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This paper reports the design and assessment of a neuro-fuzzy model to support clinicians during
virtual reality therapy. The implemented model is able to automatically recognize the perceived
stress levels of the patients by analyzing physiological and behavioral data during treatment. The
model, consisting of a self-organizing map and a fuzzy-rule-based module, was trained unobtrusively
recording electrocardiogram, breath rate and activity during stress inoculation provided by the
exposure to virtual environments. Twenty nurses were exposed to sessions simulating typical
stressful situations experienced at their workplace. Four levels of stress severity were evaluated
for each subject by gold standard clinical scales administered by trained personnel. The model’s
performances were discussed and compared with the main machine learning algorithms. The neuro-
fuzzy model shows better performances in terms of stress level classification with 83% of mean

recognition rate.

RESEARCH HIGHLIGHTS

• Stress levels were predicted on the basis of physiological computing using a neuro-fuzzy model during
virtual reality therapy.

• Features were extracted from ECG and respiration obtaining high accuracy and optimization of
computational costs.

• The neuro-fuzzy model shows better performance than the more frequently adopted classifiers.
• This approach may enhance the use of physiological computing for stress treatment in clinical

practice.
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1. INTRODUCTION

Psychological stress contributes to many chronic diseases
suffered by citizens in today’s society. Exposure to prolonged
stress is known to increase the risk of physical and
mental health problems, including depression and disabling
anxiety conditions. Furthermore, chronic stress can lead to
immunodepression and dysregulation of the immune response,

thus significantly enhancing the risk of contracting a disease or
negatively altering its course (Gao et al., 2013). According to
Cohen et al. (1995), stress is a biopsychosocial phenomenon
in which ‘environmental demands tax or exceed the adaptive
capacity of an organism, resulting in psychological and
biological changes that may place a person at risk for disease’.
This definition emphasizes that in dealing with stress, it is
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not only necessary to consider the environmental demands,
but also the appraisals of such demands, as well as the
physiological systems that come into play. Recently, there
has been growing interest toward the use of virtual reality
(VR) as a new technology-based strategy for assessment and
management of psychological stress. VR is employed together
with cognitive-behavioral therapy to gradually and repeatedly
expose patients to events that have been previously identified
as potential stressors. The key-idea underlying this approach is
that virtually ‘inoculating’ the stressor in combination with the
acquisition of effective coping skills could prepare the patient
to face similar situations in daily life (Serino et al., 2014; Wood
et al., 2013). However, an open question in the application
of VR for stress assessment and management, is how to
accurately evaluate the stress response during the exposure
(Darwish and Hasseinein, 2011). There are many biomarkers
that can be used as good indicator of stress levels such as
the secretion of cortisol (Miller et al., 2007) or the salivary
enzyme alpha-amylase (Takai et al., 2004), but even though
these biomarkers are more reactive to acute stress their analysis
is not feasible in real time. The use of wearable biosensors for
monitoring physiological and behavioral correlates of stress is
a potential alternative strategy (Gaggioli et al., 2014; Popovic
et al., 2009; Riva et al., 2010). In particular, the ECG signal,
acquired by smart, minimally obtrusive sensors, is considered
one of the most reliable physiological parameters that can be
extracted from human body, with a wide range of features,
in both time and frequency domains, that could be extremely
useful indicators of a subject’s stress state (Gomes et al.,
2013; Okada et al., 2013; Sweeney et al., 2013). However, the
analysis and interpretation of ECG measures is extremely time-
consuming and requires specific technical skills, which are
often unavailable to psychotherapists. To address this need, a
neuro-fuzzy physiological computing model was designed and
validated to assist the therapist/researcher in the assessment of
stress levels is proposed during VR sessions. The system was
tested in a field trial, in which a sample of nurses was presented
with virtual stressful situations experienced at their workplace.

2. RELATED STUDIES

One of the most investigated cognitive-behavioral techniques
for the management of stress is the Stress Inoculation Training
(SIT; Meichenbaum and Novaco, 1985). SIT is implemented
through gradual and repeated exposure to events, which
have been previously identified as potential stressors. A key
objective of this technique is to ‘inoculate’ the stressor in
combination with the acquisition of effective coping skills
in order to prepare the patient to face similar situations in
daily life. In recent years, there has been growing interest
toward the use of VR to support SIT (for a review, see
Serino et al., 2014). By exposing the patient to realistic
simulations of typical stressful situations, VR is thought

to further enhance the efficacy of inoculation (Chittaro,
2013). However, a key issue in the application of VR in
the SIT approach is how to accurately evaluate the stress
response during the exposure to the simulated stressor. The
use of biosensors for monitoring physiological and behavioral
correlates of stress has been proposed as a potential solution
to this need (Gaggioli et al., 2013a,b; Pallavicini et al.,
2013; Tartarisco et al., 2012). Such systems integrate sensors
together with on-body signal conditioning and pre-elaboration,
as well as management of energy consumption and wireless
communication protocol (Anliker et al., 2004; Vuorela et al.,
2010). ECG, despite monitoring of other physiological signals
such as galvanic skin response, surface electromyography and
pupil diameter, is probably the most significant and reliable
stress-related information that can be collected during VR
exposure. Actually, there is substantial evidence that heart
rate variability (HRV) indices can be used to estimate activity
of the autonomic nervous system in relation to affective
and cognitive states, including mental stress (Berntson and
Cacioppo, 2004; Kimhy et al., 2009; Melillo et al., 2011;
Salahuddin et al., 2007; Sloan et al., 1994). For example,
HRV features have been used to discriminate between subjects
reporting high and low levels of stress during the day, with
an overall accuracy of 66.1%. (Kim et al., 2008). Another
study compared short-term HRV measures using short-term
ECG recording in students undergoing university examinations
(Melillo et al., 2011). By applying linear discriminant analysis
on non-linear features of HRV for automatic stress detection,
these authors were able to obtain a total classification accuracy
of 90%. The relationship between stress and cardiac autonomic
regulation was also investigated in a sample of psychotic
patients, using experience sampling in combination with
cardiac monitoring (Kimhy et al., 2009). They found that
momentary increases in stress were significantly associated
with increased sympathovagal balance and parasympathetic
withdrawal. A fundamental issue in the measurement of stress
is that this response is idiosyncratic, because it depends on
an individual’s perception of challenges and the skills which
she/he can use to face those challenges. Furthermore, it is
important for the system to be tailored to the individual
characteristics. One possible approach to developing adaptive
systems for stress recognition was identifying a subject’s
baseline and stress threshold in a laboratory setting by eliciting
sympathetic and parasympathetic responses, and then using
this information to differentiate between stress and no-stress in
daily life (Cinaz et al., 2013; Morris et al., 2010). It is complex
to create models to assist the therapist in the assessment of
stress levels during VR sessions. Traditional approaches are
reported to be extremely time-consuming and the data analysis
is not easy for clinicians without any particular technical skills.
For this reason, the employment of new methods that could
help the therapist by simplifying his work and reducing the
time required for data analysis is growing exponentially in the
stress monitoring field (Campos et al., 2013; Villarejo et al.,
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Figure 1. System architecture overview.

2013). Among the several different models that could be
employed, the mixture of artificial neural networks (ANNs)
(Chakroborty, 2013; Liu et al., 2013; Sansone et al., 2013;
Sun and Cheng, 2012) and fuzzy rule-based algorithms
(Gacek, 2013; Haseena et al., 2011a,b; Javadi, 2013; Rajendra
Acharya et al., 2013; Selvaraj et al., 2013) have proved to be
extremely useful in classification in general. For this reason,
this approach could be a convenient alternative for classifying
stress in different categories depending on the parameters
extracted from an ECG signal. A study (Haseena et al.,
2011a,b) demonstrated the high reliability of this mixed
approach in classifying arrhythmias from ECG signal with
a percentage up to 99.58%, a considerably high value that
revealed once more the effectiveness of merging ANNs with
fuzzy-rule-based algorithms.

3. MATERIALS AND METHODS

The neuro-fuzzy model is part of a general data acquisition
and processing architecture (Fig. 1). The general architecture
is composed of a personal biomonitoring system (PBS), a
personal computer (PC), a central server (CS) and the analysis
module (AM). The PBS is dedicated to tracking physiological
and behavioral parameters of the user. The PC is devoted to

hosting the VR, as well as to collecting and sending data to
the CS. The AM consists of a feature extraction and selection
modules and the neuro-fuzzy model.

3.1. Personal biomonitoring system

The PBS is an ergonomic chest band, easily worn during
daily activities. It integrates a tri-axial accelerometer, an ECG
module and electrodes in a comfortable platform as shown
in Fig. 2. The chest band collects, fuses and analyzes the
meaningful physiological parameters to study stress effects,
i.e. inter-beat interval (IBI) and breathing rate (BR). IBI is
defined as the time in milliseconds between two normal R
to R waves of the ECG. Moreover, the level of user activity
is analyzed using the signal magnitude area (SMA) index
(Luinge and Veltink, 2004). The SMA index will be useful to
automatically exclude from our analysis the motion effects that
affect the physiological stress related response. The SMA is
extracted from a tri-axial accelerometer integrated in the PBS
(Bouten et al., 1997). The ECG module consists of a three-
lead sensor and an electronic 256 Hz sampling front-end based
on the INA321 instrumentation amplifier. INA321 rejects the
common-mode amplifying the input differential ECG signal.
The core of the system is the low power microcontroller
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Figure 2. The chest band and its electronic board.

Figure 3. PBS data packet format.

(MSP family made by Texas Instruments, MSP430FG439)
able to pre-process ECG and respiration signals.

A Kalman filter with a predictor stage allows a QRS
complex to be accurately detected (Carbonaro et al., 2011)
and the IBI signal to be extracted. In order to collect the BR,
a polyvinylidene piezoelectric cable is integrated in the chest
band. The cable transduces the mechanical forces produced
during the chest movements into an electrical signal, from
which analysis allows the BR to be extracted, as previously
demonstrated (Carbonaro et al., 2013). Each measurement is
stored in the CS using a data packet format containing the
timestamp and the variables (Fig. 3).

3.2. VR module

The VR consists of a head-mounted display (Vuzix VR Bundle
with twin high-resolution 640 × 480 LCD displays, 920 000
pixels, iWear R© 3D compliant) able to show a 3D view of
the virtual scene. The virtual scenes were realized by means
of NeuroVR-2 (http://www.neurovr2.org) (Riva et al., 2011).

The virtual environment was rendered using a PC (iMac with
CPU Intel R© CoreTMi5 and graphic processor Nvidia GeForce
GT 540M). A joystick (Xbox Controller) enables the user
to interact with the environment. The VR is used for stress
inoculation, reproducing a number of virtual stressful scenarios
realized on the basis of storyboards tailored to selected stressful
work-related situations.

3.3. Feature extraction module

In order to reduce the number of artifacts and increase
the robustness of the signal, an auto-regressive (AR) model
implemented by a predictive adaptive filter was applied to pre-
process the IBI signal. The filter coefficients were estimated
on the initial RR interval and updated beat to beat by the
least mean square algorithm. The AR model predicts the RR
duration, i.e. the expected position of the next QRS peak,
even when the signal is affected by artifacts (Varanini et al.,
2014). Following the processing of the RR time series,
relevant features were extracted using a rectangular non-
overlapping window of 5 min (epochs). For each epoch,
five time-domain linear features were extracted according to
the International Guidelines of HRV (Malik et al., 1996a,b):
RR mean (mRR) and standard deviation (σRR); root mean
square of successive differences of intervals (RMSSD); the
number of successive differences of intervals which differ by
more than 50 ms (pNN50% expressed as a percentage of the
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Figure 4. The neuro-fuzzy model for automatic stress level classification.

total number of heartbeats analyzed); SDANN, the standard
deviation of the average NN intervals calculated over short
periods, usually 5 min. Moreover, in the frequency domain,
in order to evaluate the global sympathetic-parasympathetic
balance, the low frequency (LF)/ high frequency (HF) ratio
between the LF (0.03–0.15 Hz) and HF (0.15–0.40 Hz) powers
was extracted. This feature was assessed using an estimation
of the power spectral density analysis according to the Burg
spectral estimation (Burg, 1967), where the optimal order p
was estimated according to the Akaike information criterion
(Akaike, 1969). For each epoch, three non-linear features
were extracted: the two standard deviations (SDs) of the
Poincaré plot and the sample entropy (SmEn). The Poincaré
plot is a useful method for investigating and combining the
differences in the cardiac rhythms during the performed tasks.
It is a graphical representation created by plotting the RR
time series, RR(n), on the x-axis versus the shifted RR time
series, RR(n + 1), on the y-axis (Brennan et al., 2001). The
SmEn is an index extracted to evaluate the complexity and
irregularity of RR time series (Richman and Moorman, 2000).
Finally, the BR was collected. The SMA was used to remove
portions of physiological signals related to movements over a
specified empirical threshold which affects HRV parameters,
because the hypothesis was to recognize overall stress levels
mainly related to mental workload elicited by VR exposure.
The epochs affected by movements were detected and removed
by applying a simple threshold-based algorithm to the SMA
signal (Curone et al., 2010; Mathie et al., 2003).

3.4. Feature selection module

Once features were extracted, we selected a subset of
original features to improve interpretability and performances
and reduce computational costs of the neuro-fuzzy model.
We decided to perform feature selection in two steps.
First, we adopted the ReliefF algorithm (Robnik-Šikonja
and Kononenko, 2003) to rank features in function of their
relevance. The ReliefF is an efficient and robust solution
against noisy data. The algorithm iterates for every instance
of the dataset searching for the k nearest neighbors belonging
to the same class (nearest hits H) and the k nearest neighbors
belonging to other classes (nearest misses M ). The second step
of the feature selection procedure consisted in the use of the
Davies–Bouldin (DB) cluster evaluation index (Bezdek and
Pal, 1998), a criterion to select the best N ranked features.
The DB index is defined as the ratio of the sum of within-
class scatter to between-class separation. The ranked features
are incrementally added in a multi-dimensional feature space,
and if classes of datasets are well-separated we obtain a smaller
DB value and vice versa.

3.5. The neuro-fuzzy model

The neuro-fuzzy model is a combination of a self-organizing
map (SOM) and a rule-based fuzzy model (Fig. 4). The
input variables of the model are the extracted features of
HRV and BR, normalized in the range of [0, 1]. An SOM
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4Vij

Figure 5. Generation of the fuzzy membership function for the ith
input.

is a type of ANN that provides a topological mapping
using unsupervised learning (Kohonen, 1995). It produces a
discretized representation of the input space (a map). An SOM
consists of components called neurons. For each neuron a
weight vector of the same dimension as the input data vectors
is associated. A model based on SOMs is identified by means
of a training phase, where a competitive process analyzes the
input examples. The training phase starts randomly initializing
the weights. The test phase is used to automatically classify an
unknown input vector.

The structure of the trained SOM was used to generate
the membership functions (Chi et al., 1995). The number of
triangular fuzzy regions is equal to the number of artificial
neurons of the SOM. The weight of one single artificial
neuron affects one single fuzzy region. Assuming the ith input
variable at the end of the training phase, each triangular fuzzy
region is centered in the mean value of the i weights wij of
the corresponding artificial neuron j, while the variance vij

corresponds to the width (Fig. 5). Therefore, considering m as
the number of artificial neurons, the centers of the triangular
membership functions are wi1, wi2 . . . wim. The corresponding
regions were set to [wi1 − 2vi1, wi1 + 2vi1], [wi2 − 2vi2,
wi2 + 2vi2], . . ., [wim − 2vim, wim + 2vim], as shown in Fig. 5.

In order to improve the accuracy of the system (Chi et al.,
1995), the neighboring fuzzy regions whose distance is below
a pre-specified threshold thr are combined in a single fuzzy
region, obtaining a trapezoidal shape as reported in Fig. 6. The
neighboring fuzzy regions satisfying the following equation
were merged:

lhj + rhj

2
− lhj−1 + rhj−1

2
≤ thr, (1)

where llj, lhj, rhj and rlj reported in Fig. 6, represent the four
corners of the new merged region.

The fuzzy rules were generated according to the following
method (Wang and Mendel, 1992): i.e. the label of the fuzzy
region corresponding to the maximum membership value is
associated to each input. According to such a strategy, the
number of fuzzy rules is the same of the elements of the

lhj rhj

llj rlj

Figure 6. Trapezoidal function obtained for neighboring triangular
regions.

training samples. A general example of the rule is below
reported:

IF
feature1 is R1 AND feature2 is RN AND feature3 is R2 AND

feature4 is R3 AND
feature5 is R6, AND feature6 is R8 . . . . AND feature M is R3

THEN it is
No/Low/Medium/High Stress level

The output of the model for each input pattern is evaluated
according to the centroid defuzzification formula.

Z =
∑k

i=1 Di
pOi

∑k
i=1 Di

p

(2)

where Z is the output of the model, k is the number of rules,
Oi is the class generated by the rule i and Di

p measures how
the input vector fits the ith rule. Di

p is the membership of the
output of the ith rule. The output Z is within [0, 3] in the case
of four stress level classifications (0, no stress; 1, low stress;
2, medium stress; 3, high stress) and is adapted taking the
nearest smaller integer value. Finally, the SOM of the neuro-
fuzzy model was a 5 × 5 map of artificial neurons. The length
of the training phase was 600 epochs. The fuzzy membership
functions were set using a thr equal to 0.1. In order to avoid
repetitions or conflicts, only 633 rules were selected, i.e. the
rules supported by more than five examples.

3.6. Other classifiers

In order to test the classification performances, the neuro-fuzzy
model was compared with the most common machine learning
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Neuro-Fuzzy Physiological Computing to Assess Stress Levels 7

models, i.e. instance-based learning (IBL) (Aha et al., 1991),
Naïve Bayes (NB) (Duda et al., 1999), multilayer perceptron
(MLP) (Duda et al., 1999), J48 decision tree (Quinlan, 1993),
random forest (RF) decision tree (Breiman, 2001), single SOM
(Kohonen, 1995) and support vector machine (SVM) (Vapnik,
1995). All the classifiers were implemented using the Java
libraries provided by Weka 3 data mining software (Witten and
Frank, 2005). To guarantee the optimal performance of IBL,
NB, J48 and RF, the default parameters were used as suggested
by literature (Amancio et al., 2014). As regards the Weka SVM
library, a radial basis function kernel combined with the other
default parameters was selected. The MLP parameters were the
following: one hidden layer, learning rate of 0.9 with a decay
of 0.1, momentum of 0.6 with a decay of 0.1 and 800 training
epochs. Finally, the single SOM was set as a 5 × 5 map trained
for 600 epochs. For all the neural network, the training was run
until a minimum average square error (MSE) of <0.001 or an
increasing MSE was found in the training set.

3.7. Model validation metric

The performances of the neuro-fuzzy model where assessed
by using the confusion matrix. The generic elements i, j of
the confusion matrix indicate how many times a pattern
belonging to the class i was classified as belonging to the
class j. In particular, if i = j, the generic element represents
the correct classification rate (CRi), while if i �= j the generic
element represents the misclassification rate (ERij) as reported
in Table 1.

In order to check the generalization capability of the model,
the data set of input features was divided into training set
and testing set, normalized and the tenfold cross-validation
and the leave-one-subject-out cross-validation (Breiman et al.,
1984) methods were respectively carried out. In the former,
the original dataset was randomly partitioned into 10 equal
size subsamples, where a single subsample was retained as
the validation data for testing the model, and the remaining
9 subsamples were used as training data. The cross-validation
process was then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. In the
latter, the number of folds corresponds to the number of
subjects (n = 18), where each subsample consists of data

Table 1. Generic confusion matrix for a single cross-
validation process.

Predicted class

Class A Class B Class C Class D
Clinical class

Class A CRA ERAB ERAC ERAD
Class B ERBA CRB ERBC ERBD
Class C ERCA ERCB CRC ERCD
Class D ERDA ERDB ERDC CRD

belonging to a single subject. In this case, the cross-validation
process was then repeated 18 times, with each of the 18
subsamples used exactly once as the validation data. In
both cases, the obtained confusion matrices were averaged
producing an estimated confusion matrix whose elements
represents the sensitivity of the model to predict the specific
clinical class and are expressed in terms of mean percentage ±
SD. The overall accuracy of the model is given by the mean
value of sensitivity of each recognized class.

3.8. Participants

The experimental sample included 20 nurses between 25 and
60 years old recruited from the personnel of the University
Hospital ‘G. Martino’ of Messina, Italy. Each participant
completed a screening interview involving both males
and females. Subjects undergoing pharmacotherapy or with
neurological diseases, psychosis, alcohol, drug dependence,
migraine, headache or vestibular abnormalities were excluded.
Participants were instructed to avoid caffeine, tobacco and
strenuous exercise at least 4 h before the beginning of the
session. Written consent was given by the subjects before
the study conducted in laboratory settings. The trials were
approved by the Ethical Committee of the University Hospital
‘G. Martino’, Messina, on 21 January 2013.

3.9. Experimental setup design

The experimental study was conducted in laboratory setting,
reproducing appropriate stress stimuli with VR in order to
develop the model for automatic stress level detection by using
only physiological data. Each participant was exposed to VR
scenarios simulating typical situations experienced by nurses
at the workplace (Fig. 7), i.e. being reproached by colleagues,
managing an emergency and coping with a patient’s criticism,
as well as simulating relaxing scenarios.

The storyboard design guidelines were written asking a
representative sample of nurses to participate in focus groups
and in-depth interviews, while the stressful scenarios were
played by real actors and included in the virtual environments
(Riva et al., 2011) after a video post-production. For this study,
10 stressful scenarios were selected by clinicians:

(i) Managing patients’ relatives,
(ii) Managing patients’ complaints,

(iii) Managing a medical emergency situation,
(iv) Relationship with colleagues,
(v) Managing relatives’/caregivers’ anxiety,

(vi) Distribution of work tasks,
(vii) Patient–doctor communication,

(viii) Managing patient’s anxiety,
(ix) Unsuccessful collaboration/communication with col-

leagues,
(x) Arguments with medical doctors.

Interacting with Computers, 2015

 at N
ew

 Y
ork U

niversity on A
pril 14, 2015

http://iw
c.oxfordjournals.org/

D
ow

nloaded from
 

http://iwc.oxfordjournals.org/


8 G. Tartarisco et al.

Figure 7. Setup of the VR system used in the clinical setting. Top left: personal bio-monitoring system. Bottom right: example of a stressful
scenario used in the training.

According to previous studies, all of the scenes were
effective in eliciting stress, a strong emotional response and
feeling of presence that was similar (Gorini et al., 2010a,b)
or even greater (Villani et al., 2012) than the real scene.
The relaxing scenarios were presented together with relax-
ing audio narratives based on Guided Imagery procedures
and developed according to ‘emotive engineering’ principles
(Rossman, 2010). The relaxation environments were created
on the basis of similar virtual relaxing environments that were
used and validated in previous studies (Ferrer-García et al.,
2009; Gorini et al., 2010a,b; Manzoni et al., 2008; Pallavicini
et al., 2009) selecting five relaxing scenarios: a beach, a lake,
a campfire, a mountain summit and a desert. Each of them
were associated with different pre-recorded audio narratives.
The protocol was based on 5 weeks of VR experience (two ses-
sions per week). During each session, participants were asked
to wear the PBS in order to collect IBI and BR values dur-
ing exposure, the head-mounted display for VR and sitting in a
quiet room on a comfortable chair. Participants also had a joy-
stick, which allowed them to explore and to interact with the
VR environment. Each VR session lasted ∼1 h and included an
initial discussion with a psychologist. Following the introduc-
tion, we recorded physiological baseline for 15 min and then
the participants were exposed to 30–40 min of a stressful or
relaxing scenario. For each VR session, one stressful or relax-
ing scenario was randomly selected and administered. Features
were extracted from epochs of 5 min giving subjects the time
necessary to feel comfortable seated, to adapt to the change in
environment and the signal to stabilize from the previous task.
The starting point of the feature extracted was detected with

the integrated accelerometer on the chest. In particular, epochs
below the empirical threshold of SMA index were analyzed.
This criterion was applied to prevent HRV feature changes
from being affected by physical movements. Before and after
each exposure to VR scenarios, a psychometric assessment
based on questionnaires (Pallavicini et al., 2013) was admin-
istered to each participant and used to label each instance of
dataset and validate the perception of no-stress, low, medium
and high stress. For this purpose, the psychological question-
naire of State Anxiety Inventory Y1 (STAI-Y1, self-rated)
(Spielberg et al., 1983) was used immediately before and after
each VR session. The STAI-Y1 comprises a questionnaire
of 20 items that ask how much participants agree with sen-
tences about their current state. Based on the answers, the STAI
assigns a score from 20 to 80 to the participant’s anxiety state.
These data were transformed to four ordinal groups for classi-
fiers corresponding to no, low, medium and high stress. More
specifically, we identified the following ranges: no stress <30,
low <40, medium 40–55, high >55 in agreement with other
studies available in literature (Orbach-Zinger et al., 2012).

4. RESULTS

The inputs of the neuro-fuzzy model were: mRR, σRR,
RMSSD, pNN50%, SDANN, LF/HF, SD1, SD2, SmEn, BR.
The IBI recordings of <5 min were removed since according
to literature (Malik et al., 1996a,b), reliable features cannot
be extracted. Two subjects out of 20 were excluded from
the analysis due to missing data and/or artifacts. A total of
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Neuro-Fuzzy Physiological Computing to Assess Stress Levels 9

156 h of data recording were collected. Of the acquired data,
11% was removed because it was over the SMA threshold.
A total of 139 h of valid data corresponding to 1668 valid
epochs of 5 min (673 classified as no-stress, 322 as low
stress, 343 as medium stress and 330 as high stress) were
taken into account. The sample sizes were equalized before
the training of the classifiers by selecting a random sub-
sample of 350 no-stress sessions, obtaining a total balanced
dataset of 1345 instances. To confirm that the stress induction
was successful, we performed a psychometric assessment. In
particular, we extracted the change in anxiety making the
difference between anxiety state scores measured after and
before the VE experience. This parameter was compared
with the time of duration of each VR scenario using an
a priori statistical evaluation (Spearman’s correlation test).
The two measures resulted uncorrelated, with a correlation
coefficient of 0.203 and a statistical significance of P = 0.56.
We also evaluated the Spearman correlation between each
physiological feature and time on task each 5 min (T5, T10,
T15, T20, T25, T30), obtaining a mean correlation coefficient
of 0.311 and no statistical significance with time (P > 0.05)
respectively for all features. The mean STAY scores before
and after each VR session compared with a paired t-test
showed a significant difference (P < 0.01). Regarding stress
VR sessions, the mean score shown before (M = 34.5, SD =
6.4) was lower than that assessed after (M = 55.5, SD =
7.1). A mirror result was obtained for relaxed VR sessions.
The mean score shown before (M = 33.2, SD = 7.1)
was higher than that assessed after the ‘relaxed’ exposure
(M = 25.1, SD = 4.2). After this preliminary analysis,
we reported in Table 1 the performances of all the classifiers
in terms of percentage of classification error, applying both
the randomized 10-fold cross-validation and the leave-one-
subject-out methods. In the case of 10-fold cross-validation,
all the classifiers achieved a mean error rate of ∼14% with
no significant differences between methods as confirmed by
a one-way ANOVA (P > 0.3). In the case of the leave-
one-subject out instead, ANOVA, the effect was significant,
F(2, 105)= 6.03, P < 0.05, η2 = 0.06. Post hoc analysis with
Bonferroni test showed that the difference between the neuro-
fuzzy model and each other classifier was significant (P <

0.05). The mean error of classification of ∼15% was higher
than the other classifier as reported in Table 2.

In order to analyze in more detail the ability of the model
to discriminate the four different stress levels, in Table 3
the mean confusion matrix of the neuro-fuzzy model for the
leave-one-subject-out validation is reported. We observed that
the no-stress and high-stress classes were classified with a high
degree of sensitivity (more than 90%), while low and medium
stress were detected with a lower sensitivity (∼80%). A sec-
ond analysis using features selected from ReliefF algorithm
combined with DB index was performed. Once the features
were ranked we calculated the DB index for 2–10 features at
increments of one feature as reported in Fig. 8.

Table 2. Percentage of classification error (mean ± SD) using all
10 features.

Classifiers 10 × cross validation Leave-one-subject-out
IBL 13.24 (±0.44) 23.21 (±8.93)
NB 14.69 (±2.78) 26.58 (±11.17)
J48 13.81 (±2.11) 27.25 (±9.52)
MLP 14.78 (±0.52) 21.16 (±10.66)
RF 14.76 (±0.57) 25.61 (±6.31)
SVM 13.62 (±0.47) 23.12 (±6.32)
SOM 13.78 (±0.22) 20.09 (±8.52)
Neuro-fuzzy 13.51 (±0.61) 14.82 (±6.79)

Aware that the minimum value of the extracted DB index
indicates the optimal cutoff point for the discrimination of
the four stress levels, we selected the following first five
features: RMSSD, SmEn, LF/HF, BR and pNN50. All the
classifiers were re-tested using the five selected features. A
paired t-test for each classifier revealed that the accuracy of
classification between all and five selected features was not
statistically significant (P < 0.05). This result is also reported
in Fig. 9. Finally, an ANOVA analysis at the 95% CI revealed
a significant difference also among classifiers based on five
selected input features F(2, 101) = 4.02, P < 0.05, η2 = 0.03.
The post hoc Bonferroni test demonstrated that the neuro-fuzzy
model with five input features was statistically equivalent to
MLP and SOM and higher than that of other classifiers. The
mean value of accuracy of SOM + FUZZY was equal to 81.58
(SD = 6.42), for MLP 77.87 (SD = 11.13) and 77.58 (SD =
9.42) for SOM.

5. DISCUSSION

The main objective of this study was to test the applicabil-
ity of the neuro-fuzzy model and physiological sensing for
determining the user’s overall stress level during VR therapy.
The performances of the implemented model were compared
with the main machine learning algorithms showing that the
four stress levels could be recognized with an overall accuracy
of ∼83%. More specifically, the ANOVA post hoc Bonfer-
roni analysis showed a significance of neuro fuzzy with the
leave-one-subject-out approach also evidencing that the model
is more suitable for detecting the perceived stress regardless
of the subject. This outcome is important because it highlights
that the system is able with a low error to manage the non-
linearity of physiological reactions and at the same time the
different effects and components of the individual’s physiol-
ogy. A statistical analysis performed to better characterize the
collected data demonstrated that the use of VR scenarios is able
to affect a change in anxiety (P < 0.01) and that this change is
not affected by the duration of VR scenarios as demonstrated
by the Spearman correlation index of 0.203 (P = 0.56). More-
over, the Spearman analysis performed at each 5-min interval
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Table 3. Mean confusion matrix for stress classification using the neuro-fuzzy model with leave-
one-subject-out cross-validation repeated 18 times.

Predicted stress

% correct (mean ± SD) No stress Low stress Medium stress High stress
Clinical stress

No stress 90.32 (±5.78) 5.85 (±2.22) 1.93 (±1.02) 1.90 (±0.75)
Low stress 1.97 (±1.21) 79.36 (± 10.92) 16 (±9.67) 2.67 (±1.99)
Medium stress 2.37 (±0.66) 13.41 (±10.49) 80.84 (±12.45) 3.38 (±2.38)
High stress 1.45 (±0.61) 1.56 (±1.49) 6.78 (± 5.34) 90.21 (±3.56)

Figure 8. DB index extracted ranking features with ReliefF
algorithm and computed feature by feature.

of physiological data also showed with a correlation of 0.311
(P = 0.45) that the physiological signals do not change within
the time on task. In this analysis, it is important to highlight that
the effects of VR scenarios were excluded because they were
selected randomly. A further analysis in Table 2 shows the con-
fusion matrix with the mean sensitivity of each class of stress,
respectively, of 90.32, 79.36, 80.84, and 90.21% obtained
after leave-one-subject-out validation. We observed that
∼16% of the low-stress instances were classified as medium
stress and ∼13% of medium-stress instances were classified
as low-stress. Considering the high similarity between the
low and medium classes, these results are encouraging. The
minor misclassification error may between low and medium
stress may be due to the stimuli provided in these instances
which did not induce the required stress state, resulting in
psychophysiological values of different magnitudes, or may
be due to the subjects’ difficulty identifying such close stress
levels clearly. A second analysis based on comparison between
classification performances with all the available features
and the selected subsets identified with the ReliefF algorithm
combined with the DB method has revealed that five features

Figure 9. Bar plot of all classifiers’ accuracy, respectively, for all
features and the five features selected.

(RMSSD, SmEn, LF/HF, BR and pNN50) seem to provide
more information to the classification process than the others.
Although the mean accuracy of the neuro-fuzzy model was
lower with selected features (∼81%), the paired t-test demon-
strated that there was no significant difference (P < 0.05) with
performances using all features. Moreover, ANOVA analysis
with the Bonferroni post hoc test confirmed the significance of
the neuro-fuzzy model. This result highlights how by selecting
a subset of features we can reduce the performance costs of the
mode, obtaining a good compromise of accuracy to classify
the stress level. This approach could be very promising in the
near future for developing a mobile application. An impor-
tant consideration is about the SMA index extracted from the
integrated accelerometer. It was used to remove epochs of
signals with movements of the subject over a certain threshold,
because as demonstrated by literature, they affect the changes
of HRV features. Of course with this approach, one limitation
is that we cannot monitor the stress level when the subject is
moving (i.e. walking or running), but in our specific setting
this aspect had a low impact, because the patient was comfort-
ably seated. In the near future, we will perform experiments
to use this model to infer stress level during daily life with a
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mobile platform and the SMA index will be used and further
investigated to contextualize changes of HRV features.

6. CONCLUSION

The paper reports the design and validation of a neuro-fuzzy
model and physiological sensing for stress monitoring. The
platform assists the therapist in analyzing and interpreting
a patient’s stress levels during VR exposure. The original
contribution of this work concerns the development of an
SOM combined with a fuzzy rule-based algorithm dedicated
to the classification of four stress levels. In particular, the
model was trained unobtrusively recording electrocardiogram,
breath rate and activity, during stress inoculation provided
by the exposure to virtual environments. The platform also
provides a framework, where fuzzy rules can be continuously
updated and integrated with those learned from the training
data for a more comprehensive definition of the stress response.
This strategy allows a closed-loop approach that is lacking
in current strategies for the evaluation and treatment of
psychological stress. The assessment is conducted throughout
the virtual experiences and enables tracking of the individual’s
psycho-physiological status in the context of stress inoculation
using realistic stressful scenarios. The performances of the
neuro-fuzzy model were compared with the most common
machine learning algorithms. The leave-one-subject-out cross-
validation analysis shows how the neuro-fuzzy model achieves
the best performances, with an accuracy of above 83%. A
feature-selecting method allows obtaining a reduced feature
set able to achieve similar discrimination of stress level
results. Future insights may contribute to enhance the use
of physiological computing for stress treatment in clinical
practices.
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