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A B S T R A C T

Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important
advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant
and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the meta-
static spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites
to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells
whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these
cells come into contact with cancer cells they are “educated” and acquire a pro-tumoural phenotype, which
support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal
component in guiding cancer cells in their venture towards colonizing metastatic sites.

1. Introduction

Despite current advances in breast cancer (BC) diagnosis and
therapy, tumour recurrence and metastases remain the primary cause of
morbidity and mortality for this disease [1]. To date, multiple subtypes
of breast carcinoma have been identified with peculiar molecular fea-
tures that determinate different clinical outcomes. The main classifi-
cation of BC is based on expression of the three predictive biomarkers:
oestrogen receptor (ER), progesterone receptor (PR) and human epi-
dermal growth factor receptor 2 (HER-2). ER+/PR+/ HER2+ breast
carcinomas belong to the luminal A subtype that grows slowly and has
the best prognosis whereas those with ER+/PR+/ HER2- are in the
category of luminal B that grow slightly faster than luminal A and show
a slightly worse prognosis. However, the most aggressive subgroup with
a very poor prognosis is the basal-like that include triple-negative
breast cancer lacking ER, PR and HER2 expression [1].

In the last decade, many studies highlighted the crucial role played
by tumour microenvironment (TME) and its components in modulating
cancer behaviour such as resistance to therapies as well as relapse and
metastasis [2]. TME comprises an extracellular matrix (ECM) formed by
collagen, proteoglycans, laminin, and fibronectin that provides an ac-
tive supportive structure for cancer and stromal cells [3]. In this con-
test, malignant and non-malignant cells interact tightly and cooperate
in the realization of all the hallmarks of cancer including metastatic

spread (Fig. 1). The stromal cells that mainly populate the breast TME
are fibroblasts, mesenchymal stem cells (MSCs), adipocytes and im-
mune cells such as T cells, natural killers and macrophages [4]. In ad-
dition, endothelial cells and perycites are also present of and are in-
volved in blood and lymphatic vessel formation. Numerous
biomolecules produced and released by cancer cells like cytokines,
chemokines and growth factors intervene in the recruitment of stromal
cells to the TME (Fig. 2). Noteworthy, many findings reported the in-
volvement and active aid of stromal cells to cancer cells in all steps of
metastatic spread including ECM remodelling, migration, invasion, in-
travasation, survival in circulation, extravasation and colonization of
distant sites [5] (Fig. 3).

It is well known that cancer cells of several solid tumours are in-
duced by stromal cells to undergo the epithelial-mesenchymal transi-
tion (EMT) thus acquiring a more aggressive phenotype necessary to
carry out all the processes described above [6].

In this review, we focus on new research regarding the influence of
MSCs, cancer-associated fibroblast (CAFs), cancer-associated adipo-
cytes (CAAs), tumour-associated macrophages (TAMs) and other im-
mune-cells in breast cancer metastasis.
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2. Tumour stroma cells

2.1. Mesenchymal stem cells

The main features of MSCs are: self-renewal, ability to differentiate
in different cell types as well as to migrate towards injured tissue in-
cluding tumours considered “the wounds that never heal”. MSCs are
recruited into breast cancer TME mainly from bone marrow (BM-MSCs)
and adipose tissue (AT-MSCs) in response to different factors including
microvesicles and exosomes released by cancer cells [7]. There, they
are able to promote a pro-metastatic phenotype of BC cells by means of

bi-directional communication through gap junction, nanotubes, re-
ceptors and or biomolecules [8]. Although the behaviour of BM-MSCs
and AT-MSCs is very similar they differ in a few characteristics. AT-
MSCs show higher stability in culture, proliferation and retain more
efficiently their differentiation potential respect to BM-MSCs [8].
Moreover, in TME BM-MSCs mainly differentiate in CAFs whereas AT-
MSCs transform into vascular and fibro-vascular stromal cells [8].

Many findings have reported that BM-MSCs homing towards breast
TME and their activity is mediated by different signal pathways that
involve hypoxia-inducible factors (HIFs), transforming growth factor β
(TGF-β) and chemokine (C-C motif) ligand 5 (CCL5) [9].

Fig. 1. Schematic illustration of each step involved in the metastatic spread of breast cancer.
Stromal components such as BM-MSCs, AT-MSCs, macrophages and neutrophils are recruited to TME and here “educated” to evolve in to tumour-associated stromal
cells by means bidirectional communication with tumour cells. Tumour associated stromal influence the TME ultimately leading to the metastatic spread of breast
cancer cells.
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Recently, Camorani et al reported the crucial role played by platelet
derived growth factor receptor β (PDGFRβ) in BM-MSC recruitment
into TME of triple negative breast cancer (TNBC) and their involvement
in promoting tumour cell invasion and metastases [10]. When MDA-
MB231 cells were co-injected with BM-MSCs into mammary fat pad of
severely immunocompromised NOD scid gamma (NSG) mice an en-
hancement of lung metastatic foci was observed. Noteworthy, the

treatment of BM-MSCs with a specific PDGFRβ aptamer reduced both
their recruitment in subcutaneous xenografts as well as their support in
lung metastasis formation. Moreover, a study showed that BRCA1-IRIS
(aka IRIS, for In-frame Reading of BRCA1 Intron 11 Splice variant)
TNBC cells recruited BM-MSCs through IL-6 production and in turn it
activated in MSCs STAT3, AKT, and ERK/MAPK signalling to enhance
their proliferation, migration and survival [11]. The inhibition of IL-6

Fig. 2. Recruitment and tumour education of stromal components.
Many factors such as chemokines and cytokines are secreted from the primary tumour and are involved in the recruitment of stromal cells from distance sites for
examples (MSCs, macrophages and neutrophils). These cells home towards the lesion and upon arrival together with resident cells such as fibroblasts are educated by
cancer cells and can change their naïve gene signature and acquire pro-metastatic functions.

Fig. 3. Role Played by Tumour-Educated
Stromal Cells in the Metastatic Cascade.
Here we illustrate the contribution of tumour
educated stromal cells in the metastatic spread
of breast cancer. These cells upon arriving into
the TME in response to factors released by
cancer cells acquired a new phenotype capable
of supporting each step of the metastatic pro-
cess. They induce EMT program in cancer cells
that obtain a more invasive mesenchymal-like
phenotype; promote the formation of new
blood and lymphatic vessels (neo-angiogenesis
and neo-lymphangiogenesis); ECM remodel-
ling; intravasation; survival of CTCs; extra-
vasation and finally contribute in the pre-
paration of the pre-metastatic niche and
support breast cancer colonization of meta-
static sites.
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signalling by neutralizing antibodies decreased BM-MSC migration.
Interestingly, the cross-talk between cancer cells and BM-MSCs caused
death rather than growth when IRIS was silenced in TNBC cells [11]. It
has been observed that aberrant expression of microRNA-199a induced
by BM-MSCs in breast cancer repressed the expression of forkhead
transcription factor FOXP2 thus promoting cancer stem cell propaga-
tion and metastasis [12]. An interesting study showed that the fusion of
MSCs from umbilical cord tissue (UC-MSCs) with breast cancer cells led
a hybrid cell population with increasing ability to metastasize in vivo
[13]. Recently, the same authors demonstrated that long-term co-cul-
tures of MDA-MB-231 cells with (UC-MSCs) caused the formation of
tumour spheroids and an altered expression of crucial factors involved
in metastatic spread such as urokinase-type plasminogen activator
(uPA), plasminogen activator inhibitor-1 (PAI-1) and TGF-β1 expres-
sion [14]. Furthermore, Bliss SA et al. reported that tumour cells were
able to trigger BM-MSCs to produce exosomes containing miR-222/223
involved in promoting dormancy and metastatic resurgence of breast
cancer cells in bone marrow [15]. When MSCs arrive in TME they are
educated (TE-MSCs) by cancer cells and acquire a supportive pro-tu-
mourigenic behaviour (Fig. 2). The main feature that differentiates TE-
MSCs from naïve MSCs are the different factors contained in their se-
cretome. Recently, Yu PF et al reported in a breast cancer model that
MSCs educated and activated by tumour necrosis factor α (TNFα)
strongly expressed CXCR2 ligands respect to naïve MSCs. Thanks to
this, they recruited CXCR2+ neutrophils into the tumour and they in
turn promoted metastases [16].

Many studies have shown that when naïve BM-MSCs are co-cultured
with TE-MSCs they acquire pro-tumourigenic properties thus demon-
strating that not only tumour cells but also TE-MSCs themselves can
educate naïve MSCs [17,18].

Interestingly, the secretomes produced by invasive MDA-MB-231
cells but not those released from MCF-7 cells were able to convert BM-
MSCs into TE-MSCs indicating that overall tumours with a more ag-
gressive phenotype can reprogram these cells [19]. Despite bone
marrow, the other important source of MSCs for breast cancer is adi-
pose tissue [20]. An interesting study by Muehlberg FL et al reported
that AT-MSCs, when induced by breast cancer cells to release stromal
cell-derived factor-1, are able to enhance their metastatic spread [21].
Furthermore, the authors demonstrated that AT-MSCs differentiated
into endothelial cells and were incorporated into tumour vessels. No-
teworthy, human adipose stem cells derived from healthy donors were
able to enhance MDA-MB-231 cells invasion in vitro as well as lung,
liver and spleen metastases in vivo [22,23]. Recent findings have shown
that AT-MSCs from obese individuals (obAT-MSCs) overexpressing
leptin promoted metastasis of both ER + breast cancer xenografts and
TNBCs patient-derived xenograft (PDX) model [24,25]. The silencing of
leptin gene expression in obAT-MSCs inhibited their metastatic con-
tribution [24,25]. Both BM-MSCs and AT-MSCs can differentiate into
adipocytes that provide metabolic substrates to cancer cells and in-
crease their invasive capability [26].

Although many findings report the crucial role of MSCs from dif-
ferent sources in promoting breast cancer progression, there are some
studies that demonstrate otherwise, probably due to changes in cancer
cell secretome as well as different experimental settings. Noteworthy,
Ryan et showed for the first time that IRIS-deficient TNBC cells were
able to convert the activity of naïve MSCs from pro-tumourigenic to
anti-tumourigenic [11]. When AT-MSCs were cultured at high-density
in glucose deprivation, secreting type I interferon β (IFN-β) reduced
MCF-7 growth through STAT1 phosphorylation [27]. Similarly, a recent
study reported that microvesicles derived from AT-MSCs showed a cy-
totoxic effect on MCF-7 cells causing an increase of pro-apoptotic re-
lated gene expression and a decrease of anti-apoptotic genes in cancer
cells [28]. Importantly, when MDA-MB-231 and T47D cells were co-
cultured with an immortalized MSC line RCB2157, a different beha-
viour of these cells versus breast cancer cells was observed [29]. Media
collected from 24 h co-cultures showed an increased MMP2 release

from MSCs with a pro-metastatic effect. Conversely, a longer co-culture
time (5 days) induced MSC tissue inhibitor of metalloproteinase-1 and 2
(TIMP-1 and TIMP-2) production changing MSC activity into anti-me-
tastatic [29].

2.2. Cancer-associated fibroblasts

The most representative and heterogeneous population of stromal
cells in breast cancer TME are cancer-associated fibroblast (CAFs).
Nowadays, it is well known their crucial contribution given in cancer
progression and metastatic process [30].

Despite resident fibroblast, numerous studies report that the main
sources of CAFs are both AT-MSCs and BM-MSCs [31,32]. In addition, it
has been observed that endothelial cells, pericytes as well as cancer
cells and cancer stem cells can trans-differentiate into CAFs. This
transformation is mediated by the exchange of multiple factors through
different types of communications that each cell makes with each other.
The main biomolecules involved in CAF establishment are often the
same that in turn CAFs secrete to promote metastatic spread. Among
them, the most prominent are TGF-β1, CXCL12, PDGF and IL-6. To
date, although specific markers for CAFs have not been identified it is
well known that their activation is correlated with high levels of alpha
smooth muscle actin (αSMA), fibroblast activation protein (FAP), fi-
broblast specific protein 1 (FSP1 also reported as S1000A4) as well as
platelets-derived growth factor receptor α and β (PDGFR α/β) [33].
Recently, Bush and colleagues suggested that in the TME there is a
hierarchical differentiation of fibroblasts comprising diverse activation
states with different molecular profiles and functions [34]. An inter-
esting study reported that osteopontin was able to cause MSC trans-
differentiation in CAFs through integrin-dependent expression of TGF-
β1 and the block of this signal reverted the process and reduced me-
tastases in vivo [35]. Similarly, the transformation of AT-MSCs into
CAFs was hampered blocking TGFβ1 with a neutralizing antibody or
with a TGFβ-1 receptor kinase inhibitor SB431542 [36]. Notably, it has
been shown that aggressive breast carcinomas promote a metastatic
phenotype by recruiting stromal fibroblasts and converting them into
CAFs through Wnt7a potentiation of TGF-β receptor activity [37]. Re-
cent findings by Li et al reported that ATP produced by breast cancer
cells was able to activate fibroblasts which in turn through S100A4
secretion induced cancer cells motility [38].

2.3. Cancer-associated adipocytes

Recently, many findings highlight the crucial role played in breast
cancer biology by tumour surrounding adipose tissue and in particular
by adipocytes that represent the predominant cell population [39].
Currently, it is well recognized that obesity is correlated with higher
risk in developing invasive breast cancer in postmenopausal women
[40]. Noteworthy, in this cancer an inflamed adipose tissue is present
where adipocytes secrete several cytokines known as adipokines in-
cluding leptin, adiponectin, IL-6, TNF-α and HGF [39,41]. The adipo-
cytes involved in breast cancer progression are activated in TME and
show different features from adipocytes present in normal adipose tis-
sues. These cancer-associated adipocytes are smaller for their reduced
lipid content and show a modified phenotype that is able to produce
high levels of pro-inflammatory cytokines in particular IL-6 that has
been shown to promote a more aggressive behaviour of breast cancer
cells [42]. Recently, He et al observed that both IL-6 and leptin pro-
duced by adipocytes increasing lysyl hydroxylase-2 (PLOD2) levels
promoted breast cancer invasion in vitro and in vivo [43]. Remarkably,
plasminogen activator inhibitor-1 (PAI-1) released by breast cancer
cells is required to activate PLOD2 in CAAs resulting in collagen re-
modelling and metastasis formation [44]. Furthermore, in a recent very
interesting study Kolb et al showed that obesity causes an increase of
tumour-infiltrating macrophages that secreting IL-1β activate adipo-
cytes to secrete angiopoietin-like 4 (ANGPTL4) that in turn promotes
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angiogenesis in breast cancer [45].
In addition, it has been reported that in TNBC high levels of CCL5,

also known as Regulated upon Activation Normal T-cell Expressed and
Secreted (RANTES), in peritumoural adipose tissue correlated with
metastasis and poorer patient overall survival [46]. Moreover, in this
study the authors demonstrated that TNBC cells co-cultured with adi-
pocytes showed increased invasiveness that was hampered by CCL5
inhibition [46].

2.4. Tumour-associated macrophages

In breast cancer, macrophages constitute over 50% of the number of
cells within the tumour. They derive from monocytes recruited in TME
by several molecules released in the blood by cancer cells and other
stromal cells including monocyte colony stimulating factor 1 (CSF-1),
granulocyte-macrophage (GM)-CSF, IL-3 and CCL2 [47]. Importantly,
macrophage infiltration and high levels of CCL2 are associated with
poor prognosis and metastatic disease in human breast cancer [48].
First, CSF-1 induce monocyte transformation into highly plastic non-
polarized (M0) macrophages, then if they are stimulated by the type 1 T
helper cell (Th1) cytokines such as interferon-γ (IFN-γ) they change
their phenotype into “activated” M1-like macrophages. This phenotype
shows anti-tumour capacity by releasing pro-inflammatory cytokines
such as interleukin IL-2 and TNFα [49]. Conversely, if (M0) macro-
phages are stimulated by the type 2 T helper cell (Th2) cytokines such
as IL-4, IL-10 and IL-13 they trans-differentiate in “alternatively acti-
vated” macrophages known as M2-like macrophages with pro-tumour
characteristics [50]. In breast cancer, M2-like tumour-associated mac-
rophages (TAMs) are the most numerous population among all im-
mune-cells. Under different stimuli, they can differentiate in three
subtypes: M2a, M2b and M2c macrophages that take part in all steps of
metastatic cascade [50]. The most important signalling pathways in-
volved in pro-metastatic behaviour of TAMs are activated above all by
CCL18 and CCL2. For the first time, Chen and colleagues observed that
TAMs expressing very high levels of CCL18, which was detected in
blood or in tumour stroma of breast cancer patients, correlated with
metastasis and poor overall survival [51]. Interestingly, in the same
study they identified CCL18 receptor in a membrane-associated phos-
phatidylinositol transfer protein 3 (PITPNM3) and demonstrated that
the interaction between this receptor with its ligand induced breast
cancer cell migration and invasion in vitro and in vivo. Recently, the
same authors discovered a small molecular compound, named SMC-
21598, which tightly binds CCL18 inhibited lung metastasis formation
but did not affect xenograft growth [52]. Furthermore, it has been
shown that this chemokine synergizing with vascular endothelial
growth factor (VEGF), promoted endothelial cell migration and angio-
genesis and the silencing of PITPNM3inhibited these events [53]. Some
isoforms of integrins, a family of adhesion receptors, are involved in
aggressiveness of TNBC [54,55]. A recent very interesting finding re-
ported that the overexpression of β4 integrin and its TGF-β1-dependent
clustering on TAMs retained them in lymphatic endothelium in a TNBC
murine model. Moreover, TGF-β1 released by TAMs activating RhoA
signalling promoted contraction and hyperpermeability of lymphatic
vessels thus facilitating metastasis [56]. A noteworthy study by Cassetta
L et al (2019) highlighted on different transcriptomes of TAMs respect
to monocytes and resident macrophages and identified a characteristic
TAM signature that correlates with shorter disease-specific survival
[57]. In addition, during cross-talk between cancer cells and TAMs an
auto-regulatory loop was demonstrated where TNF-α produced by both
cell types up-regulated SIGLEC1 and CCL8 expression on TAMs and
CCL8 in turn stimulated cancer cell invasion, monocyte recruitment and
CSF1 release from tumour cells [57]. Interestingly, Chen et al. showed
that the infiltration of TAMs overexpressing cytochrome P450 (CYP) 4A
was positively associated with pre-metastatic niche formation, metas-
tasis as well as poor prognosis in breast cancer patients [58].

2.5. Other immune-cells recruited in TME

Despite TAMs other immune-cells such as neutrophils, dendritic
cells, natural killer (NK) cells, T cells and B cells are recruited and
modified by cancer cells to support their progression and metastatic
cascade [59].

Tumour-associated neutrophils (TANs) have been shown to be a
conspicuous population in the TME even if their role must be even
better clarified. Similarly to TAMs, in TANs is known a subpopulation
with antitumour activity (with N1-like phenotype) including mature
high-density neutrophils (HDNs) and a pro-tumourigenic subtype (with
N2 profile) containing mature low-density neutrophils (LDNs). The re-
cruitment of neutrophils in TME is mainly regulated by chemokine
receptor CXCR2. Interestingly, Yu et al demonstrated that TNFα-acti-
vated MSCs releasing CXCL1, CXCL2 and CXCL5 efficiently recruited
CXCR2+ neutrophils into tumour [16]. They in turn caused an up-
regulation of metastasis-related genes in tumour cells. Notably, the
inhibition of this cross-talk between different stromal cells inhibited
neutrophil recruitment and blocked metastases formation [16]. Re-
cently, a very impressive study by Szczerba and colleagues reported
that circulating tumour cells (CTCs), which are well-known precursors
of metastasis could associate with neutrophils in breast cancer [60].
The formation of these clusters involves VCAM1 and cause a change in
the transcriptomic profile of CTCs as well as an enhancement of their
metastatic potential [60].

Tumour-infiltrating lymphocytes (TILs) present in breast TME in-
clude CD4+ helper cells, immunosuppressive CD4+FOXP3+ reg-
ulatory T-cells (Tregs) and CD8+ cytotoxic T-cells (CTLs), each subtype
shows different activity respect to metastatic spread of cancer cells.
Many studies have demonstrated the crucial role played by Tregs into
promoting invasion, metastasis and poor prognosis [61–63]. Further-
more, it has been elucidated that the recruitment of Tregs is under
control of several chemokines including CCL2, CCL5 and CXCL12 pro-
duced by malignant and non-malignant cells present in TME. In addi-
tion, it has been reported that CXCL12 released by claudin low breast
cancer cells caused recruitment of Tregs highly expressing programmed
cell death protein-1 (PD-1) and their depletion increased the effect of
immune checkpoint blockade antibodies [64]. Several studies suggest
the strict and inverse connexion between Tregs and CTLs cells in pro-
moting breast cancer metastatic phenotype. Interestingly, low-ag-
gressive breast TM40D cancer cell line induced to overexpress cy-
clooxygenase 2 (COX2) and prostaglandin E2 (PGE2) showed an
increase of Tregs recruitment into the primary tumour as well as
CD8 + T cell apoptosis; both these two events were associated with a
greater rate of bone metastasis [65].

NK cells are a component of the innate immune response and are
responsible for the rapid recognition and elimination of cancer cells
[66]. Moreover, Bidwell et al. observed that the silencing of Irf7
pathways reduced CTLs and NK cells causing an enhancement of bone
metastasis while not affecting the growth of the primary tumour [67]. It
has been observed that CCR4+Tregs promoted lung metastasis in a
murine 4T1 breast cancer model by inducing NK cell death through β-
galactoside-binding protein [68]. In a genetically engineered mouse
(GEM) model of breast cancer caused by the mammary epithelial ex-
pression of polyoma virus middle T (PyMT) antigen, the accumulation
of TH17 cells into tumour increased MDSCs recruitment through IL-17
of which in turn was responsible for lung metastasis establishment [69].
Noteworthy, Zhang and collaborators demonstrated that gene delivery
of TIPE2 (tumour necrosis factor-alpha-induced protein 8-like 2) in-
hibited breast cancer metastasis in lungs causing CD8+ T and NK cell
cytotoxic activity [70]. A recent study showed that in breast cancer
high levels of Morgana, positively correlated with NF-κB target gene
expression, drove metastasis by decreasing NK cell recruitment in pri-
mary tumour and increasing neutrophil infiltration [71]. Furthermore,
given the crucial role played by JAK/STAT pathway in development,
maturation, and activation of NK-cells it has been demonstrated, that
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the use of JAK inhibitors despite blocking STAT activation in tumour
cells, enhanced metastatic burden in preclinical models of breast cancer
by decreasing NK-cell-mediated anti-tumour immunity [72].

For the first time, Olkhanud et al showed that regulatory CD25 + B
cells (tBregs), generated from normal B cells in response to cancer
cell–produced factors, were able to induce metastases in a murine
model of breast cancer stimulating the conversion of Tregs from non-
Tregs by utilizing TGFβ [73]. Notably, Bregs depletion using a B220-
specific antibody reduced lung metastatic foci due to a poor Treg
transformation [73].

3. Role played by stromal cells in each step of metastatic cascade

3.1. Epithelial-mesenchymal transition programme

In the last decade, many studies have highlighted on the active role
played by all stromal cells in inducing epithelial-mesenchymal-transi-
tion programme (EMT) that eliciting profound morphological and
functional changes in epithelium cancer cells triggers a mesenchymal-
like phenotype with a higher invasive potential [74,75]. A cascade of
molecular events characterizes the transformation of cancer epithelial
cells into mesenchymal cells. First, the destabilization of the epithelial
cell–cell junctions, loss of apical–basal polarity, reorganization of the
cytoskeletal architecture and an increased ability to migrate, invade as
well as degrade ECM [6].

The mechanisms underlying these occurrences are correlated with a
reconfiguration of gene expression signatures. In particular, the down-
regulation of the most important epithelial marker E-cadherin and
parallel up-regulation of mesenchymal markers: vimentin, N-cadherin
and fibronectin. The activation and/or inhibition of gene expression
involved in EMT are under control of multiple transcription factors
including the zinc-finger proteins Snai1 (Snail) and Snai2 (Slug)
(10–12), the basic helix-loop-helix protein Twist1 (Twist), and the zinc-
finger, E-box-binding proteins Zeb1 and Sip1 (Zeb2), the forkhead box
proteins FOXC1 and FOXC2 [6]. Interestingly, when the EMT core
signature was compared with signatures that define breast cancer
subtypes a close association was found overall with the claudin-low and
metaplastic breast cancer subtypes [76].

Many factors released by stromal cells are involved into orchestrate
EMT programme. MSCs secreted in TME cytokines such as IL1 and IL6
[77], chemokines including CCL5, CXCL1, CXCL5, CXCL7 CXCL8 and
CXCL12 [78,79], growth factors (TGF-β, FGF, Hepatocyte growth factor
HGF and epidermal growth factor, EGF) [80,81] as well as hypoxia
inducible factors and reactive oxygen species. Many studied have re-
ported the involvement of miRNAs in the network controlling EMT
programme. In breast cancer cells miRNA-9 activated by MYC/MYCN
down-regulate E-cadherin expression causing an increase in cell moti-
lity and invasiveness as well as β-catenin signalling. These effects
contribute to an elevated expression of VEGFA that in turn induce tu-
mour-associated angiogenesis and metastases in vivo [82]. Recently, a
very interesting study showed that the orphan chemokine CXCL14,
known to be a poor prognosis factor in breast cancer, released in par-
ticular by fibroblast in TME, through the engagement of atypical che-
mokine receptors 2 (ACKR), promoted EMT and metastasis in vivo [83].
Interestingly, Wu S et al observed that when human adipose derived
stem cells were co-cultured with MCF7 breast cancer cells their para-
crine effects inducing TGF-β/Smad and PI3K/AKT pathways activated
EMT programme as well as cancer cells invasiveness [84]. To date, it is
well established that TGFβ is a potent driver of EMT [85]. Different
breast cancer cell lines including MCF-7, T47D and MDA-MB-231,
grown with conditioned medium obtained by CAFs isolated from in-
vasive breast cancer tissues trans-differentiate under TGFβ stimulation
in a more aggressive phenotype characterized by EMT activation, en-
hanced cell-extracellular matrix adhesion, migration and invasion [86].
In addition, it has been reported that TGF-β1 secreted by CAFs is able to
trigger EMT/metastatic processes increasing HOTAIR expression.

Notably, Wen S and colleagues found that CAFs released IL32 that
specifically bound to integrin β3 of breast cancer cells through the RGD
motif thus activating p38 MAPK signalling. In turn, the activation of
this pathway enhanced EMT markers expression such as vimentin, N-
cadherin, and fibronectin and promoted tumour cell invasion [87].
Recently, a study from our group demonstrated that a novel peptide
targeting αvβ3 integrin was able to revert EMT and hamper the ag-
gressiveness of TNBC cells [54].

Furthermore, Kumar S et al demonstrated that PMN MDSCs were
recruited in TNBC responding to CXCL2 and CCL22 under control of
transcription factor ΔNP63 and contributed to increase EMT gene sig-
natures making them more invasive and metastatic [88]. In another
study, the same group showed that in 4T1 TNBC xenografts the genetic
ablation of Crk by CRISPR-Cas9 suppressed EMT and programmed
death ligand-1 (PD-L1) expression on tumour cells and enhanced anti-
tumour immune cell populations in primary tumour causing a sig-
nificant reduction in tumour growth and lung metastasis [89]. In ad-
dition, it has been reported in the same murine model that CXCR2+
MDSCs through IL-6 induced cancer cell EMT and promoted T cell ex-
haustion [90]. Furthermore, when adipocytes were co-cultured with
MCF-7 they caused a down-regulation of E-cadherin expression while
increased N-cadherin levels in these cells [91]. In addition, soluble
factors secreted by activated T cells such as TNF-α, IL-6, and TGF-β
were able to induce the expression of EMT-related genes and promote
metastasis in inflammatory breast cancer [92]. Interestingly, TAM in-
filtration has been associated with EMT and low E-cadherin expression
levels in TNBC demonstrating their involvement in inducing the acti-
vation of this programme [93]. In particular, some findings have re-
ported an increased expression of EMT markers such as TWIST1 and
MMPs in breast tumours with high immune infiltration in the TME [94].
Santisteban M and collaborators found that CD8 T cells in breast animal
models induced EMT causing the formation of tumours with breast
cancer stem cells characteristics [95].

3.2. Angiogenesis and lymphangiogenesis

Each type of stromal cell recruited in breast TME in concert with
malignant cells play a pivotal role into promoting angiogenesis process
where new blood vessels supplying oxygen and nutrients are needed to
support tumour growth and metastatic spread. Vascular endothelial
growth factor A (VEGFA) is is the leader in orchestrating the vessel
network in the tumour [96].

In 2005, Orimo A with his collaborators demonstrated that CAFs
extracted from human breast carcinomas secreting SDF1 induced the
growth of admixed breast carcinoma cells in vivo and promoted an-
giogenesis through the recruitment of endothelial progenitor cells [97].
CAFs are the main source of many pro-angiogenic factors including
VEGFA, PDGFC, FGF2, osteopontin and secreted frizzled-related protein
2 (SFRP2) [98]. Of note, it has been observed that hypoxia inducing the
expression of HIF-1α and GPER (G-protein oestrogen receptor) in CAFs
caused release of VEGFA and promoted tube formation in Human
Umbilical Vein Endothelial Cells (HUVECs) [99]. Similarly, the same
group in a following study demonstrated that IGF1/IGF1R axis through
activation of ERK1/2 and AKT induced in CAFs and breast cancer cells
the expression of HIF-1α and its targets GPER and VEGF. Furthermore,
they established that the activation of both these factors is required for
VEGF-induced human vascular endothelial cell tube formation [100].
Recently, an interesting study by Kugeratski FG showed that secretome
of hypoxic human mammary CAFs, analysed using a mass spectro-
metry-based proteomic approach, and contained high levels of HIAR
(hypoxia-induced angiogenesis regulator) regulator of VEGFA secretion
[101]. Notably, miR-205/YAP1 (Yes associated protein) signalling axis
induced trans-differentiation of normal breast fibroblasts into CAFs that
in turn releasing IL11 and IL15 were able to stimulate tubule formation
and sprouting of HUVECs [102].

TAMs are major contributors in angiogenesis process [47]. Their key
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role in the angiogenic switch has been well elucidated by an excellent
study carried out by Lin and collaborators in which they demonstrated
that depletion of CSF-1 in mammary tumours caused inhibition of
macrophage maturation and infiltration as well as vessel formation
[103]. Conversely, CSF-1 overexpression triggered macrophages accu-
mulation in hyperplastic lesions that supporting a very early and im-
portant angiogenic switch primed a more aggressive phenotype [104].
Another important factor released by TAMs involved in angiogenesis
and tumour progression in breast cancer is CCL18. Silencing of the
putative receptor of this chemokine in HUVECs hampered their ability
to form vessels [105]. It has been reported that TAMs express very high
levels of the WNT family ligand WNT7B. This in turn, causes in a
MMTV-PyMT model of luminal breast cancer angiogenic switch as well
as metastasis [106]. Interestingly, the deletion of the transcription
factor Ets2 in TAMs decreased angiogenesis and lung metastases in
different breast cancer murine models [107]. Similar findings revealed
the ability of Ets2 in fibroblasts to promote blood vessel formation in
the absence of tumour cells [108]. The pro-angiogenic factor angio-
poietin 2 (ANG2) not only stimulated EC but also macrophages ex-
pressing its receptor TIE2 to actively participate in the formation of
vessel networks in breast cancer [109,110]. Interestingly, the deletion
of HIF1α in CD8+ T cells reduced not only their tumour infiltration but
also altered tumour vascularization [111]. Recently, Tian L et al sug-
gested that type 1 T helper (TH1) cells play a crucial role in vessel
normalization [112].

Like angiogenesis the lymphangiogenesis is a process that de-
terminate the formation of new lymphatic vessels starting from the
remodelling of existing lymphatics and it is an important step in cancer
metastasis. In particular, breast cancer cells through lymphatic vessels
metastasize to adjacent lymph nodes [113]. Recently, it has been ob-
served that Lysyl Oxidase-like protein 2 (LOXL2) significantly promoted
tube formation by activating lymphatic endothelial cell invasion and
induced CAFs to secrete high level of pro-lymphangiogenic factors
VEGF-C and SDF-1α. In an orthotopic breast cancer model LOXL2 in-
creased lymphatic vessel density and lymph node metastasis without
affecting growth of primary tumour [114].

3.3. ECM remodelling

ECM contributes actively in supporting metastatic spread of breast
cancer cells through the cross-talk between stromal cells and tumour
cells. Predominantly CAFs are involved in the aberrant ECM remodel-
ling where at the same time they produce components of ECM such as
collagen, tenascin C and fibronectin as well as they secrete proteolytic
enzymes such as metalloproteinases (MMPs) that intervene in ECM
degradation [115]. The balance between these two process primes
cancer cells migration and invasion.

The principal ECM constituent deposited by CAFs is fibrillary col-
lagen type I and its accumulation causes an increase of stiffness strictly
correlated to progression towards a more invasive phenotype [3,116].
Notably, during transformation of ductal carcinoma in situ to invasive
ductal carcinoma there is an enhancement of the collagen fibers cross-
linking as well as their thickening and linearization [117]. Interest-
ingly, more aggressive breast cancer subtypes such as HER2+ and
TNBC present a major accumulation of collagen and matrix rigidity
respect to less malignant subgroups [117]. Furthermore, the organiza-
tion of these ECM fibrils perpendicularly to the tumour boundary create
the tracks that cancer cells have to follow for invading and metasta-
sizing to adjacent tissues and vessels [117]. In a recent study, Jones CE
et collaborators reported that phosphatase and tensin homolog (PTEN)
depletion in fibroblasts promotes collagen deposition and its remodel-
ling perpendicular to the tumour edge in a breast cancer murine model
[118]. The fibrillar collagen receptor discoidin domain 2 (DDR2), a
distinctive receptor tyrosine kinase activated by fibrillar collagens has
been shown to be involved to mediate breast cancer metastasis but not
tumour growth [119].

Furthermore, increased matrix stiffness down-regulating PTEN le-
vels via miR-18a enhanced ability of breast cancer to migrate and in-
vade [120]. It has been observed that CAFs are stimulated to produce
collagen I and IV and fibronectin through a mechanism involving both
TGF-β and MMP2. Indeed, shRNA-mediated MMP2 knockdown reduced
the CAF release of ECM fibers and prevented breast cancer metastasis in
the lung [121]. Similarly, Wang TN et al observed that thrombos-
pondin-1 (TSP-1) released by fibroblast inducing MMP9 expression in
breast cancer cells promoted their ability to invade the ECM [122]. Loss
of COX-2 expression in cells reduced the number of CAFs, their collagen
I production, and metastatic potential in vivo [123]. Of note, studies by
Barcus et al showed that in collagen dense (Col1a1tm1Jae/+) mice,
collagen fibers ran in parallel with the infiltrating tumour cells and
were perpendicular to the bulk of the tumour and this behaviour was
correlated with increased circulating tumour cells and the number and
size of lung metastases [124]. Fibronectin is another prominent ECM
protein produced by CAFs that contributes to breast cancer progression.
Interestingly, its polymerization and organization into ECM is a pre-
requisite for the deposition of collagen-I [125]. Their synergistical in-
terplay is mediated by MMPs and is correlated with invasive phenotype
[125]. In addition, the multimeric extracellular glycoprotein Tenascin-
C (TNC) component of breast cancer ECM, resulted overexpressed in
CAFs when they were exposed to conditioned medium from the human
breast cancer lines containing TGFβ1 [126]. Normal mammary gland
present low or absent levels of TNC whereas in stroma of ductal car-
cinomas it is overexpressed. Furthermore, high levels of TNC correlate
with tumour stage, lymph node metastasis, TAM infiltration, and pre-
dicts poor overall survival [127]. Notably, in addition to the high ex-
pression of the fully truncated TNC, others two isoforms, one containing
exon 16 (TN16) and one containing both exons 14 and 16 (TN14/16),
resulted significantly associated with the invasive phenotype [128].
These TNC isoforms promoted breast cancer invasion through up-reg-
ulation of MMP-13 and TIMP-3 [129]. Similar to TNC, tenascin-W was
found in the breast tumour stroma and serum of patients. Fibroblasts
adhered to TNW through integrin β1 and promoted the migration of
breast cancer cells towards a fibronectin substratum in vitro [130]. The
CAFs role in remodelling ECM is strictly connected with their produc-
tion of multiple isoforms of MMPs such as MMP-1, MMP-7, MMP-9,
MMP- 11, MMP-12, and MMP-14 [131]. Breast cancer cells can induce
stromal MMP-9 expression via the release of TGF-β1 and TNF-α which
leads to an enhanced migration [132]. These enzymes not only degrade
ECM components but also promote metastatic spread activating EMT
program [133]. It has been reported that CAFs increase ECM stiffening
through transcription factor YAP1 that regulates the expression of
several cytoskeletal regulators required for cancer cell invasion. At the
same time via a positive-regulatory loop, matrix remodelling further
enhances YAP activation [134]. Interestingly, caveolin-1 (Cav1) ex-
pression in breast CAFs stimulates contraction, matrix alignment and
stiffening p190RhoGAP-mediated thus directing carcinoma cell migra-
tion and invasion [135]. Furthermore, matrix stiffness is regulated by
lysyl oxidase (LOX) that is overexpressed in stromal cells stimulated by
hypoxia, TGF-β1, and miR-200 [136,137]. High levels of LOX increased
collagen crosslinking as well as migration and metastasis of breast
cancer cells [138]. Interestingly, it has been observed that loss of
stromal LOX did not alter primary tumour growth but did decrease
metastasis in a PyMT mouse model [139]. In addition to their functions
in ECM remodeling [140], MMPs can also alter tumour motility directly
by cleaving E-cadherin and inducing EMT [141,142]. TAMs actively
cooperate with CAFs in endorsing tumour cell invasion taking a part in
ECM remodeling. It has been observed that TAMs secreted the protein
acidic and rich in cysteine (SPARC) involved in regulating collagen IV
deposition and cell-ECM interaction through integrin αvβ5 that in turn
mediated migration of invasive cells [143]. Tumour cells move along
with TAMs on fibrillar collagen 1 structures toward blood vessels where
TAMs assist tumour cell intravasation as shown by intravital imaging of
xenografted tumours [144–146]. Similarly, CAFs can create fissures in
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the matrix or basement membrane to guide collective invasion of the
tumour cells, which are linked, by cell–cell junctions [147,148]. The
migration of TAMs together with breast cancer can be initiated by
heregulin and CXCL12 and required a paracrine CSF-1-EGF loop [149].
Time-lapse imaging showed that tumour cells migrated toward the
vessel-associated macrophages and that their intravasation only oc-
curred when perivascular macrophages were present [145]. Recently,
Linde N et al reported in a mouse model of HER2+ breast cancer, that
depletion of macrophages reduced early cancer cells dissemination as
well as metastatic burden [150]. Breast cancer cell intravasation and
dissemination takes place through tumour microenvironment of me-
tastasis (TMEM) that are structures composed of tumour cells expres-
sing the actin-regulatory protein Mammalian-enabled (MENA), peri-
vascular macrophages and endothelial cells [151]. The presence of
TMEM has been observed in mouse and human mammary carcinomas,
and its density is associated with metastatic outcome in breast cancer
patients [152]. In TMEM sites, cancer cells may intravasate and dis-
seminate to secondary sites through endothelial cell transient dis-
sociation of junctions, TMEM-bound macrophages expressing TIE2 via
VEGF-A control vascular permeability [153].

3.4. Pre-metastatic niche

A crucial step in the establishment of metastases includes the for-
mation of a pre-metastatic niche where recruited stroma cells con-
tribute to create a favourable microenvironment permitting cancer cell
seeding. They to successfully germ in a distant site need to find nu-
trients, an ECM that can support their attachment and stromal cells that
help them with paracrine signal to survive and proliferate in the new
environment [154]. In 2005 for the first time, Kaplan and colleagues
introduced the concept of pre-metastatic niche because in their studies
they observed that VEGFR1-positive bone marrow–derived cells
(BMDCs) were recruited to future sites of metastasis before the tumour
cells. There BMDCs led the arrival and attachment of circulating cancer
cells through SDF-1/CXCR4 axis [155]. Pre-metastatic niche establish-
ment not only involves the recruitment of foreign cells but also the
reprogramming of the resident stromal cells to facilitate metastatic
growth. However, the primary tumour secretes soluble molecules
(TDSFs) and extracellular vesicles (EVs) including exosomes containing
proteins, mRNAs, microRNAs, small RNAs, and/or DNA fragments
needed to create a suitable environment for the survival of metastatic
cells [156]. It is worth noting that Liu Y et al identified different steps in
the preparation of metastatic sites. In the “priming phase”, the factors
released by primitive tumour remodelling ECM and reprogramming
stromal cells to create an immature pre-metastatic niche; follows a
“licensing phase” where BMDCs and regulatory/suppressive immune
cells are mobilized and recruited thus establishing a mature pre-meta-
static niche for potential seeding and colonization of CTCs; in the third
phase denominated “initiation phase”, CTCs arrive to fertile pre-meta-
static niche and start to grow and colonize; some of them survive
whereas others enter dormancy, in this phase there is the formation of
micrometastases. The last phase is “the progression phase”, during
which metastatic tumour cells expand and progress leading to macro-
metastases [156]. When breast cancer cells spread from the primary
tumour, they exhibit a propensity to metastasize to specific sites such as
the bone, lung, liver and brain [157]. Among early constituents of the
pre-metastatic niche, there are ECM proteins such as fibronectin [155],
TNC, Periostin (POSTN) and Versican (VCAN). It has been reported that
breast cancer cells that infiltrate the lungs support their own metastasis-
initiating ability by expressing TNC [158]. Similarly, S100A4+ fibro-
blasts are able to promote lung metastases releasing TNC and VEGFA
[159]. Interestingly Malanchi et al showed that lung infiltrating breast
cancer cells induced POSTN expression by stromal cells to initiate their
colonization of pre-metastatic niche. Furthermore, they observed that
blocking POSTN function prevented lung metastasis [160]. Notably, it
has been elucidated that microvasculature of lung, bone marrow and

brain metastases constitute a niche of dormant tumour cells that can be
activated by POSTN and TGF-β1 produced from endothelial tip cells
[161]. The production of VCAN in metastatic lungs mouse models of
spontaneous breast cancer was mainly due to
CD11b+Ly6Chighmonocytic fraction of the myeloid cells and its high
levels was found within the metastatic lung of patients with breast
cancer. In addition, it has been demonstrated that VCAN stimulated
mesenchymal to epithelial transition of metastatic tumour cells by at-
tenuating phospho-Smad2 levels [162]. It has been identified in a
murine model of breast cancer that MDAMB231 cells induced recruit-
ment of CD11b+ cells in pre-metastatic lung releasing LOX which
crosslinking collagen IV favour their adherence [163]. Similar findings
showed that hypoxic breast cancer cells at the same time increased
CD11b + cells accumulation and reduced cytotoxic NK cells in the
lungs [164]. The factors produced by primary tumour recruit bone-
marrow derived monocytes and activate tissue-resident macrophages
during the different phases of pre-metastatic site formation. In turn,
they trans-differentiate in metastasis-associated macrophages (MAMs)
and support breast cancer cell arrival, extravasation as well as survival
protecting them from immune cell attack [165]. Indeed, it has been
observed that MAMs in murine models of breast cancer were able to
suppress CD8+ T cells [166]. Notably, it has been reported that os-
teoclasts, the bone-resident macrophages, play a key role in the for-
mation of bone pre-metastatic niche. Indeed, ER- mammary tumour
cells through LOX release induced osteoclastogenesis promoting os-
teolytic lesions that prepared a permissive environment for breast
cancer cells [167]. Monteiro et al reported that also CD4 + T cells were
able to induce osteoclastogenesis and promoted bone metastasis from
breast cancer cells secreting RANKL (receptor activator of nuclear
factor-kB ligand) [168]. Interaction between MAMs and endothelial
cells help circulating cancer cells adhesion and transmigration into the
metastatic sites thus increasing their metastatic potential [169]. In a
breast cancer murine model, infiltrating neutrophils into the pre-me-
tastatic lung hampered the development of lung metastases [170].
Their depletion, using a specific Ly6G + antibody, increased the lung
metastatic burden whereas direct injection of TAN dramatically de-
creased lung foci [170]. Conversely, Szczerba BM et al, in a very in-
teresting recent study, showed that CTCs isolated from patients with
breast cancer and from breast mouse models resulted associated with
neutrophils in clusters and this link was crucial for CTCs survival in a
hostile environment of blood flow [60].

4. Conclusions

The recent findings have elucidated the importance of commu-
nication between breast cancer cells and tumour “educated” stromal
cells recruited from other tissues or already resident in TME in pro-
moting metastatic process. Many studies reported that the molecules
released by both cancer and non-cancer cells in TME and in circulation
during the different phases of tumour progression are often the same for
example TGFβ, CXCL12, CCL2, IL-6, IL-3, CSF-1, GM-CSF. Currently,
numerous researches are focusing on shedding light on the crucial role
played by components of tumour stroma that when in the TME can
change their naïve gene signature and acquire a more pro-metastatic
function. A clearer understanding of the underlying mechanisms in-
volved in the cross-talk between stromal and cancer cells in the mi-
croenvironment of the primary tumour and metastases could allow the
implementation of novel strategies to block these interactions thus
improving the effects of anti-cancer therapy in breast cancer.
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