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Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radio-
therapy outcome analysis. This provides new insights into anatomical variability of pathophysiology
and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose
response associated with patient outcomes. This approach may offer powerful biological insights demon-
strating the heterogeneity of the radiobiology across tissues and potential associations of the radiother-
apy dose with further factors. As this methodological approach becomes established, consideration needs
to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a
comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robust-
ness to methodology, where clinical validation must show generalisability to external datasets and link to
a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential
benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key
considerations are discussed and recommendations provided for best practice.
� 2023 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 188 (2023) 109868 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Voxel based analysis (VBA) is becoming an established analysis
tool in radiotherapy (RT), allowing a deeper understanding of how
the full 3-dimensional (3D) dose distribution affects patients’
response to radiation. VBA includes the full, complex, dose distri-
bution in the dose–response analysis, making it possible to move
away from traditional approaches which reduce the dimensional-
ity and typically distil the dose down to a limited number of repre-
sentative values. In VBA, no prior assumption is made about
anatomical dose dependence; this allows the dose to ‘talk to us’
directly, potentially identifying associations between local dose
and patient outcomes. This approach becomes more crucial as bio-
logical insights, from in-vivo experiments, provide growing evi-
dence that the radiosensitivity of several organs is heterogenous
(e.g., due to some sub-structures being particularly radiosensitive)
[1–3]. VBA can identify these heterogeneous dose sensitivities
through defining ‘clusters’ of voxels in specific sub-regions of
organs. It is therefore essential to move away from whole organ
dose to VBA in order to map these insights into patient outcome
modelling. It is worth noting that, although making no assumption
on the homogeneity of organ response to radiation, VBA assumes
the existence of a static anatomical location whose irradiation
drives the outcome. This explains why the majority of the VBA lit-
erature focuses on normal tissue toxicity: Disease recurrence of
anatomically varying tumours (such as lung or brain lesions in dif-
ferent positions) represents a dose–response relationship that can-
not be studied with a classical VBA analysis due to the variability in
recurrence sites.

VBA requires several technical steps with careful validation at
each stage, each of which requires specific considerations. Addi-
tionally, given the complexity of the analysis, it is particularly
important that such research is driven by clinically focused ques-
tions, with the ultimate aim to provide patient benefit. This
requires engagement with multi-disciplinary clinical teams from
the inception of any planned analysis. This engagement needs to
guide the development of the study analysis plan to focus on
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VBA clinical roadmap
endpoints where clinical gains are needed. The increasing avail-
ability of radiotherapy planning archives, structured data collec-
tion in electronic patient notes, and linkage to registry data,
makes it feasible for VBA to generate these novel results.

There have been significant methodological developments in
VBA with numerous discovery studies performed. In section 2 we
present an overview of the key methodological steps and sum-
marise key papers using VBA in the thorax, pelvis, and the head
and neck. The current collective of work in the VBA field makes
the value of this methodology evident; and demonstrate the need
to provide a roadmap to ensure results can be translated success-
fully into patient benefits. In this paper, we start from the position
that VBA as a methodology has value and present guidance on how
to fully report and validate results, as well as the steps needed to
translate VBA results into the clinic for patient benefit.

Current use of VBA

Recently, there has been an increasing number of studies apply-
ing voxel-based methods in radiation oncology. Though some vari-
ation exists between the different implementations of VBA, the
approach mainly consists of the two following processes.

1. spatial normalisation of individual anatomies to a common ref-
erence anatomy;

2. statistical inference on the spatial signature of dose response.

Table 1 includes a representative sample of the VBA literature
which focuses on studies using an anatomically based common
coordinate system (CCS) to drive the registration. Alternative
approaches have been introduced which either implement dose
mapping across the surface of an organ or define a structure driven
coordinate system (supplementary table S1).

The technical aspects to consider have been previously
described [4]. Fig. 1 reproduces the flow diagram by Palma et al.
and describes the key steps required in successful VBA [4]. In this
section, we highlight some of the key considerations, while recom-
mendations for reporting standards will be introduced in the fol-
lowing sections.
Spatial normalisation

The first step of VBA involves the choice of an appropriate ref-
erence anatomy or common coordinate system (CCS), to which
dose distributions from each individual will be mapped [5]. The
definition of the optimal CCS must consider the tissue contrast of
the available images (typically the planning CT) with several
strategies presented in the literature:

� Using an average anatomy obtained by iterative registration
and computing intensity means [6] or via group-wise registra-
tion [7]. Groupwise registration approaches have been used
successfully to identify population representative CCS for paedi-
atric studies [8].

� Identifying multiple clusters among the population dataset in
order to repeat the voxel-based analysis on different templates
[9,10].

� Selecting an optimal template, i.e., a typical individual anatomy,
from the studied cohort or an external cohort [11–14]. The opti-
mal patient can be selected through affinity propagation clus-
tering [15,16] to identify the individual closest to all other
anatomies. Alternatively, the CCS can be chosen by organ-at-
risk mean parameters, for example bladder and urethral length
[17] or lung volumes [18].
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� Using a structural anatomical model as the CCS [19]. This
approach may help overcome challenges with poor soft-tissue
contrast and large inter-individual anatomic variability, for
example in bladder and rectum [9].

� Using population atlases, such as synthetic CT phantoms [20–
23]. This also acts to mask the lesion, minimising the impact
of the tumour volume within the DIR.

Once the choice of the CCS has been established, inter-patient
spatial normalisation needs to be performed to allow propagation
of the associated dose maps onto the CCS for statistical inference.
Many papers in Table 1 use deformable image registration (DIR)
algorithms, with the most used transformation models being
Demons and B-spline algorithms. Both algorithms have shown
excellent performance in inter-patient DIR, with a robust match
of anatomical structures in pelvis, head-and-neck (H&N), and tho-
racic regions. Both intensity-based DIR and structure driven DIR
[4], or a combination, have been used in the VBA literature. Those
strategies can all lead to good results with other imaging modali-
ties than CT. For example, this approach has been successfully used
in the brain to better characterise the cerebral anatomy [26].

The fundamental assumption is that the mapping to the CCS
perfectly aligns tissues, organs, and sub-structures of organs across
the patient population. This needs to be true for any imaging
modality or multi-modality registration. This, realistically, never
fully achievable; and, crucially, geometric uncertainties need to
be quantified and accounted for in VBA. Section 4.2 describes
approaches used in the literature, and presents recommendations.
Statistical inference

The basic strategy for statistical inference consists of testing,
voxel-wise, the null hypothesis on local dose differences between
groups of patients evaluated against a given outcome. The choice
for the appropriate statistical model is dictated by the representa-
tion of the outcome to be analysed. Importantly, when any statis-
tical inference is run across each voxel it is necessary to account for
multiple comparisons, i.e., it is likely that the null hypothesis was
incorrectly rejected for some voxels (type I errors) [27]. Accounting
for multiple comparisons within voxel-based dose analyse can be
done in several ways, as described in ‘The methodological cook-
book’ [4]. Focusing on RT-driven outcomes, VBA has been used to
analyse binary events for survival [13] and toxicity [15,18], or con-
tinuous toxicity variables [28], by 2-sample t-tests or Spearman
rank-correlation respectively. For time-to-event outcome analysis,
VBA relies on voxel-wise Cox regressions (e.g., survival [11], peri-
cardial effusion [25] and lymphopenia [23]).

Most VBA studies listed in Table 1 only considered dose to iden-
tify spatial dose–response patterns. However, both survival and the
risk of radiation induced morbidity will be influenced by other fac-
tors. Many studies considered patient-level adjustment variables
in post-hoc models, most often in multivariable analyses including
a dose statistic extracted from the VBA identified region [13,14,17].
This approach, although common in the literature, is limited as the
definition of a ‘region’ based on a selected significance level is
intrinsically dependent on the patient dataset size. Current best
practice includes adjustment variables directly into VBA via
voxel-wise Generalised Linear Models (GLMs) [16] or voxel-wise
Cox proportional hazard regressions [11 23, 25]. By doing so, their
effect is correctly accounted for in the estimation of the signifi-
cance maps.

Dose-response for several anatomical sites has been explored
using VBA techniques, with most research so far focused (although
not exclusively) on the thorax, pelvis and the head and neck (HN).



Table 1
Representative sample of VBA results using an anatomical based common coordinate system with deformable image registration (DIR) into a template anatomy. The table summarises the methodologies, statistical analysis and
outcomes analysed. CCS- common coordinate system, DSC – Dice Similarity Coefficient, DOO – Dose Organ Overlap, HD – Hausdorff Distance, MHD – Modified Hausdorff Distance, GLM – General Linear Model, TFCE – Threshold Free
Cluster Enhancement, COMSD – Standard Deviation of Centre of Mass, FWER – Family-Wise Error Rate.

Authors Clinical domain Outcome Patient
number

CCS DIR
algorithm

Lesion
masking

Registration /
Dose warping QA
metrics

Dose variability assessment VBA
statistic

Correction for
Multiple comparison

Filter Adjustment
variables
included

Acosta et al. 2013 [15] Prostate rectal bleeding G1
+

105 patient CT in the cohort (found
by affinity propagation
clustering)

Demons no DSC, HD, DOO no t-test no no no

Drean et al. 2016 [9] Prostate rectal bleeding G1
+

173 personalised (using each
patient as template) and
generic templates

Demons no DSC, DOO no Mann-
Whitney
test

yes (FDR - Benjamini-
Hochberg)

no no

Mylona et al. 2019 [17] Prostate urinary toxicity 272 patient CT in the cohort Elastix no centreline
distance (urethra),
DSC, HD

no Mann-
Whitney
test

yes (non-parametric
permutation test max
T)

no no

Monti et al. 2017 [12] Head and Neck dysphagia G3+ 42 patient CT in the cohort Demons no DSC, modified HD,
DOO

no GLM yes (non-parametric
permutation test max
T)

yes (TFCE) no

Beasley et al. 2018 [28] Head and Neck trismus 86 rigid registration within a clip
box

B-spline no COMSD no Spearman’s
correlation

yes (non-parametric
permutation test max)

no no

Palma et al. 2016 [18] Thorax lung toxicity (CT
changes)

98 patient CT in the cohort Demons no DSC, MHD, DOO no GLM yes (non-parametric
permutation test max
T)

yes (TFCE) no

McWilliam et al. 2017 [13] Thorax mortality 1101 patient CT in the cohort B-spline no Visual inspection
of DIR, COMSD

no t-test yes (non-parametric
permutation test max
T)

no no

Palma et al. 2019 [21] Thorax Radiation
pneumonitis G1+

178 synthetic CT phantom B-spline yes DSC, DOO voxel-wise dose standard
deviation

GLM yes (non-parametric
permutation test max
T)

yes (TFCE) yes

Palma et al. 2019 [22] Thorax-SBRT RTOG lung
toxicity G1+

106 synthetic CT phantom B-spline yes DSC, MHD, DOO voxel-wise dose standard
deviation

GLM yes (non-parametric
permutation test max
T)

yes (TFCE) yes

Green et al. 2020 [11] Thorax survival 1101 patient CT in the cohort B-spline no COMSD no Cox yes (non-parametric
permutation test max
b)

no yes

Abravan et al. 2020 [14] Thorax lymphopenia G3+ 901 patient CT in the cohort B-spline no not specified no t-test yes (non-parametric
permutation test max
T)

no no

Bourbonne et al. 2021 [63] Thorax CTCAE lung
toxicity G2+

167 not specified thoracic phantom MIM
maestro

no DSC on segmented
structures

no GLM yes (FWER Palm tool) no no

Cella et al. 2021 [25] Thorax heart toxicity
(Pericardial
effusion G2 + )

178 synthetic CT phantom B-spline
Elastix

yes DSC, DOO, COMSD voxel wise dose mean and
standard deviation, Pica,
connectograms

GLM, Cox yes (non-parametric
permutation test max
T, max Z)

yes (TFCE) yes

Monti et al. 2022 [23] Thorax lymphopenia G1+ 164 synthetic CT phantom B-spline yes DSC, DOO, COMSD voxel-wise dose mean and
standard deviation

GLM, Cox yes (non-parametric
permutation test max
T, max Z)

yes (TFCE) yes

Cho et al. 2022 [29] Thorax lymphopenia G3+ 66 not specified B-spline yes not specified no GLM yes (non-parametric
permutation test max
T)

yes (TFCE) yes

Monti et al. 2022 [24] Thorax esophagitis G2+ 173 synthetic CT phantom B-spline yes DSC, DOO, COMSD voxel-wise dose mean and
standard deviation

GLM, Cox yes (non-parametric
permutation test max
T, max Z)

yes (TFCE) yes
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Fig. 1. A flow chart of a VBA workflow. Images, masks of segmentations are registered using non-rigid registration (elastic image registration) to a CCS. The non-rigid
transformations are used to warp the dose maps into the frame-of-reference of the CCS allowing statistical analysis to be performed. The output of the statistically analysis is
displayed on the CCS allowing localisation to the underlying anatomy. Figure reproduced from Palma et al. [4].

VBA clinical roadmap
Each region presents specific considerations and opportunities; we
present a brief summary for each below.
Voxel based analysis in thoracic regions

There has been considerable focus on VBA analysis of thoracic
cohorts for survival and toxicity end-points. In analysing survival,
the base of the heart was identified in a large group of non-small
cell lung cancer (NSCLC) patients as a particularly dose-sensitive
region, where higher doses are associated with poorer survival
[11,13]. Such analyses have provided insight into the anatomical
drivers of toxicities. When exploring radiation pneumonitis (RP)
in NSCLC patients treated with either passive scattering proton
therapy or intensity modulated radiation therapy (IMRT), VBA
identified regions in the lower lungs (mainly the right lung) and
in the heart where the dose was highly correlated with RP, sup-
porting previously hypothesised biophysical relationships between
dose to the heart and RP [21]. In the same cohort of patients, a Cox-
VBA methodology was employed to analyse pericardial effusion,
highlighting regions both in the heart and lungs [25]. Furthermore,
correlations between local dose patterns and radiation induced
lung damage (RILD) were investigated for a cohort of lung cancer
patients treated with stereotactic body radiation therapy. The dis-
covered relevance of dose to the heart and lower lungs in the
development of RILD supports the previously reported results on
lung toxicity [22]. VBA analysis of radiation induced oesophagitis
has highlighted spatial dose patterns encompassing the thoracic
oesophagus [24].

For patients with lung cancer there has also been much interest
in investigating the development of lymphopenia. In a cohort of
901 NSCLC patients, significant correlations were identified
between the risk of severe lymphopenia (�G3) and dose to the tho-
racic vertebrae, total heart and lungs [14]. In a smaller group of
patients, treated with concurrent chemoradiation, a correlation
was found between lymphocyte depletion at the end of treatment
and the dose to the large vessels, in particular the aortic arch [29].
In addition, a Cox-VBA, incorporating an analysis of the kinetics or
radiation induced lymphocyte loss, identified the risks of irradia-
tion of lymphoid organs and organs with abundant blood pools
[23].
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Voxel based analysis in the pelvic region

In the pelvis, much of the work has centred on rectal and uri-
nary toxicities for patients treated for prostate cancer [15,30].
The relationship between rectal bleeding (RB) and the spatial dose
information was investigated for a cohort of 105 prostate patients
treated with IMRT; a significant correlation was highlighted in the
anterior part of the rectum [15]. This analysis was then method-
ologically refined and extended to a larger cohort of patients to
analyse risk of Grade � 1 and Grade � 2 RB, and demonstrated that
the irradiation of the inferior-anterior hemi anorectum and upper
part of the anal canal drives the RB development [9]. An analysis
of urinary toxicities relating to the dose to the urethra and bladder
has identified heterogeneous correlations between local dose and
five Grade � 1 symptoms: high correlations were found in the pro-
static urethra for acute incontinence, the bladder trigone for acute
and late urinary retention, the posterior bladder for dysuria, and
the superior bladder for late haematuria [17].
Voxel based analysis in the head and neck region

Due to the complexity of toxicity profiles and the potential for
multi-organ interplay, VBA has been proposed to provide better
understanding of the spatial signature of radiation sensitivity in
composite regions like in the head and neck (H&N) [12,28]. In a
small cohort of patients treated at a single institution with a com-
bination of 3D-conformal radiotherapy (3D-CRT) and IMRT, the
cricopharyngeal muscle and cervical oesophagus received signifi-
cantly higher doses in patients developing radiation induced acute
dysphagia [12]. VBA has also been used to investigate radiation
induced trismus, and to identify the most significant correlations
in the ipsilateral masseter [28].
Overview of the validation process

As with all forms of model development, models developed
using VBA techniques need to show that they are repeatable,
reproducible, and generalisable. In the VBA domain, consideration
needs to be given to technical (methodological) validation, clinical
validation, and translation into clinical use (Fig. 2). Here we define
the following:



Fig. 2. Illustration of the roadmap through the technical validation, clinical
validation and clinical utility leading to prospective clinical implementation.
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� Technical validation (section 4) needs to demonstrate that
results are repeatable to reasonable changes in the analysis
pipeline, associated, for example, with the choice of CCS or
DIR algorithm. In this context, accurate reporting and standard-
isation of the analysis procedure is crucial.

� Clinical validation (section 5) needs to demonstrate that find-
ings are reproducible and generalisable to external cohorts,
indicating findings are suitable for clinical translation. Repro-
ducibility refers to the ability of VBA to generate similar results
on slightly different input data. This could mean a second pop-
ulation of patients treated at the same centre or a population
from an external RT centre, but receiving the same form of
RT; i.e., technique, dose prescription and goals on target cover-
age, fractionation, constraints to OARs, and the same definition
of the study outcome. Generalisability refers to the ability of
VBA to generate similar results on independent populations,
which could differ more extensively from the original popula-
tion. This could include patients treated with different RT tech-
niques, doses/fractionation and constraints to OARs.
5

� Clinical utility needs to demonstrate that it is feasible to change
clinical practice to incorporate VBA findings, providing an esti-
mate of the benefit to inform appropriate prospective imple-
mentation strategies.

Typically, VBA results in a map of effect sizes and their statisti-
cal significance (p-map). Concordance metrics can be used to
assess repeatability, reproducibility, or generalisability of the VBA
results during the technical validation steps described. These con-
cordance metrics are included and described in Appendix A.

Technical validation

In addition to the methodological variability associated with the
definition of the VBA statistical model (false discovery rate vs
family-wise error rate control, threshold-free cluster-
enhancement filter, etc.), the major consideration for technical val-
idation remains the accuracy of the spatial normalisation, involv-
ing the assumption that the dose delivered to corresponding
locations is correctly mapped. This section will first focus on the
choice of the CCS and on the evaluation of the DIR before dis-
cussing methods to assess dose variability; recommendations for
best practice are provided for each step.
Choice of CCS

The choice of CSS needs to be robust to large anatomical and
imaging variability among patients. Small misalignments across
the population are expected and need to be assessed. Various
options for CCS used in the literature are described in Section 2.1.
However, studies comparing the choice of CCS have not been
widely performed. Methodologies selecting the CCS using cluster-
ing strategies have been proposed to avoid selecting the CCS arbi-
trarily, identifying the exemplar patient by competition as the
most representative shape within each cluster according to an
inter-individual distance based on geometric features of organ
shapes [9,15–17]. Repeatability of a VBA study should be assessed
by selecting multiple CCS and comparing results of the VBA from
each. An example is included as Fig. 3, this VBA study used multi-
ple CCS in an analysis of dysphagia in head and neck cancer treat-
ments [31]. Three CCS were used allowing identified regions to be
directly compared between template anatomies. The authors used
the information from different CCS to define the most robust
region, extracting the mean dose from the region on each template
anatomy. A further paper explored the potential of selecting mul-
tiple CCS for handling paediatric populations, selecting based on
age categories to maximise the accuracy of the registration step
[32]. Further methodologies for the comparison of the full VBA
maps can be performed using the methodologies described in
Appendix A.
DIR accuracy evaluation

Evaluating the accuracy of inter-individual mapping is complex.
Besides the lack of ground truth, anatomical differences between
patients limit the usability of traditional intra-patient DIR perfor-
mance metrics, such as those recommended in the report of Amer-
ican Association for Medical Physics (AAPM) task group 132[33]. In
the VBA literature, geometric and image-based metrics are com-
plementarily used to estimate inter-individual anatomical map-
ping accuracy. Dice similarity coefficient (DSC) and Modified
Hausdorff Distance are among the more commonly used evalua-
tion metrics. These metrics reflect geometric overlap between
transformed structures. Intensity-based scores, on the other hand,
allow estimating image similarity between the CCS and the warped
images. As intensity-based metrics do not rely on segmentations,



Fig. 3. Three CCS are shown in the three cardinal directions for the analysis of dysphagia in patients treated for head and neck cancer. Regions of significance (p < 0.005) for
three different dysphagia metrics. MDADI = MD Anderson Dysphagia Inventory; PSS-HN = performance status scale for normalcy of diet; WST = water swallowing test. In each
CCS the green region shows the common region across all three measures. These regions were used to extract the mean dose received for each patient plan on each CCS
allowing a measure of uncertainty to be determined. Figure reproduced from Vasquez Osorio et al. [31].

VBA clinical roadmap
they are not impacted by inaccuracies in their definition (inter-
observer variability). However, good performance estimated by
these metrics does not necessarily imply good point-to-point
mapping.

In the context of dose VBA, the Dose Organ Overlap (DOO) can
be an insightful metric, especially where high dose gradients are
present, common within OARs. In this situation, registration errors
may result in large local differences in dose on the reference tem-
plate. This metric measures the ratio between dose distributions
on the intersection and union of the considered region, and is sim-
ilar to a DSC weighted by the dose [19]. The most important con-
sideration in using this metric is the assumption that the dose
distributions will be similar across the patient population.

Once assessed, the Euclidean uncertainty in the DIR can be
accounted for, prior to statistical VBA, by blurring the patients’
dose distributions by a Gaussian kernel with the corresponding full
6

width half maximum (FWHM). This approach relies on the
assumption that the registration errors are spatially uniform and
randomly distributed between patients, and therefore impact the
dose mapping in a random fashion.
Assessment of the dose variation and correlation

Spatial characterisation of the dose should form part of the
technical validation for every VBA study in RT [34]. In radiation
oncology, VBA can only identify dose patterns that are within the
range of the heterogeneity of the dose distributions included in
the dataset. Therefore, it is essential to acknowledge the intrinsic
features of the dose that can limit the robustness of the VBA results
and impact the radiobiological detail that can be identified.

The homogeneity of the statistical power in the analysed
anatomical region strongly depends on the uniformity of voxel-
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wise dose cumulants. Homogeneous mean (l) and standard devia-
tion (r) maps rule out the hypothesis that relevant radiosensitive
regions were dampened in the VBA results due to the non-uniform
variability of the dose maps. Consequently, l and r maps of nor-
malised dose distributions should be computed voxel-wise over
the patients and their uniformity can be quantitatively evaluated
by the Michelson contrast [34] as described in Appendix B. In addi-
tion, the spatial resolution of the VBA results (maps of the statisti-
cal model coefficients and their significance) may be affected by
the correlation between the doses delivered to different anatomi-
cal substructures [25]. The spatial independence of the doses deliv-
ered in the CCS to each substructure can be investigated by means
of probabilistic independent component analysis (PICA) [35] and
connectogram analysis [36].

The PICA blindly infers the model order of the analysed dataset,
which corresponds to the number of statistically significant inde-
pendent spatial maps that generate the input. When applied to a
dose distribution dataset (in the form of n [patient] � M [voxel]),
a PICA model order comparable to the cohort size n signals a signif-
icant mutual independence between patients’ dose distributions.

The connectograms, instead, highlight the most relevant associ-
ations between each pair of substructures according to the pair-
wise significance of the Spearman correlation between the mean
doses related to the substructures. Indeed, the VBA will have more
chance to discriminate the statistical properties arising from each
substructure where there is a weaker correlation between sub-
structure pairs. In the connectogram rings, outwards from the cen-
tre, the average and standard deviation of the mean doses across
the patient population is presented for each substructure. This
approach is a powerful visual representation to aid understanding
of the correlations of dose and identifying potential limitations
within the VBA.
Dose accuracy and dose conversion

A further potential source of uncertainty comes from the use of
data from older versions of treatment planning systems where
there exists uncertainty in the dose calculation. For example,
where a lung plan was calculated using a pencil beam algorithm
compared to more modern calculations using collapsed cone or
Monte Carlo techniques. Care is needed to describe the dose calcu-
lation used within the manuscript. Where results from the VBA are
presented, consideration and discussion of whether these are likely
to be affected by regions of high uncertainty in the dose calcula-
tion, i.e., where scatter conditions are not fully modelled.

Dose distributions should be corrected for fraction size effects,
by rescaling to an equieffective dose (e.g., a Biologically Effective
Dose, BED), commonly done using the linear quadratic (LQ) model
[37]. The choice of the a/b value applied in the LQ model needs to
be driven by evidence, where available, for the study end-point
analysed (i.e., tumour control versus normal tissue acute or late
toxicity). Finally, where there is uncertainty regarding the correct
choice of a/b value, a sensitivity analysis can be performed, chang-
ing the value across a reasonable accepted range and evaluating
any potential impact on the reported results.

Clinical validation and utility

Clinical validation and demonstration of clinical utility are
essential steps in the translation of VBA results into decision mak-
ing and thus ultimately improvement of patient outcomes. Clinical
validation needs to demonstrate that the VBA results are general-
isable and robustly associated to a meaningful outcome, across
multiple datasets and patient populations. Clinical utility refers
to the ability to interpret and apply the results from the VBA in
7

the clinical pathway to achieve an overall benefit for patients. Here,
we follow the workflow described in Fig. 2.
Pre-clinical and clinical radiobiological interpretation

Clinical plausibility needs to be considered for any VBA spatial
map. As a minimum, the VBA results need to be evaluated against
current understanding of the pathophysiological processes associ-
ated with the anatomy in question. In other words, from which
potential biological mechanisms could the dose–effect heterogene-
ity stem? These discussions should incorporate expert domain
knowledge through input from relevant medical specialists. The
degree of biological plausibility may guide the level of evidence
needed for further validation. These discussions will also inform
endpoints for future prospective studies, and generate hypotheses
to direct future avenues of research, both pre-clinical and
translational.

A deeper understanding of VBA findings can arise from a back-
translation process, using the population level findings to formu-
late testable pre-clinical hypotheses. Potential mechanisms identi-
fied through discussions with medical specialists can guide the
design of experiments to understand the potential underlying
pathophysiology. This may include experiments in animal models,
for example selective irradiation of the identified anatomical
regions under controlled conditions. In an example of this process,
VBA results identifying the most radiosensitive regions in the heart
of lung cancer patients [13] were back-translated into controlled
mice experiments, validating the findings and identifying potential
mechanistic explanations [1,38].
Clinical validation

Validation of VBA goes beyond standard model validation in
that two interlinking aspects need consideration and separate
validation:

1. spatial dose–response maps;
2. predictive models which include the knowledge obtained by

VBA.

The efforts required to validate the VBA model are proportion-
ate to the patient risk associated with its implementation. The risk
assessment should take into consideration the complexity of the
hypothesis, the trade-offs involved in its implementation and the
expected gain [39].

Extensive validation and reporting guidelines for predictive
models are available, presenting a best practice approach that
can be adapted for the VBA paradigm. In particular, predictive
models which include knowledge obtained by VBA should be
reported using the TRIPOD consortium checklist [40]. As discussed
in section 3, validation should involve both assessment of repro-
ducibility (the ability of VBA to generate similar results on slightly
different input data) and generalisability (the ability of VBA to gen-
erate similar results on independent populations). These two steps
may involve both internal and external validation cohorts [41]. An
example of external validation of VBA on multiple external and
independent cohorts is included as Fig. 4.

For validation of dose response maps, the following approaches
should be considered depending on availability of datasets:

� Internal resampling 1) bootstrapping: repeatedly resample the
population to define a spatial dose response map defining a con-
sensus result with confidence intervals. 2) cross-validation: val-
idation of the model prediction in the resampled test portion of
the dataset [44].



Fig. 4. Example of external validation in VBA in multiple cohorts. The VBA associated higher dose to the base of the heart with excess mortality after radiotherapy for patients
with lung cancer. The same CCS is used in each case allowing regions defined by the VBA to be compared across cohorts. The lines in each analysis represent the 95th, 90th,
and 85th significance level. In (a), 1101 patients from a single centre were analysed, all treated with 55 Gy in 20 fractions [13], in (b) 490 patients from the RTOG 0617 trial are
analysed [42], and in (c) 205 patients from the PET-plan were analysed [43].”.

VBA clinical roadmap
� Mapping the identified anatomical structure directly to an
internal/external validation cohort, extracting dose to this
region and validating the derived models [19,41].

� Generation of the spatial dose response map in the internal/ex-
ternal validation cohort for direct comparison against the train-
ing result. The form of suitable comparison will follow from the
VBA model applied as described in Section 4 and appendix A.

Importantly, validation of spatial dose response maps may fail
both due to inherent issues with the developed VBA model (lack
of reproducibility), and due to differences in treatment techniques
or patient data between the development and validation cohorts
(lack of generalisability). As in any clinical prediction model devel-
opment, consideration needs to be given to patient level factors,
and how this might impact the generalisability of spatial dose
map findings. Geographical population factors will interact with
dose and impact VBA results. For example, higher incidence of
smoking or multimorbidity burdens will likely interact with the
dose–response against the end-points of interest for VBA – overall
survival, recurrence, and toxicity. Recommendations are available
to aid in understanding and quantifying these impacts [40].
Clinical utility and implementation

This section outlines a framework and recommendations
required to perform the in-silico comparative studies whose
results will guide clinical studies to show feasibility and will pro-
vide the initial estimate of expected clinical benefit for patients.
Finally, approaches for prospective clinical implementation studies
will be suggested to measure real patient outcomes.
Clinical planning
The potential use of knowledge from VBA in treatment planning

(TP) optimisation is numerous, with increasingly complex imple-
mentation requirements. This section will focus primarily on cur-
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rent standard of practice approaches with a view towards future
optimisation strategies.

1. Identification of an anatomical structure as outcome driver, for
which conventional dose metrics (DVH/EUD/max dose) can be
extracted and constrained in TP.

2. Implementation of multi-criteria TP optimisation process of the
3D dose map based on different VBA-based NTCP models of
treatment outcomes.

Due to the nature of the methodology, results from VBA will not
inherently align with standard anatomical structures. For plan
optimisation, this presents some difficulties: current standard
planning practices require a defined region with which to apply a
dosimetric constraint for plan optimisation. Section 5.1 discussed
the need for biological plausibility in the underlying anatomy. This
process should be extended so that segmentation of the most dose-
sensitive regions can be protocolised based on an anatomical def-
inition. The definition of this region should involve clinical experts
to ensure inclusion of structures where irradiation may impact
organ function.

Most importantly, as discussed throughout the paper, the seg-
mentation of dose-sensitive regions, as opposed to dose-
insensitive regions, represents a simplification to work with capa-
bilities of commercial treatment planning systems and does not
fully utilise the potential of VBA. Instead, the future direction of
VBA is towards optimising plans directly on the dose response
maps. Such dose response maps lend themselves to dose painting
approaches; where optimisation constraints can be applied in a
per-voxel level (directly from dose response maps for individual
patient outcomes) in combination with optimisation constraints
based on segmentations. Methodologies from studies optimising
plans using functional imaging information can be readily adopted
[45–47]. Where multiple dose response maps are being used
within the same plan then multicriterial optimisation and prioriti-
sation need to be considered.



A. McWilliam, G. Palma, A. Abravan et al. Radiotherapy and Oncology 188 (2023) 109868
Next, the ability to optimise deliverable plans has to be demon-
strated through planning and delivery verification studies. Recom-
mendations are published for completing and reporting planning
studies [48], including studies comparing photons with proton
plans [49]. Clinical acceptability, including the ability to meet
existing protocoled constraints, needs to be shown alongside
implementation of any further dose constraints based on the VBA
result. Furthermore, visualisation of differences in the dose distri-
bution and in organ DVHs between ‘traditional’ and VBA-based
plans will provide confidence that no unacceptable detriment in
dose distributions is present.

Where new optimisation constraints impact target coverage or
existing OAR dose levels then prioritisation among planning goals
is needed. This requires clinical consensus, discussions with
domain experts as part of an iterative planning study to define
what is achievable. This process can develop planning approaches
and identify patient specific metrics to determine which patients
may require a higher level of input and expertise to define their
optimal plan. Flagging such cases early in the process as complex
allows additional time or resources to be allocated.
Estimating potential clinical impact
Retrospective planning studies will provide an estimation of the

ability to clinically implement the VBA insights. Combined with
understanding of other toxicity risk factors, this will enable initial
estimates of the potential benefit for patients [9,50], as well as
identification of sub-groups where absolute benefit may be highest
/ lowest. While the impact of the new approach can be expected to
vary greatly, depending on the extent to which existing planning
strategies already incidentally suppress the dose to the VBA-
defined region, VBA insights may generally result in more deliber-
ate planning strategies. Such work will provide guidance on the
number of patients where a dose reduction is possible. There
may be a role for use of separate, validated NTCP models to further
quantify the expected patient benefit. These in-silico experiments
will inform prospective implementation, allowing an estimate of
the number of patients needed to demonstrate the effect. Based
on this, the most appropriate form of prospective implementation
can be chosen, with possibilities discussed in the following section.
Prospective clinical implementation

Ultimately, the dose distribution across the patient’s anatomy
will be altered, even if dose statistics are acceptable and the DVH
curves comparable to existing practice. Any implementation in
the clinic needs appropriate monitoring for any unexpected
increase in patient toxicities.

Robust comparisons between treatments optimised using novel
VBA dose limits could be made using randomised controlled trials
(RCT). However, the practicalities of implementing RCTs, and the
challenges of using them to evaluate changes in rapidly evolving
radiation treatment delivery techniques, mean they are often not
suitable for this type of innovation [51]. Alternatives for imple-
mentation of technical changes in RT optimisation include:

1. Continuous learning cycle [52,53] where potential impacts to
patient outcomes, due to changes in treatment, are monitored
using routinely collected data. A proof-of-principle clinical
study using this framework for implementing a VBA result is
underway, as described by Price et al. [54].

2. The R-IDEAL framework [55] uses a five-stage development
process, aiming for quick clinical implementation without
exposing patients to additional risk. The steps described above
fall under R-IDEAL stage 0, with stage 1 the first time used in
patients, through to long term outcomes (stage 4).
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Recommendations / best practice guidelines

The following section summarises recommendations for best
practice to perform VBA experiments and report within scientific
papers.
VBA reporting

1. The choice of CCS(s) and the rationale behind it should be
fully described.

� Consider making the chosen CCS(s) available open source along-
side study publications, to allow for reproducibility experi-
ments by independent groups. This can be facilitated by using
open-source patient images or digital phantoms as the CCS.
2. The DIR algorithm and its tuning parameters should be

included for reproducibility.
� If any registration has been fine-tuned (e.g., for maximising the
numbers in small datasets), the number of instances and devi-
ating workflow should be reported.

� The number of patients with a failed spatial normalisation of
the dose should be reported and what were the encountered
issues (e.g., atypical anatomical differences, excessive image
artefacts).
3. DIR accuracy should be described, including the metric(s)

used for evaluation.
4. If dose was converted, details of the model should be

reported (e.g., a/b, BED vs EQDx).
5. The results of VBA (statistical effect size and significance)

should be presented as thoroughly as possible:
� The effects and significance maps should be fully presented, no
thresholding should be applied to demonstrate levels of
significance;

� Snapshots of multi-planar reconstruction of the maps should be
shown along the main three anatomical planes;

� Consider including a binary file of the full 3-dimensional VBA
maps as supplementary material or in a public git-hub reposi-
tory (e.g., zenodo, git-hub, academic website), linked to the spa-
tial coordinates of the CCS.

VBA technical validation

1. VBA results from multiple CCS should be compared to assess
the robustness to the choice of the CSS according to the valida-
tion metrics.

2. An assessment of the dose variability and autocorrelation in the
population should be performed by computing:

� Voxel wise mean and standard deviation of the dose
distributions;

� Consider: Present dosimetric PICA and connectograms if rele-
vant structures are available.

3. If a model of biologically effective dose has been used, consider
including a sensitivity analysis of potential impact of changing
key parameters (a/b) as supplementary material.

VBA clinical validation

1. TRIPOD reporting guidelines should be followed, with repro-
ducibility and generalisability reported.

2. Differences in patient demographics, treatment characteristics
and dose variability between cohorts (assuming prior publica-
tion includes information) should be acknowledged.

3. Recommendations for technical validation should be followed
in new cohorts.
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Considerations for translation

For translation, guidelines exist and are discussed above. The
key considerations are:

1. Definition of the anatomical region for planning with clear
guidelines for reproducing. Or, how the VBA results are to be
incorporated into planning optimisation (e.g., dose painting).

� Design of the expert consensus process.
2. Definition of the optimisation constraints for the VBA region

and prioritisation of goals in RT treatment planning.
3. Implementation of any VBA results within a prospective study

is essential.

Discussion

VBA is providing new insights into anatomical variability of
pathophysiology and radiosensitivity by removing the need for
prior definition of organs assumed to drive the dose response asso-
ciated with patient outcomes. In the last decade, the methodology
has been developed and toolkits expanded to handle a variety of
clinical questions [4,56]. Exemplar VBA results are now moving
towards clinical translation with the aim to improve patient out-
comes after RT [55]. Translating novel research into clinical prac-
tice for patient benefit is a difficult task in RT. To ensure that
VBA results do not fall into the (so-called) translational gaps [57],
here we presented a roadmap paper for bringing VBA results from
conception, through technical and clinical validation, to demon-
stration of clinical utility and implementation.

Current state-of-the-art VBA includes adjustment variables
directly in the analysis rather than in a post-VBA step. Two
multi-variable approaches are gaining ground with voxel-based
Cox-Proportional hazard models [11] and generalised linear mod-
els [18]. The interpretation of these analyses becomes increasingly
difficult as they produce one effect map per variable. These maps
show how the impact of each variable changes across the CCS with
the dose variability in the patient population. With each additional
variable included in the analysis, the more complex the output
becomes. Better methods to display and interrogate this multidi-
mensional output are needed to fully utilise these approaches. It
is important to note that the maps of each included covariate are
analogous to multiple estimates from a single (multivariable)
model. Analysing these in isolation can introduce biases (the ‘table
2 fallacy’ [58,59]). Interpretation of such estimates is further com-
plicated by heterogeneity (variation, modification) of the exposure
effect measure across covariate levels. It is therefore recommended
to focus on interpreting the maps of the variable under scrutiny (in
this context, the dose) to avoid over-interpretation and biases. Fur-
ther, as in any statistical analysis, proper variability of the explana-
tory variables (e.g., the dose) and the dependent variable (e.g., the
RT outcome) is required to power the analysis. Performing a
prospective study power calculation remains a difficult and
unsolved problem in VBA.

VBA will continue to be developed and additional tools devel-
oped to facilitate better understanding. With a view to future
developments, there is a need to move to a causal interpretation
of VBA results. As above, interpreting the output of VBA accounting
for pre-selected adjustment variables may inflate the risk of table 2
fallacy [58]. Moving to causal inference techniques [60] will reduce
this risk and would open possibilities to ask ‘what if?’ questions in
understanding the best approach to mitigate the observed risk.

Current approaches to translate VBA require the definition of a
VBA-based dose/volume metric or equivalent uniform dose (EUD)
objective for inclusion in treatment plan optimisation. This is
reflected in the roadmap presented above. Future approaches
should use the radiosensitivity maps within a dose painting opti-
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misation approach. These maps will break the link to predefined
anatomical structures and will account for patient factors. Where
multiple radiosensitivity maps exist (for example, where multiple
toxicities have been modelled), then these can be used within a
multi-criteria optimisation. The validation of the full VBA sensitiv-
ity map will need a different approach to that presented and needs
to be fully developed by the community.

In conjunction with the analysis of the full dose information,
future studies may consider accounting for patient genetics. There
is increasing understanding of genetic markers for individual
radiosensitivity [61]. These markers are likely to interact with
the 3-dimensional dose distributions as a modulating factor for
risk of toxicity [21]. Depending on the patient population and the
outcome of interest, the optimal analysis may account for both,
marrying individual genomic markers with individual dose.

This paper presents a roadmap to report VBA findings and steps
needed for technical and clinical validation to move VBA findings
into clinical practice. Crucially, for ease of multi-centre validation,
we need standardised, open access tools [62] and the creation of an
international VBA community. This VBA community will work
together to develop and champion VBA to ensure results define
the optimal RT for patients.
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Appendix A. Validation metrics

A possible concordance metric for the b maps obtained in
repeatability, reproducibility or generalizability experiments is
the Minkowski distance. Given two maps A and B, it is defined as:

da A;Bð Þ ¼ 1
k Xð Þ

Z
X
A� Bj jadk

� �1
a

where kðXÞ is the measure of the analysed region-of-interest. This
distance, parametrized by the real parameter a � 1, can be sum-
marised by the global metrics [61]:

d A;Bð Þ ¼
Z 1

0
d1

n
A;Bð Þdn

which ranges from 0 (perfect match) to 1 (worst match) [64].
The same metric can be applied for the repeatability check of

the p maps (in this case, it ranges from 0 (perfect match) to 1
(worst match)), since a repeatable significance map would require
an absolute matching of the p values. In this case, the DSC Index
over p (DIp) has been suggested as an alternative concordance mea-
sure [4]. Given two significance maps, A and B, and defining SP as
the sublevel set of a significance map at a given p value, the DIp
is computed, for each A;Bð Þ < P � 1, as:

DIp A;B½ � Pð Þ ¼ DI SP A½ �; SP B½ �ð Þ
where DI is the DSC Index over two sets. The average value of the
DIp function can be used to summarise the match and it ranges from
0 (worst match) to 1 (perfect match).

On the other hand, the comparison of significance maps for
reproducibility or generalizability studies requires a measure not
focusing on absolute matching of the p values. A valuable alterna-
tive is provided by the DSC Index over Volume (DIV). Denoting as
f X P½ � the relative volume of SP X½ �, for each 0 < V � 1 the DIV is
defined as:

DIV A;B½ � Vð Þ ¼ DI Sf�1
A Vð Þ A½ �; Sf�1

B Vð Þ B½ �
� �

DIV measures the match for an equal volume of the significance
maps and quantifies the spatial trends of significance, looking at
the overlap of equally ranked voxels. It has been shown that its
AUC ranges between 1-log 2 (worst match) and 1 (perfect match)
[4].

Appendix B. Uniformity of dose cumulants

For a function I, the Michelson contrast can be computed as:
11
CM ¼ Imax � Imin

Imax þ Imin

where Imax and Imin are the highest and lowest values of the function.
For a positive-valued function I (such as l and rmaps), 0 � CM � 1.
For a given fraction, 0 < f � 1 of the volume V of the support (i.e.,
the analysed organ or anatomical apparatus) of I, CM I½ � fð Þ can be
defined as the minimum CM assumed by the restrictions of I over
the subsets of V kSik ¼ fkVkf g. Since CM I½ � fð Þ is a monotonically
increasing function, a summary description of the uniformity of I
is provided by its area under curve (AUC). The AUC value of
CM I½ � fð Þ is 0 for the constant maps and tends to 1 for highly inhomo-
geneous maps.
Appendix C. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.radonc.2023.109868.
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