regressors or others, are then trained on the so-called
shapelet transformation approach [85]:
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Definition 7 (Shapelet Transformation): Given a set of

time series X, a set of shapelets S, and a distance function
dist, a shapelet transformation turns a set of time series
X € R™m*d jntg a matrix of continuous values X’ € R"¥K
obtained by taking the minimum distance dist between each
time series in X, and each shapelet in S.
The shapelet transform extracts the k most discriminative
shapelets from a time series dataset and returns a new rep-
resentation of the data, where the attributes represent the
distances between the k shapelets and each time series.
In this way, any classification algorithm can be used, poten-
tially increasing the accuracy while reducing training time.
In general, the choice of the distance measure is method-
dependent. In the case of multivariate time series and uni-
variate shapelets, it is calculated w.r.t. the dimension the
shapelet was extracted from [40]. In [86], the problem of
shapelet extraction in a multivariate setting is first tackled.
The proposed method is called Multivariate Shapelets Detec-
tion (MSD) and extracts shapelets from all time series dimen-
sions. The approach uses an information gain-based distance
to split the dataset and ranks the shapelets depending on a
utility score, weighted to favor shapelets appearing earlier.

Definition 8 (Multivariate Shapelet): Given a TSC dataset
D e R"™™*4 a multivariate shapelet s € R'*¢ is a set of d
aligned univariate shapelets of equal length [ < m.

Since the introduction of shapelets in [131], there were
many contributions focused on improving the efficiency of
the shapelet search both for univariate [132], [133], [134],
[135], [136], [137], [138], [139], and multivariate [140],
[141], [142] time series. In the following, we include only the
approaches that contribute from an interpretability standpoint
and not necessarily from an efficiency standpoint.

In [87], Mueen et al. propose Logical-Shapelets (LS),
a more expressive classification approach that addresses the
problem of scalability of the original method. Furthermore,
LS can exploit conjunctions or disjunctions of shapelets to
discriminate the target variable. In [88], Grabocka et al. for-
malize the shapelet search as an optimization problem that
jointly learns the shapelets from the training data and mini-
mizes their incurred error without the need to explore all pos-
sible candidates. The approach, called Learning-Shapelets
(LTS), first roughly estimates the shapelets and then itera-
tively learns and optimizes their shape via gradient descent by
minimizing a classification loss function. LTS was extended
in [143] to use Dynamic Time Warping as a distance mea-
sure. In [89], Yang et al. propose LCTS, a shapelet learning
method that, instead of extracting the top shapelets directly
from time series subsequences, uses self-organizing incre-
mental neural networks (SOINN) to first generate shapelet
prototypes. The learned candidates are then used to transform
the time series into the shapelet feature space by combining
an exponential function with distance normalization. Finally,
an L1-regularizer is used to select the top shapelets from the
candidates. The advantage of using SOINN is that isolated
shapelets are removed and similar shapelets combined, result-
ing in a smaller and better-quality set of shapelets. We believe
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that a smaller but more precise set of shapelets leads to better
interpretability since it reduces the cognitive workload of end
users.

In [90], Fang et al. propose an efficient way to
learn shapelets using a multi-stage process on the
PAA-transformed and the raw time series. Interpretability
is explicitly addressed by finding shapelets so that each
shapelet represents one characteristic of a class. This property
is achieved by incorporating a coverage metric for the class
characteristics in a final filtering process on the previously
found shapelets. Classification is performed with a linear
classifier. In [91] another prototype-based shapelet learn-
ing approach is proposed by Deng et al. This method is
based on dictionary learning theory and learns basic repre-
sentative shapes robust to deformations and transformations.
It first minimizes the average least-squares error between
the transformed subsequences and the shapelet prototypes.
It then updates the dictionaries to represent the basic shapes
learned from the time series. The discovered shapelet pro-
totypes are reported to be more general and expressive
because they preserve the intrinsic shapes present in the data.
In [92], Guilleme et al. propose the method Localized Ran-
dom Shapelets. This approach aims to generate more realistic
and interpretable shapelets by adding shapelet localization
to the traditional shapelet transform representation. Using
a hierarchical feature selection process with regularization,
the approach can be tuned to select, for each shapelet, either
only its distance information or both distance and localization
information. In this way, the user can understand how much
the localization of the shapelet, besides its presence in the
time series, is important for the prediction.

In [93], Ma et al. propose Adversarial Dynamic Shapelet
Networks (ADSNs). This approach dynamically generates
shapelets that are more similar to real subsequences by fram-
ing the shapelet generation process as a two-player minimax
game, following the idea of Generative Adversarial Networks
(GAN). The discriminator is trained to distinguish between
synthetic shapelets and real subsequences in the input time
series. A regularization term is added to the objective function
to avoid model collapse and ensure shapelet diversity. Anal-
ogously to prototypes, we believe that diverse shapelets lead
to better interpretability. In [94], Wang et al. propose XCNN,
an adversarily regularized EXplainable Convolutional Neu-
ral Network. XCNN learns discriminative and meaningful
shapelets by using two networks: a CNN to classify the time
series and a discriminator to regularize the classifier and force
it to learn shapelets similar to real subsequences of the train-
ing set. In [95], Vandewiele et al. propose GENDIS, a genetic
approach that uses evolutionary computation to perform the
shapelet search. One of the key advantages of this method
is that it evaluates entire sets of shapelets instead of inde-
pendently analyzing single shapelet candidates. In this way,
both the quality of the candidate sets and their size can be
optimized, resulting in fewer and more different shapelets.
Moreover, GENDIS allows taking into account interactions
between shapelets explicitly. In [96], Medico et al. present a
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DNN in which multivariate shapelets are embedded as train-
able weights. By adding two regularization terms to the loss
function, the approach can efficiently and transparently clas-
sify multivariate time series, retrieving a small set of uncor-
related shapelets.

In [97], Guidotti and D’Onofrio show an alternative
approach to designing an interpretable shapelet-based deci-
sion tree. In particular, the proposed approach (MAPIC)
exploits the Matrix Profile [144] to extract shapelets in the
form of motifs and discords for each splitting of the deci-
sion tree. The approach is efficient both theoretically and
empirically, while being comparable or even outperforming
approaches using different procedures for shapelet extraction.

In [99], Hu et al. propose a combination of shapelets and
attention-mechanism. An efficient shapelet transformation
aims to reduce the number of shapelets. While the inter-
pretability of the shapelets is not explicitly addressed, the
reduction of the number of shapelets is in line with the con-
cept of sparsity, known from prototype methods. Classifica-
tion is conducted based on the found shapelets combined with
an RNN with an attention mechanism. The use of the RNN
improves the classification accuracy yet, turns the approach
into a model-specific approach.

In [100] Guidotti et al. proposed LASTS, a Local Agnos-
tic Shapelet-based Time Series explainer. LASTS uses an
autoencoder first to compress the time series into a simplified
latent encoding. Then, a genetic algorithm generates syn-
thetic instances that, once decoded, constitute a neighborhood
containing both prototypical and counterfactual time series.
Finally, a shapelet-based decision tree is trained to output
factual and counterfactual rules, explaining the classification
in terms of subsequences that must, or must not, be contained
to get a specific black-box outcome.

SUMMARY AND ANALYSIS

Shapelets are a compromise between state-of-the-art perfor-
mance (e.g., accuracy) and interpretability. In some cases, the
first learning shapelet approaches did not explicitly address
interpretability, such as [142]. The accuracy of shapelet
methods has increased for later methods like [93] due to
various extensions. However, the pipeline as a whole has
become more difficult to understand as a result of the inclu-
sion of complex models, such as an autoencoder [100] or
a GAN [93]. Furthermore, being closer to the data, such
approaches push shapelets closer to proper subsequences by
addressing issues such as the fact that they are still difficult to
interpret for some use cases and users. Discovering meaning-
ful shapelets in multivariate time series is particularly chal-
lenging due to potentially differing change points in the time
series of the different dimensions.

3) IMPROPER SUBSEQUENCES - PROTOTYPES

Prototypes are improper archetypal subsequences for build-
ing interpretable time series classifiers. Ming et al. pro-
posed ProSeNet [105] which encodes sequential data, not
constrained to time series, with an encoding network. The
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encoded representation is then passed to a layer that learns
prototypes fulfilling the criteria of simplicity, diversity, and
sparsity. A novelty compared to previous work is using a
constrained similarity measure, rather than the commonly
used L2 distance, to compare the encodings with the learned
prototypes. Mercier et al. [102] train an autoencoder to gen-
erate embeddings for an input time series in their approach
P2ExNet. The embedding representation is then fed into a
prototype network in which multiple subsequence prototypes
of the whole input time series, instead of a single prototype,
are used. Following that, a softmax-layer conducts the clas-
sification based on the prototypes. The results show only a
marginal performance decrease for the accuracy w.r.t. models
not using prototypes.

SUMMARY AND ANALYSIS

One idea of prototype-based explanations is to com-
bine domain knowledge with learning approaches such as
neural networks to generate meaningful domain-specific
subsequences. Interestingly, all methods reviewed in this
subsection extract prototypes by means of neural networks.
Prototype explanations generally incorporate knowledge
about experts’ data acquired during previous analysis or
through know-how. Furthermore, black-box models incorpo-
rating expert-created prototypes are sometimes applied [105].
In summary, prototypes propose a promising extension for
opaque models but need other techniques to open the
black-boxes around them.

4) IMPROPER SUBSEQUENCES — FEATURE-BASED

In [104], Wang et al. propose to use multilevel discrete
wavelet transform to decompose time series into subse-
quences ranked by the contained frequencies. The data is
then classified in the time-frequency domain by a cascade of
classifiers (different types of neural networks) incorporating
residual connections. In doing so, the time-frequency domain
is included at different resolutions. Classification is explained
by the importance of each time-frequency part.

SUMMARY AND ANALYSIS

Feature-based methods on improper subsequences extract
features from some kind of transformed representation
rather than the original data points. For example, the
frequency-domain was used in [104]. Regarding explainabil-
ity, the features’ interpretability determines the explanation’s
quality. Features from the frequency domain could be used
as an example in fields where frequency bands are part of the
domain-specific knowledge, such as EEG frequency bands in
the medical domain.

5) SUMMARY OF SUBSEQUENCES-BASED METHODS

The types of subsequences-based methods are manifold,
comprising methods based on the SAX representation as well
as shapelets. The reviewed papers addressed patches, proto-
types, and feature-based methods to a lesser extent. Except
for one, all methods were originally designed for time series
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data. Furthermore, we highlight that the great majority of
the interpretable subsequences-based classifiers make use of
shapelets. Indeed, shapelets are a powerful discriminative tool
that can be theoretically and practically extended to other
data types. In turn, this allows experimenting with these inter-
pretable features on domains different from time series [98].
Although shapelets could be considered state-of-the-art in
this category, this might indicate a research gap in developing
other types of interpretable subsequences-based time series
classifiers.

C. INSTANCE-BASED EXPLANATIONS

The methods falling in this category rely on the whole time
series instance to express the reasons for the classification.
We mainly recognize two categories of methods returning
instance-based explanations. On one hand, those counting on
features extracted from the whole time series. On the other
hand, those returning time series instances as explanations.
Regarding the latter, the most common explanations are pro-
totypes and counterfactuals.

1) FEATURE-BASED EXPLANATIONS

Feature-based interpretability approaches try to explain clas-
sification, e.g., through statistics extracted from the time
series data. These features are not based on individual time
points or subsequences and therefore are usually less sensitive
to noise.

An early representative for the extraction of feature sets is
the work of Gay et al. [108]. Time series are transformed into
multiple representations using generic transformations like
derivatives or auto-correlation functions to identify patterns
characteristic for each class. Co-clustering is employed to
group similar patterns within classes and thereby identify a
set of class-discriminant features. Classification is then con-
ducted on a feature space with standard classifiers, shown
with Naive Bayes. The approach is applied to univariate time
series, but it can be transferred to multivariate time series
by adapting the feature extraction steps. Interpretability is
achieved by considering the identified features in a textual
form. Evaluating the interpretability of the created explana-
tions could be future work.

In [109], Shalaeva et al. propose MTDT (Multi-operator
Temporal Decision Trees) extending the decision tree algo-
rithm to time series data. MTDT uses split operators to cap-
ture different geometrical structures in the data based on
dynamic time warping and spherical operators besides SAX
subsequences. Users can then inspect each node condition
in the decision tree to understand how the classification was
achieved.

In [110], Ito and Chakraborty focus on computational effi-
ciency and present three shape-aware feature extraction meth-
ods with linear time-complexity, that compute the similari-
ties between time series. The Fold Count (FC) representation
counts the number of foldings of a time series on itself. The
Time Axes Area (TAA) relaxes FC by measuring the areas
under the folds. The Log Weighted Area is a modification
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of TAA that takes the logarithm to avoid too long delays.
As an interpretable classifier, KNN is adopted to exploit these
shape-aware time series representations.

In [111], Kiisters et al. introduce a framework to extract,
test, and evaluate the intrinsic features used by models adopt-
ing pre-defined filters. Filters, such as lowpass filters, can be
applied to the input data before the classifier’s prediction to
investigate the model’s behavior regarding these intrinsic fea-
tures. Such variables can be used to compare experts’ domain
knowledge with the features used by the model. The approach
is evaluated against LRP [55] and shows that by changing
fewer data in a fidelity analysis, the accuracy changes even
more.

Extracting  statistical  features, the work of
Zaman et al. [112] builds a decision tree for the classification
of control chart patterns (univariate time series). The deci-
sion tree is assumed to be interpretable and is shown as an
example.

SUMMARY AND ANALYSIS

Feature-based explanations have a long history and are tra-
ditionally applied to time series classification. However,
in many cases, such approaches are hard to understand for
non-expert users, and in some cases, even for experts. For
example, as observed for MTDT [109], the resulting decision
trees are still hard to explore. Due to their intrinsic use of
features in the time series, these feature-based approaches
hold promising value for evaluating other explanations, such
as attributions, like in Kiisters et al. [111]. In summary, the
interpretability of feature-based methods strongly depends on
the interpretability of the used features for the target users.

2) PROTOTYPE-BASED EXPLANATIONS

Prototypical examples are time series exemplifying the main
aspects responsible for a classifier’s specific decision out-
come. Formally,

Definition 9 (Prototype): Given a classifier f, an instance

X is a prototype if there is a set of instances X' C X repre-
sented by X, and such that Vx € X', f(X) = f (x).
A prototype can be a real record sampled from the dataset
that is important and meaningful because it summarizes the
shape of many other similar instances, or a synthetic one, for
example a cluster centroid or a record generated by following
some ad-hoc processes. The explanation is obtained by com-
paring an instance x for which we have the decision f (x) with
the prototype x.

In [52], Gee et al. propose an approach for learning time
series prototypes. The prototypes are found using an autoen-
coder, and the work’s novelty is the learning of diverse pro-
totypes. They are used for classification and explanation. The
evaluation shows that the approach finds diverse prototypes.
A study involving end users to contrast this approach with
other prototype-based methods could potentially lead to new
insights regarding the interpretability of the extracted pro-
totypes. Das et al. [103] extract prototypes from the latent
representation of the input data in a deep neural network. The
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prototypes are weighted, and a surrogate model is built from
the prototypes. The approach also applies to data other than
time series, yet, a case study for time series data is presented.
In this case study, entire time series (stemming from longer
time series segmented prior to training the model) are used
as prototypes. The authors describe their approach as model-
agnostic, since it can be used for different deep learning net-
work architectures. However, following the proposed taxon-
omy, we categorize it as model-specific since it is constrained
to neural networks.

Tang et al. propose the Dual Prototypical Shapelet
Networks [106]. While the paper focuses on few-shot learn-
ing, it contributes to interpretability by combining explana-
tion methods offering both local and global explanations.
A new representation is learned in the first step, incorporating
shapelets and SFA features. The learned representation is then
classified with a nearest neighbor classifier. Interpretability
is achieved by representative time series examples as well as
representative and discriminative shapelets.

While the main motivation of Zhang et al.’s approach Tap-
Net [107] is to cope with the lack of labeled data, a contri-
bution to interpretability is also made. For multivariate time
series, embeddings are learned by creating subgroups of the
univariate time series, followed by 1D-CNNs applied to these
groups. In addition, an LSTM is trained on the original multi-
variate time series. From the learned embeddings, prototypes
are extracted and then used for classification. The prototypes
are shown in a t-SNE [145] projection of the embedded space.

SUMMARY AND ANALYSIS

As for improper subsequence prototypes, instance-based pro-
totypes hold valuable information and represent an interest-
ing direction for explainable time series classifiers. However,
the black-boxes, usually neural networks, used to build the
prototypes are still not explained. Another drawback is that
the majority of the works assume that the prototypes are
interpretable, focusing solely on evaluating known prototype
metrics. For example, the approach in [107] is promising, but
the prototypes are visualized with a projection method that is
not intrinsically understandable. In some of the studies, the
prototypes themselves are analyzed.

3) COUNTERFACTUAL-BASED EXPLANATIONS
Counterfactual time series show the minimal changes in the
input data that lead to a different decision outcome. Formally,

Definition 10 (Counterfactual): Given a classifier f that
outputs the decision y = f(x) for an instance x, a counterfac-
tual consists of an instance x” such that the decision for f on x’
is different from y, i.e., f (x") # y, and such that the difference
between x and x’ is minimal, and that x” is plausible.

Minimality and plausibility depend on the domain where
counterfactuals are necessary. However, for time series, min-
imality typically refers to a notion of distance between time
series. On the other hand, plausibility refers to notions involv-
ing the usage of outlier detection metrics or measuring the
presence of anomalies in the time series.
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In [113], Delaney et al. propose to extract potential
counterfactual time series, named native guides, from ini-
tial training data. As a first step, these are real time series
belonging to D. These are then adapted to generate novel
counterfactuals, following four identified key properties for
good counterfactuals: proximity, sparsity, plausibility, and
diversity. While these properties are generally assumed to
yield interpretable examples (prototypes or counterfactuals),
evaluating this promising approach involving end users could
be promising for future work. The approach is quantitatively
evaluated for these properties and compared to two bench-
mark methods.

In [114], Karlsson et al. define the problem of locally and
globally explainable time series tweaking. They propose the
two approaches tgr and gy that try to find the minimum
amount of changes to a time series that forces a classifier
into changing its classification output. The authors focus
on implementing the approach for two classifiers, namely
k-Nearest Neighbors and Random Shapelet Forest [146].
Evaluating the interpretability of the random forest could be
future work.

In [115], Ates et al. propose CoMTE, an explainability
method that provides explanations for multivariate time series
classification in terms of counterfactuals. Using a heuristic
search algorithm, CoMTE finds a distractor time series from
the training set and computes the minimal number of substi-
tutions in order to change the class of the original time series
to that of the distractor.

Labeien et al. [116] transferred the concept of Contrastive
Explanation Method (CEM) [147] to time series classifica-
tion. Using an LSTM in combination with a fully connected
network, they find the minimal perturbations for the model to
change its classification decision. These perturbed instances
are called pertinent negatives, being similar to counterfactu-
als. Note that the model is reported to be model-agnostic,
while we view it as model-specific since it relies on a combi-
nation of LSTM and an autoencoder.

SUMMARY AND ANALYSIS

Counterfactual-based explanations are grounded in human
explanation theory and are intuitively understandable [22].
However, generating counterfactuals for time series is not as
trivial as in traditional approaches like [148] that use gradient-
based optimization. Those approaches bear the risk of gen-
erating time series counterfactuals that are not consistent
with the original data [113], i.e., adversarial examples. Thus,
a counterfactual-based explanation can be hard to generate
but can potentially be a human-acceptable explanation for
time series classifiers.

4) SUMMARY OF INSTANCE-BASED METHODS

There is less research on instance-based XAI methods com-
pared to time points- and subsequences-based methods. The
introduced methods comprise prototypes, counterfactuals,
as well as feature-based methods. The vast majority of
the methods were originally designed for time series data.
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We would like to point out that there are more interest-
ing feature-based methods that we did not include due to
domain-specific feature extraction.

D. OTHER TYPES OF EXPLANATIONS

We place in this section a miscellanea of methods that, in our
opinion, do not return explanations that can be easily assigned
to one of the previous categories.

In[117], Okajima and Sadamasa propose Rule-Constrained
Network (RCN), i.e., a neural network trained to make deci-
sions by selecting decision rules. Given an instance, RCNs
select a decision rule from a given set so that the observation
satisfies the antecedent of the rule and the consequent gives
a high probability to the correct class. An RCN is a data-
agnostic model, but in [117] is successfully applied on time
series after learning the rules on a TSC dataset.

While Huang et al. [118] focus on anomaly detection under
specific assumptions, we include it due to its interesting and
completely different approach. They address the detection
of faults in aircraft systems with the underlying assumption
that the correlation between the signals in the multivariate
time series is stationary in normal operation mode. In fact,
a change in the correlation is an indication of a fault. They
use Granger causal graphs to learn and represent the causal-
ities between the signals and classify the data based on the
differences between the causalities. Interpretability is then
achieved by visualizing the differences in the correlations.

In [119], Mohammadinejad et al. propose to learn Tempo-
ral logic formulas to classify time series. Regarding inter-
pretability, the approach favors shorter formulas, which are
viewed as easier to understand. Relating this approach to the
common terminology of XAI, we view it as a global expla-
nation — since the temporal logic formulas are determined
from the entire training set. In addition, we view the approach
as model-specific, since the learned formulas are used as a
classification model. In contrast to the vast majority of the
reviewed papers, this approach does not present the expla-
nations visually, but rather as temporal logic. The authors
note that general temporal logic can be transformed into plain
text explaining decisions. This is, however, not shown for
the approach in the paper and might be a promising future
research.

SUMMARY OF OTHER METHODS

This subsection comprised promising approaches for future
research directions, such as temporal logic, rules, or Granger
causality analysis. However, these approaches are quite dif-
ferent from the typical work on XAI and might not be within
the scope of XAl researchers. Although these works may not
be directly accessible to XAI researchers due to the use of
different methods and terminology, we would like to highlight
their promising ideas.

VI. APPLICATIONS AND EVALUATION
Explainable Al strives in many different research fields
and proposes solutions to overcome uncertainties with
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explainability in high-stakes applications. Various applica-
tions present use cases of how to deploy machine learning
models and apply XAI to increase the understanding and
knowledge of the underlying model and gain the users’ trust.
Further, evaluation is a key performance indicator of how
reasonable these explanations are on the model and the data
for the tackled problem.

A. APPLICATIONS

Due to the tremendous amounts of data generated by an even
larger number of deployed sensors, time series classification
can be applied in a nearly endless amount of tasks, such as
anomaly detection for cardiovascular [149] and brain dis-
eases [150], human activity recognition [151], pattern extrac-
tion [152], real-time crash prediction [153] and so on. In the
past, fewer machine learning models were applied in critical
tasks, given their insufficient performance and/or the need for
understandable decision-making. Recently, due to the huge
success of deep learning models in fields such as computer
vision, more and more machine learning algorithms are tested
and applied to automate and solve problems. XAI helps to
further increase such models’ reach into areas where there is
a need for understandable decisions. Without claiming to be
exhaustive, in the following paragraphs we present examples
of some relevant applications.

1) TECHNICAL SYSTEMS

Technical systems typically incorporate machine learning
models to automate or improve existing tasks previously
solved by humans or handcrafted algorithms, for example,
in order to identify critical events in production [8] or to
diagnose bearing faults [154]. Explainability for TSC has
been used in various papers on power consumption. In [140]
shapelets are used to classify different events in power
consumption. The authors report that through these subse-
quences, they are able to investigate the data, understand
which shapelet leads to an event, and hence improve the
trust in the system. The investigation is then used to under-
stand which appliance caused an occurred event. Other works
like [65] uses a CNN to classify power consumption of dif-
ferent households and use attribution techniques to show rel-
evant features and time points for the classification. Their
visualization shows a heatmap of the important values. Fur-
thermore, predictive maintenance is a field where time series
are commonly encountered. In [155], a ID-CNN is used on
univariate vibration signals to classify faults in linear motion
guides. The explanation is achieved using Grad-CAM in
the frequency domain, arguing that different errors manifest
themselves through different frequency patterns. An LSTM is
used in [156] to classify rolling-element bearings. The expla-
nation method used is LRP to show a heatmap in the time
domain. Because time series data is present in a wide range
of technical systems, such as manufacturing, automotive,
or the internet of things, we consider this application field
highly relevant and demanding for interpretable time series
classification.
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2) MEDICAL DOMAIN

In the medical domain, it is even more critical to support the
trust of doctors and specialists in automatic decision systems
in their daily work. In [157], a framework is presented to
apply post-hoc attribution methods such as LIME in medical
time series to explain the decisions of models. They apply
a DNN on ECG data to classify patients’ conditions and use
LIME as an explanation extractor to show users how the clas-
sification was achieved. Many others also apply attribution
methods on ECG [69] or robotics data on surgical tasks [158]
to extract explanations from models. In [159], a CNN with an
attention mechanism is utilized for epileptic seizure detection
in multivariate EEG time series. The approach extracts the
importance of each EEG channel (one signal of the mul-
tivariate time series). Furthermore, the authors show how
the attention mechanism allows locating the important brain
regions based on the location of the electrodes. Furthermore,
for seizure detection, [160] applied SHAP on multivariate
EEG data to identify important EEG channels. The need for
interpretable models is rather obvious in the medical domain.
Often, applications of XAI approaches in this domain are
indeed steps towards deployment in a real-world scenario.

B. EVALUATION

Evaluations are crucial to validate working approaches for
practical computer science problems. However, due to differ-
ent evaluation methodologies, there is not a straightforward
and standard solution to apply to every challenge. In most
cases, evaluations can be split into two different types: quan-
titative and qualitative. Quantitative evaluation metrics focus
on evaluating the performance of a model, comparing it to
other approaches, for example, measuring their accuracy on
a benchmark dataset. On the contrary, qualitative evaluations
do not strictly focus on just a measure and use subjective
human decisions to measure performances. Humans are often
involved in interpreting results giving opinions on which pro-
posed solution works best for a specified task, for exam-
ple, by looking at the realism of the images generated by a
model.

XAI inherits these two approaches to evaluate explana-
tions from the field of computer science, as these are highly
subjective towards the target user group. For example, engi-
neers working with time series and forecasting models need
a different explanation than maintenance workers repairing
engines and maintaining large production machines. Thus,
extracting the proper explanation for each group involves
different evaluations. At first, the XAI technique needs to
be evaluated, and then a suitable medium for the explanation
needs to be found and presented to users [161].

Typically, a first initial analysis of the explanations is
undertaken in a visual assessment of individual samples with
experts. Afterward, in some cases, a broader range of experts
and users is included to evaluate the explanations. To gen-
erally demonstrate that the XAI approaches are working,
quantitative fidelity analysis is used to assess the trustwor-
thiness of the model’s explanation. Then in some cases,
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enhancements of the fidelity or other quantitative and auto-
matic evaluation measures are used to get further insights into
the approach and the classifier. We believe that the evaluation
of XAl in general, is challenging and currently not solved at a
satisfactory level. The lack of widely accepted metrics or test
procedures for the young research field of XAl for time series
classification is even more evident. For general XAlI, the posi-
tion paper [42] made a strong case for rigorous evaluation
methods. These thoughts should also be taken into account in
the time series domain. Currently, there is no accepted metric
to quantify the interpretability of the reviewed methods, i.e.,
user studies will be necessary for the time being. In addition,
itis desirable to have a set of quantified metrics since they are
less subjective and easier to compare. We believe a combina-
tion of quantitative results and user studies will be necessary
to convince potential users of the proposed XAI methods.

In the following, we shortly introduce the mentioned
concepts:

1) VISUAL EVALUATION

Beginning with qualitative evaluation, a first initial judgment
is often done by inspecting the explanation’s visualization.
In such cases, visualizations facilitate presenting an expla-
nation to users [120]. In Table 4 we refer to this type of
explanation as author-selected examples. Such first demon-
strations give insights into the model as well as into the
data used [61], [83], [101], [162]. However, these visual
approaches are highly qualitative evaluations given that in
most cases, only small-scale studies with a limited amount
of users are undertaken. When the evaluation involves only
domain experts, the scale is even smaller, and the mea-
surement of their understanding of a model’s behavior and
explanations is limited [62], [105]. However, these initial
evaluations often lead to either feedback for further research
opportunities or present valuable empirical data to support the
claims of applicable state-of-the-art approaches [62], [122].
The main drawback is that such visual evaluations, being
rather subjective, can possibly lead to faulty conclusions.
Hence, they should be verified together with a quantitative
method [163].

2) FAITHFULNESS ANALYSIS

The most prominent and widely used quantitative evalua-
tion for XAl in TSC is the faithfulness analysis. Faithful-
ness describes how accurate an explanation fits a model’s
behavior towards the prediction score. Throughout literature,
faithfulness is referred to under various terms, for instance
perturbation analysis [83], ablation study, trustworthiness,
or fidelity [61]. In many cases, such a fidelity analysis is
achieved by explaining a sample and changing (perturbing)
the relevant parts from the explanation of the sample to non-
informative values [7]. Afterward, the change in prediction is
observed either over just one sample [111] or other a whole
set of samples [7]. In cases over more than one sample,
a quality metric presents changes in the prediction. Often,
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a significant change in the quality metric score is assumed
to highlight good working explanations [7].

Quality metrics that are applied in such cases often use the
underlying training metrics such as accuracy (ACC) or area
under the receiver operating characteristic curve (AUROC).
Examples for such evaluations using accuracy are [7], [62],
[83], [111], [162], AUROC [67], [68], AUPRC (area under
the precision-recall curve) [67], [164].

After selecting a quality metric to observe, the perturbation
analysis can either remove or retain relevant values in samples
for the observation [165]. However, removing and retaining
information still needs a non-information holding value as a
baseline to perturb the data. In time series, such values are
not easy to identify for many datasets [166], for example,
values like O could have a specific meaning altering the class
membership. Thus, [166] proposes seven different alterna-
tives on how to perturb the data in relevant parts to enable
non-information holding values. Besides the focus on indi-
vidual time points, they also propose perturbation strategies
to evaluate the time constraints. Both, [162] and [7], suggest
that there is not one best explanation method to use for all
models, but rather a heavy dependence on the applied model’s
approach.

3) OTHER APPROACHES

In [165], fidelity analysis is enhanced with a referee to com-
pare the prediction of the initial model with referee clas-
sifiers, gradually removing or retaining the most important
features highlighted by the explanation. The informativeness
of an explanation is assessed by looking at the degradation in
performance of the referee classifiers. They argue that such
a referee helps to better compare various XAl techniques
against each other. In [164] a benchmark for XAl techniques
is proposed using synthetic data with properties to evalu-
ate the explanations of such methods. In other fields, such
as computer vision, there are further techniques to evaluate
explanations, e.g., [167] or ROAR [168]. However, most of
them are not exhaustively applied to XAl for TSC yet.

VII. DISCUSSION AND RESEARCH DIRECTIONS

During the analysis of the selected papers, we identified var-
ious trends and challenges in XAl research for TSC. In the
following, we shortly discuss our perspective of the review on
these challenges and highlight future research opportunities
to close the gaps we identified.

A. DISCUSSION

We found some interesting relationships between differ-
ent categories of the proposed taxonomy. From Table 3,
it becomes obvious that the granularity of the explanation is
related to the locality or globality of the XAI approaches.
For example, point-based explanations are mostly local,
clarifying the model explanation for individual instances.
In contrast, subsequence and instance-based explanations
are more often global, shedding light on the whole model’s
behavior. Next, we identified connections between the
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explanation method and ante/post-hoc approaches. In partic-
ular, attribution methods are primarily post-hoc, working on
fixed trained models without the need to make assumptions
about the explained classifier. On the other hand, attentions
and shapelets are built into the model as a constraint and an
ante-hoc mechanism, with interpretability directly embedded
in the approach. Instance-based methods are more heteroge-
neous, with a similar amount of ante/post-hoc approaches.
From the reviewed papers, model-agnostic approaches are
rarer compared to model-specific approaches and are, for the
most part, local. Finally, an interesting observation is that
time-point-based methods have been proposed for univari-
ate and multivariate time series about equally often, while
for subsequence- and instance-based methods, the focus is
on univariate time series, with just a few approaches for
multivariate time series. While the use of subsequences
is more challenging, there appears to be a research gap
due to the high practical relevance of multivariate time
series.

It is clear from the publication dates that subsequences-
based methods, such as SAX or shapelets, have a rich history
with many solid methods. However, in that field, computa-
tional efficiency is frequently given more attention.

Since we believe that the evaluation of XAI methods is
challenging and has not yet reached a satisfactory state [7],
[42], we analyzed how the XAI methods proposed in the
reviewed papers were evaluated (see Table 4): evaluation
is quite frequently done using author-selected examples,
showing that the approach is plausible. As a quantitative
method, classification accuracy is frequently used, showing,
for example, that explainable methods are competitive with
their non-explainable counterparts. Accuracy, however, can
not assess the methods’ interpretability. To a much lesser
degree, other quantitative explanation measures are used.
User studies evaluating the interpretability were presented
in a small minority of the papers. Interestingly, none of the
reviewed subsequences-based approaches was validated with
a user study. We view the lack of user studies as an impor-
tant observation that, from our point of view, points to a
deficiency in a research field that aims to make machine
learning interpretable for human beings. One strong under-
lying motivation of XAI is to enable users to trust machine
learning models that, without explanation, have a black-box
nature. Not involving users in evaluating explanations bears
the risk that proposed explanations are not accepted for use
in practical applications for the same reasons as not accept-
ing machine learning in the first place. Hence, we view the
involvement of users as necessary for future work until the
interpretability of a new method is shown. Further work, such
as refining or making a method more efficient, may not then
require user studies. Also, if quantitative methods to measure
interpretability are found and widely accepted in the field,
the incorporation of users might not be required for each
study.

While for machine learning on feature vectors, decision
trees, rule bases, or — for a limited number of features — linear
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TABLE 4. Overview of evaluations conducted in the reviewed papers. The lack of user studies to evaluate interpretability becomes obvious. (Frequently
used evaluation methods are shown with the abbreviations: ACC = classification accuracy, EX = author-selected examples and visual presentation,
PERTURB = pertubation analysis, RT = runtime, US = user study, QUANTCOMP = quantitative comparison to other methods, POINT = pointing game in
localization).

XAI method Ref Evaluation in the paper Cc t
INTGRAD [53] EX not shown for time series
FCN [54] | ACC,EX
LIME [36] EX, US not shown for time series
LRP [55] EX, PERTURB not shown for time series
ExcitationBP [56] EX, POINT not shown for time series
Occlusion [57] ACC, EX, RT not shown for time series
SHAP [37] RT, US not shown for time series
SmoothGrad [58] EX not shown for time series
DeepLIFT [39] ACC, PERTURB not shown for time series
Salience-CAM [59] ACC, EX, PERTURB
Grad-CAM [60] ACC, EX, US not shown for time series
TSViz [61] EX, discussion w.r.t. defined properties
TSXplain [62] EX, PERTURB, US textual explanations with user study
TSInsight [63] ACC, QUANTCOMP
SoundLIME [64] ACC, EX, agreement of saliency map
MTEX-CNN [65] | ACC,EX
PERT [66] | EX, QUANTCOMP
FIT [67] PERTURB
WinIT [68] PERTURB
CEFEs [69] EX, compared to domain-specific features domain-knowledge incorporated in eval
XTF-CNN [70] EX, compared to domain-specific features domain-knowledge incorporated in eval
LEFTIST [71] PERTURB to black- and white-box models, US extensive user study (194 participants)
ALSTM-FCN [12] ACC interpr. not evaluated
GCRNN [72] ACC, EX
- [73] ACC, EX, RT
ETSCM [74] ACC, earlyness, EX, expert US evaluated for ECG data by medical doctors
DACNN [75] | ACC,EX
LAXCAT [76] ACC, RT, QUANTCOMP
DeepVix [77] EX
VixLSTM (78] | EX
- [79] EX, ROAR non-standard quantitative evaluation
- [10] ACC
SAX-VSM [80] ACC, EX,RT early work in the field; eval of interpr. could be future work
- [81] ACC, EX visualized as network plot interpr. of plot could be future work
MR-SEQL [82] ACC, EX, RT focus on ACC, eval of interpr. could be future work
CPHAP [83] PERTURB, EX also from other approaches
Shapelets [131] ACC focus on efficient shapelet discovery
ShapeletTransform [85] ACC focus on efficient shapelet discovery
MSD [86] ACC, RT focus on efficient shapelet discovery
LS [87] RT, accuracy of shapelet discovery focus on efficient shapelet discovery
LTS [88] ACC, RT focus on efficient shapelet discovery
LCTS [89] ACC, RT focus on efficient shapelet discovery
- [90] ACC, EX, RT
- [91] ACC
LRS [92] RT, accuracy of shapelet discovery
ADSNs [93] ACC, EX
XCNN [94] | ACC,EX
GENDIS [95] ACC, RT, accuracy of shapelet discovery focus on ACC
GMSM [96] ACC
MAPIC [97] ACC, RT
DASH [98] ACC, RT, faithfulness, stability
TORRENT [99] ACC, EX, RT
LASTS [100] EX, faithfulness, stability, QUANTCOMP
PatchX [101] ACC, EX, RT uses variable-sized patches and evaluates an own patch-based metric
P2ExNet [102] ACC, PERTURB
ProtoFac [103] EX, fidelity contains user study, but not for time series data
mWDN [104] ACC, EX
ProSeNet [105] UsS contains user study, but not for time series data
- [52] ACC, prototype diversity evaluated in four brief case studies
DPSN [106] ACC, EX
Tapnet [107] ACC, projection vis of dataset with prototypes
MODL-TSC [108] EX early work in the field; eval of interpr. could be future work
MTDT [109] | ACC,EX
FC/TAA/LTAA [110] ACC, RT focus on computational efficiency
Conceptual [111] ACC, EX, manual distortion of data (occlusion-like)
- [112] EX
Native Guide [113] QUANTCOMP eval of four metrics for counterfactuals
TRT /TIRT [114] ACC, RT interpr. of created random forest could be future work
CoMTE [115] w.r.t. known feature importance domain-knowledge incorporated in eval
CEM [116] ACC, manual distortion of data
RCN [117] ACC, EX
TCCL [118] EX
- [119] EX promising, uncommon method; eval of interpr. could be future work
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models are generally assumed to be intrinsically inter-
pretable,! we do not see analogous models for time series.
While decision trees have been used for time series, they rely
on some feature extraction step or the use of shapelets. The
entire process can not simply be considered interpretable.
Distance-based methods might, to some degree, be consid-
ered interpretable; however, they suffer the same problem for
more complex distance measures.

Regarding code implementation, we found that the vast
majority of the published work uses Python as a programming
language. The most famous and used libraries for time series
are those with good documentation and implementation,
for example Shap [37], Captum [169], GradCAM [170],
Lime [36] for time point-based explanations, skt ime [171],
tslearn [172] and pyts [173] for subsequences-based
explanations. At the same time, some promising approaches
are not as widespread, given their lack of a simple and
easy-to-use codebase. We believe that a library specifically
designed for explaining time series classifiers is still missing.

As a critique of our taxonomy, we observe that a small
subset of papers, not aligned with typical XAl works, could
not be classified under it; for this reason, the ““others’ subcat-
egory was added. In addition, some approaches could be con-
sidered hybrid (e.g., time-points and subsequences-based),
and this was indicated in the text. Furthermore, we acknowl-
edge that our selection of reviewed papers might have missed
interesting work. For example, we did not include preprints
and Ph.D. theses, which might also hold compelling ideas.

B. RESEARCH DIRECTIONS

Based on the reviewed papers and our work in the field,
we identified a number of research directions that we believe
can contribute to inspire research in the field.

1) HIGHER-ORDER EXPLANATIONS ARE DESIRABLE

Throughout reviewing our selected papers, we often observed
visualizations showing the time series with a heatmap on
top of the line plot or behind it, as described in [120] for
attributions or attentions. For subsequences and some appli-
cations, we mainly observed a highlighting of the relevant
part of the time series corresponding to the subsequence.
However, we argue that such visualizations are not sufficient
in those cases where the pure signal cannot be directly inter-
preted. In contrast to computer vision, highlighted parts of
a time series are not directly interpretable for all problem
settings. We see an opportunity for higher-order representa-
tions besides line plots of the explanations to enable a more
straightforward explanation. Based on such other represen-
tations, we further highlight the importance of explanations
that are not purely visualizations. Verbalization, i.e., textual
descriptions of the explanation, can also explain the decision
and behavior of the black-box model in the specific terminol-
ogy of the problem domain [174] enabling experts to under-

INote that also decision trees and rule bases can become too complex to
be easily interpretable.
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stand the model better. An example of a textual explanation is
TSXplain [62] where the explanations were found to be valu-
able in a user study. A combination of verbalization and time
series visualizations can help explain models in user terms
without the need for in-depth knowledge in the time series
domain regarding properties like, e.g., periodicity or structure
of the data, understanding of time series representations, and
algorithms. While machine learning engineers often use XAl
methods, explanations offered to end users should be suffi-
cient to understand the application domain itself, e.g., manu-
facturing, automotive, or medical domain. In [49], this issue
is referred to as quasi-explanations which are explanations
containing items that are foreign to the domain.

2) MODEL-AGNOSTIC APPROACHES ARE PARTICULARLY
USEFUL FOR TSC

For TSC, a variety of different model types is used. In con-
trast to, e.g., computer vision applications, deep learning
methods do currently not clearly dominate the field. In the
search for the best method for a given problem setting, deep
learning [29], ensembles [28], distance-based methods [32],
shapelets and further methods are used. In order to compare
the interpretability of these entirely different model architec-
tures, model-agnostic methods are required. Model-specific
methods may then be used at a later stage of the model selec-
tion process.

3) DOMAIN-SPECIFIC EXPLANATIONS FOR SPECIFIC
APPLICATIONS

In general, building models and explanations that work in a
wide range of fields is desirable. However, we believe some
cases require domain-specific explanations when explaining
the models to end users. Indeed, the effectiveness of an expla-
nation depends on the user’s perception and response rather
than on the model. In particular, the end user may not be
able to understand all the information even if a model is
made entirely transparent. In other words, given that expla-
nations depend on the requirements of the target users, there
is no one-size-fits-all solution in the expanding body of XAl
techniques: what makes an explanation effective depends on
the user’s goals, background, and current level of knowl-
edge [175]. When addressing these issues, differentiating user
groups is a good place to start. For instance, machine learning
experts might want to enhance or debug deep learning mod-
els, business owners might want to assess compliance with
regulations, and laypeople might want to gauge how Al deci-
sions affect their daily lives. Furthermore, XAI approaches
can be improved by considering the application domain while
incorporating domain-specific knowledge, yielding useful
explanations instead of quasi-explanations [49]. For instance,
in the healthcare industry, doctors would greatly benefit from
XAl techniques that could clarify the Al diagnosis and enable
the injection of the expert’s knowledge to enhance the quality
of the explanations [176], [177]. Domain knowledge is also
essential in Al-based cybersecurity systems, where expla-
nations must satisfy the needs of many stakeholders [178].
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Besides domain-specific XAl methods, a research direction
might be to develop general XAl methods that incorporate
specific domain knowledge. Finally, tighter integration of
humans into the explanation generation can lead to a better
evaluation of the methods.

4) EASY-TO-USE EXPLAINERS ARE DESIRABLE

Some XAI methods to explain black-box models might be
viewed as black-boxes themselves, as pointed out in previous
works [27]. Explaining complex ML models calls for sophis-
ticated and often complicated XAI methods. For example,
some XAI methods come with assumptions like local linear-
ity or feature independence (see [123], [124] for a discussion)
and many hyperparameters, e.g., to control approximations of
computationally expensive explanations. For these reasons,
there is a risk that the XAI methods will produce invalid
explanations.

5) MORE RIGOROUS EVALUATION OF EXPLANATIONS IS
NEEDED

We view the evaluation of explanations as a crucial challenge
in XAl research in general, and specifically in XAl research
for time series. Evaluation of explainability in other domains
such as computer vision is much more advanced than in the
time series domain. In particular, adapting some of these eval-
uation techniques to previously presented XAl methods can
lead to first insights into developing more specialized ones.
In general, further methods for faithfulness analysis need to
be implemented and generally be used to establish a rigorous
quantitative and automatic evaluation. Finally, focusing on
verbalization and not only visualization can help improve
such evaluations even more, as possibly faulty explanations
can be identified more easily.

6) EVALUATION SHOULD ALSO ADDRESS HUMAN
INTERPRETABILITY

We observed that research in the field often addresses the part
of explainability, i.e. explaining a model by means of e.g.
a visualisation, shapelets or prototypes. These artefacts are
then shown with author-selected examples or in some cases
evaluated quantitatively. Whether the artefacts are indeed
interpretable for the target audience is an evaluation that is not
regularly conducted. The artefacts are, by definition, assumed
to be interpretable. However, as, e.g., shapelets can be differ-
ent to the initial dataset time series samples (see examples
in [142]), users do not necessarily understand such explana-
tions. The same is true in the case of highlighting parts of
the input data that do not correspond with the understanding
of domain experts (as shown in a study with medical doc-
tors in [74]). Furthermore, extracted prototypes are typically
evaluated with respect to acknowledged properties for pro-
totypes (e.g., sparsity, diversity). However, whether or not
these prototypes are useful to end users is not always eval-
uated. This fact emphasizes the need to involve end users in
evaluating a method’s interpretability, as also stressed in [49].
We believe that quantitative metrics should be used to support
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user studies or, if progress is made in studying the human
interpretability of XAl explanations, perhaps even to replace
them in the future.

7) UNIFIED IMPLEMENTATION OF XAl FOR COMPARATIVE
EVALUATION

While many of the reviewed XAI methods provide source
code (see Table 3), there is no unified library that allows for
easy comparative evaluation of XAI methods. Looking back
at the history of research on time series, we believe that the
initiative by Keogh and other researchers to provide a uni-
fied data archive [179] for evaluating time series algorithms
has inspired research in the field and made more rigorous
research possible. For time series classification, several pro-
gramming libraries exist (e.g., sktime, tsai). An analo-
gous library of XAI methods for time series classification
is desirable, ideally in connection with datasets. Recently,
promising work towards an XAl benchmark, not specifically
aimed at time series, was published as a preprint [180].

8) BENCHMARK DATA SETS FOR EVALUATION ARE
DESIRABLE

Quantitatively evaluating an explanation is challenging.
Using perturbation methods [7] requires setting thresholds
and to alter the original data using some pre-defined values
or some obtained background noise. Hence, the evaluation
process has a number of parameters itself, which might lead
to different results when being used by different researchers.
An idea could be to have gold-standard datasets for the
evaluation of explanations: time series that are annotated,
i.e., subsequences, data points or higher order features that
are known to be discriminative are annotated. Unfortunately,
such datasets are not available yet. Indeed, typically studies
proposing novel XAI approaches for time series experiment
on common benchmarking datasets used for TSC,2 not con-
taining annotations regarding interpretability, rather one label
per time series. For example, in computer vision there are
data sets that have annotations for parts within the image,
e.g., the CUBS data set [181] or CLEVR-XAI [182]. To be
as complete as possible, it might be an option to synthetically
create such datasets, inducing known class-discriminative
artefacts into the data. A drawback of such a solution would
be a potential overfitting of explanations methods towards
gold-standard data sets. Hence, those datasets could be an
additional option to check the plausibility of an explanation
but not a replacement for the more generic evaluation meth-
ods currently being developed e.g., [7], [165], [166]. Fur-
thermore, they will not replace user studies to evaluate the
interpretability for the target audience.

VIil. CONCLUSION
In this review, we presented the first extensive overview of
the current body of literature regarding XAl for time series

2Examples are the UCR archive [179] and the Time Series Classification
Website.
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classification. We proposed a taxonomy based on the granu-
larity of the explanation, categorizing the reviewed methods
into three groups of approaches: time points-, subsequences-
, and instance-based. We further highlighted the main
approaches to evaluate explanations and the practical chal-
lenges of developing quantitative and qualitative metrics
towards human and automatic techniques. To inspire fur-
ther research in the field, we identified various research
directions. Specifically, we believe there are research gaps
in the fields of higher-order explanations, model-agnostic
approaches, domain-specific explanations, easy-to-use expla-
nations, more advanced evaluation of explanations, evalua-
tion of interpretability as well as a unified framework with
XAI methods for time series classification and benchmark
data sets for their evaluation.

Explainability is a fast-growing subject in the literature,
and it is clear that the interest on the topic is rising. XAl
approaches for time series data are helpful in building trust
towards the decisions of machine learning algorithms, to bet-
ter support experts and their accountability and responsibility
in the decision-making, bringing insights in many critical
domains.
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