
SoftwareX 9 (2019) 28–34

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Json-GUI—A module for the dynamic generation of form-based web
interfaces
Antonella Galizia ∗, Gabriele Zereik, Luca Roverelli, Emanuele Danovaro, Andrea Clematis,
Daniele D’Agostino
CNR-Institute of Appled Mathematics and Information Technologies ‘‘E. Magenes’’, via De Marini 6, 16149 Genova, Italy

a r t i c l e i n f o

Article history:
Received 11 April 2018
Received in revised form27 September 2018
Accepted 29 November 2018

Keywords:
AngularJS
Web form
Science gateways

a b s t r a c t

Json-GUI is an AngularJS front-end module that dynamically generates form-based web interfaces.
Starting from a formal JSON configuration object describing a list of inputs, Json-GUI is able to build a
form frame interface at runtime, with standard and personalized validation rules, giving the possibility
to define constraints between input fields. Validated data are stored as Json objects or text files. Json-GUI
has been exploited by scientific communities to effectively reduce the development and maintenance
of customized user interfaces in science gateways. Moreover, Json-GUI can also be employed in the
development of general-purpose Web forms.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 1.1.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_32
Legal Code License Apache License 2.0
Code versioning system used git
Software code languages, tools, and services used Javascript, HTML, CSS, AngularJS, Bootstrap
Compilation requirements, operating environments & dependencies AngularJS, Bootstrap, JQuery
If available Link to developer documentation/manual https://github.com/portalTS/json-gui/wiki
Support email for questions gabrielezereik@gmail.com

1. Motivation and significance

Computational science represents a broad fieldwhere advanced
computing capabilities are exploited to understand and solve com-
plex, interdisciplinary problems. Present technologies and infras-
tructures represent important enablers because of their support
to large-scale sharing of software, data, instruments, computing
services, and other domain-specific resources [1]. Science gate-
ways are integrated ecosystems that exploit web technologies to
make the sharing easier and to shield users from low-level tech-
nological issues. Science gateways are domain oriented and the
provided interfaces for workflow configuration are mostly based
on end user knowledge elicitation. Most of the available toolkits

∗ Corresponding author.
E-mail addresses: galizia@ge.imati.cnr.it (A. Galizia), zereik@ge.imati.cnr.it

(G. Zereik), roverelli@ge.imati.cnr.it (L. Roverelli), danovaro@ge.imati.cnr.it
(E. Danovaro), clematis@ge.imati.cnr.it (A. Clematis), dagostino@ge.imati.cnr.it
(D. D’Agostino).

and frameworks for the design of science gateways decouple front-
end and back-end with API-based interfaces. With this approach,
the gateway communities can focus their effort on the design of
community-specific Graphical User Interfaces (GUI) [2]. However,
the development of front-end solutions can be a challenging task
for non-IT experts [3].

With this vision in mind, we developed Json-GUI, a front-end
library composed by a set of reusable AngularJS1 directives, that
allows the dynamic generation of full-featured form-based web
interfaces for AngularJS applications. Starting from a formal JSON2

configuration object, Json-GUI simplifies and automatizes the de-
sign and the implementation of a standard web form; the tool
includes added value features as validation, constraints and the
straightforward use of geographic maps. Json-GUI improves the
interaction with users in the elicitation of new requirements and

1 AngularJS Official site, https://angularjs.org.
2 http://www.json.org.

https://doi.org/10.1016/j.softx.2018.11.007
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

https://doi.org/10.1016/j.softx.2018.11.007
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.11.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_32
https://github.com/portalTS/json-gui/wiki
mailto:gabrielezereik@gmail.com
mailto:galizia@ge.imati.cnr.it
mailto:zereik@ge.imati.cnr.it
mailto:roverelli@ge.imati.cnr.it
mailto:danovaro@ge.imati.cnr.it
mailto:clematis@ge.imati.cnr.it
mailto:dagostino@ge.imati.cnr.it
https://angularjs.org
http://www.json.org
https://doi.org/10.1016/j.softx.2018.11.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34 29

allows rapidly and incremental implementation of GUI improve-
ments supporting agile methodology [4]. The form produces as
output a set of validated data stored as JSON objects or text files. In
a science gateway context, the output text files can be customized
to be used as configuration files to run models, therefore they can
be passed and processed by any back-end technology.

Json-GUI has been employed in several scientific contexts [5–
7]; furthermore, due to its flexibility, Json-GUI can be employed
in more general contexts, e.g. commercial tools and wherever it is
necessary to define a form-based web interface.

The paper is organized as follow: in the next Section the scien-
tific context and similar tools are analyzed; in Section 3 Json-GUI
is described from logical, architectural and functionality points of
view; in Section 4 we discuss two main experiences of the uses
of Json-GUI to develop the form-based web GUIs of science gate-
ways addressing the requirements posed by meteorological and
astrophysical communities. Section 5 highlights the benefits and
added value features of the tool, while the last Section concludes
the paper.

2. Scientific and technological context

Recently, several tools have been developed with different lev-
els of maturity and completeness. In the following we briefly give
an overview of different possibilities currently available in this
rapidly evolving field. Most of the tools are oriented to support
web/business communities; theymayprovide appealing interfaces
to define forms, potentially hide programming aspects, be deeply
integrated with third party frameworks, natively implement ser-
vices typically more oriented to a commercial usage.

json-editor3 represents a simple but complete editor that starts
from a JSON schema to generate a web form and gives back a JSON
object with the fields and values filled though the form. No support
is provided to define the JSON schema. Alpaca4 provides a library
of out-of-the-box JSON schema to define field types, controls,
templates, etc. The library has to be used, through a text editor,
to create the HTML file that will generate interactive forms for
web and mobile applications. Schema Form5 is a set of AngularJS
directives that, similarly to Alpaca, provides a set of out-of-the-
box of JSON schema, but provides user-friendly interfaces to create
the initial schema of the forms. JotForm6 and <form.io>7 instead
allow to completely skip the manual first schema generation and
manage this part autonomously through the use of drag-and-drop
interfaces and services.

Most of the cited tools support many types of parameters, inte-
grate valuable external services, e.g. Paypal or Braintree payment,
and support the possibility to extend the parameters/services na-
tively provided. All tools implement validation rules with different
levels of complexity, from basic to customized validation logic, but
none of them allows the definition of complete custom constraints
cross-checking of a set of values coming from different form fields.
Moreover, being designed for general purpose applications, such
tools lack the possibility to define markers and geographical areas
on a map.

There is no evidence of the adoption and the exploitation of the
above mentioned tools by the scientific community that achieved
few benefits from the development of these interesting softwares.
Json-GUI represents an attempt made to cover this gap and, al-
though somewhere simplifies featureswith respect to the previous
tools, it has proved its effectiveness in several scientific contexts: it

3 http://jeremydorn.com/json-editor.
4 www.alpacajs.org.
5 http://schemaform.io/.
6 www.jotform.com.
7 form.io.

has been employed to develop the science gateway of the EXTraS
project [5] for the astrophysics community, for the refactoring of
a science gateway for hydro-meteorological community [7] and,
more generally, to dress Airavata, a powerful middleware support-
ing the development of solid science gateways, together with the
EasyGateway toolkit [6]. In these projects, Json-GUI was exploited
to develop the GUI to configure model runs as well as to generate
configuration files that have been used by the specific software
available for model execution.

The integration of Json-GUIwithin a science gateway can be ob-
tained smoothly because only themodel configuration component
leverages on Json-GUI. The existing submission handler compo-
nent of the science gateway in fact is provided with data collected
through the GUI, i.e. parameters to configure the model run, and it
can run themodel withoutmodification. This architectural schema
is depicted in Fig. 1 and it has been discussed in details in [6].

3. Software description

Json-GUI generates at runtime a complete form-based web
GUI that a user can exploit to insert heterogeneous values. The
fields of the form and related customized rules are defined by
manipulating an array of parameters, actually a JSON object. The
input data collected through the form are stored as a JSON object
that can be converted in a text file with an user-defined format.
Completely integrated with Bootstrap8 and based on responsive
technologies, Json-GUI suitably addresses also mobile experiences
while implementing a model-view-controller pattern.

Alignedwith agilemethodology andmockups [8,9], Json-GUI al-
lows a flexible approach to requirements andquickuser-feedbacks,
and reduces the time to deploy through cycles of interaction with
users and incremental refinements of the GUIs. The development
phase converges in few iterations of elicitation of domain specific
knowledge and integration in user interfaces, i.e. the Web form
GUI built through Json-GUI. The logical phases of this process are
schematized in Fig. 2.

Starting from the interaction with scientists, a first round of
requirements are elicited and the definition of the JSON object is
derived. In this phase, the main actors involved are data scien-
tists and Web form users. At this point, Json-GUI automatically
generates the Web form corresponding to the JSON object, and
users/scientists can fill in the values corresponding to the defined
fields. Once the Web form is compiled, Json-GUI generates the
output: a JSON object that can be possibly customized and used
for the final aim. The generated output is a generic Json object,
and, thus, it is ready to be processed by anymiddleware, workflow
manager or local scheduler.

If the form is in a validation phase, the interaction among
scientists and the Json-GUI user can continue to elicit more re-
quirements, modify the JSON object and lead to the correct Web
form. Also thanks to model-view-controller pattern at the base
of the tool, Json-GUI speeds up this phase enabling a run-time
visualization of the Web form, reducing the duration of iterations
for the elicitation/integration of derived information and conse-
quently the development time of the final GUIs.

Since the definition of the input for the generation of the web
form could become a bit challenging,we developed a graphical tool
to build the corresponding JSON object, called Json-GUI-Builder.9
Through a simple interface, the Builder completely supports devel-
opers, i.e. Json-GUI users, in the definition of parameters and re-
lated validation, constraint and condition rules. The Builder is pro-
vided as separated tool since it could be also used autonomously,
i.e. to define any type of JSON object, and no dependencies are

8 https://getbootstrap.com.
9 https://github.com/portalTS/Json-gui-builder.

http://jeremydorn.com/json-editor
http://www.alpacajs.org
http://schemaform.io/
http://www.jotform.com
https://getbootstrap.com
https://github.com/portalTS/Json-gui-builder


30 A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34

Fig. 1. The architectural approach to integrate Json-GUI in a science gateway.

Fig. 2. A logical schema of the Json-GUI usage.

actually implemented among the two tools. However, Json-GUI
without the Builder comes less interesting and the combination
of the two tools represents an added value for both. In Section 4,
two examples of Json-GUI-Builder graphical user interface are
reported.

Form fields
The core of the input object consists in an array of parameters,

where each element defines (and renders) a single input field of the
form. The possible input forms are: integer and float respectively
generating a field for the specification of an integer and a float
number; datetime generating fields for the specification of a date,
including hours and minutes; select generating a combo box to
select a value among the available ones; text generating a plain
text input field; domains, generating a geographical map where
rectangular domains and single markers can be drawn; fileupload
defining an input box to upload one or more files.

Json-GUI offers high level features to enrich the form interface
by defining:

• Validation checks — each parameter type has internal for-
mat validation, e.g. float and integer types have a built-in
number format verification. Moreover, it is possible to add a
custom validation for the specification of a behavior: e.g. a
user may define a datetime input valid if it predates a specific
date — the 1st January 1970.

• Constraint rules — since parameter values may mutually
influence their behavior, constraints among different inputs
can be implemented: if a time range has to be fixed, it is
possible to set the ‘‘Start date’’ parameter value valid only if
predates the ‘‘End Date’’ parameter value. This gives Json-GUI
the potential to specify all standard constraints of a classic
HTML5 form based interface.

• Conditions — Json-GUI offers the possibility to specify a
condition (constant or depending on the value itself) to ac-
tivate/deactivate parameters in the input form. This permits
to enrich the form interface with a dynamic behavior when
managing, for example, Select and Domain parameters. A
common example for Select parameter can be a form for
online payment, Json-GUI allows to present different form
fields depending on the value of a paymentmethod field: if the
selected value is ‘‘Paypal’’, the GUI presents fields for ‘‘Paypal’’
login, with a Credit Card value, the GUI presents fields for
credit card configuration (e.g. the credit card number, CVV,
name and surname of the owner), and so on. The same level
of dynamism is ensured when considering the Domain pa-
rameter, since the number of geographical domains relies on
the user interaction and is unknown a-priori: depending on
the number of domains that a user draws, the GUI can display
different form fields and information. For example, in Fig. 4
three geographical domains are considered, and the related
geographical coordinates are displayed for each domain.



A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34 31

Fig. 3. A logical schema of the Json-GUI usage.

As standard behavior implemented by Json-GUI, if one of the
rules/checks described above is violated, it will be not possible to
submit the form and the output will not be generated. A custom
message can be displayed if specified during the definition of the
related parameter. Examples are reported in the remaining of the
Section and in Fig. 8.

Software architecture

Json-GUI presents a two-level software architecture, schema-
tized in Fig. 3. The higher level, named Form, is composed by
the Web form GUI automatically rendered from the JSON object,
equipped with its overall logic and behavior. This includes the
validation checks among parameters and the collection of each
value to build the overall output, i.e. couples of parameters and
corresponding values possibly stored in a text file following an
user-defined format. The lower level, named Fields, is represented
by theAngularJS directives defining each parameter type. This level
defines the individual behavior of the form fields, including the
internal validation. Each validation rule can be general-purpose or
specific.

Json-GUI is designed to be easily installed, extended or cus-
tomized.10 In particular, since the tool is open-source and devel-
oped with free technologies, a user can modify the css default
settings and use the preferred css files thus to change how the
form is rendered. Furthermore, a user can render his/her own
customized fields by adding the definition of the logic for the new
field; similarly, a user can extend the Json-GUI Builder to have the
Builder support.

Software functionalities

The basic element of the JSON object, input of Json-GUI, is a
parameter that contains the value and all conditions that apply
on it. Each parameter of the Json-GUI object has the following
structure:

parameter: {
value: {type: "parameterType"},
displayName: {type: "string"},
dbName: {type: "string"},
isValid: {type: "string"},
parameterType: {type: "enum(’float’, ...,

’fileupload’)"},
parameterCategory: {type: "integer"},
computedResult: {type: "string"},
dependencies: [{type: "string"}, ...],
required: {type: "boolean"},
editable: {type: "boolean"},
description: {type: "string"} }

10 https://github.com/portalTS/json-gui/wiki.

The displayName property defines the name of the parameter
to be displayed in the interface, while the dbName is a unique
identifier used internally. The parameterType defines the type to
be specified among the ones supported. The parameterCategory
property allows to logically group parameters in the form, e.g. by
appearing in the same tab. The parameter can also be marked as
required, it is possible to specify if the default value can be editable
or not. The description property contains a text shown in an info
box, and can be used as hint to the user. The dependency property
is an array containing the references to the parameters on which
the current parameter depends. These are the parameters that
shall be used within the isValid property. This property is a string
containing a Javascript function body to possibly define custom
validations. The following is an example, where also a custom
message is set for invalid condition:

isValid : "if(parameter.value < dependencies
[’dep_1’]. value) { isValid.valid= false;
Valid.message=’ custom error message’;}"

The computedResult property defines a Javascript function
meant to perform a final computation in order to (possibly) refine
the value before the form submission. An example is the following:

computedResult: "return parameter.value/1000;"

Please note that the computedResult property allows a further
customization for the value of the single fields; this is extremely
useful when a specific format is required, e.g. datetime parameters
formatted in a different standard or a specific projection for a
geographical domain parameter.

4. Illustrative examples

A valuable example is presented by the form field Domain
defined to support the hydro-meteorological community in the
configuration of the Weather Research and Forecasting, WRF11
Model. The possibility to draw a geographical domain by using
a graphical map has been actually acknowledged by scientific
community [10]; for this reason, the Domain input type has been
implemented with the integration of the Google Map JavaScript
library. Furthermore, meteorological models usually enable the
definition of more than one domains, that can be nested or not:
nest is a finer-resolution model run, that can be embedded si-
multaneously within a coarser-resolution (parent) model run, or
run independently as a separate model forecast. The first case,
depicted in Fig. 4, represents nested domains. For this reason, the
Domain is enhanced with the possibility (for the user) to draw up
to three rectangles, each one representing a geographical domain,
and a constraint to permit the drawing of nested domains has been
defined.

Fig. 5 presents a sample code related to the hydro-
meteorological science gateway [7] and leading to the configura-
tion depicted in Fig. 4: the parameter maxDomains limits to three
the maximum number of drawable domains and the parameter
onlyNested permits to draw domains only inside a single parent
domain. In Fig. 6, an example of Json-GUI Builder interface corre-
sponding to the Domain parameter is shown.

Another significant example is provided in Fig. 7, that shows
sample code related to the form field Time_Interval_
Selection, representing one of the input of the transient analysis
tool provided by the EXTraS science gateway. A wide diversity
of astrophysical phenomena – from stars to supermassive black
holes – are characterized by flux and spectral changes on time

11 http://www.wrf-model.org.

https://github.com/portalTS/json-gui/wiki
http://www.wrf-model.org


32 A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34

Fig. 4. An example of GUI to draw up to three domains exploiting a Google map.

Fig. 5. The Json-GUI parameters for automatic building of the Domains form field.

scales, ranging from a fraction of a second to several years. Current
observing facilities subdivide an observation in a set of images,
with a time resolution of the order of 1 s or shorter. In particular the
transient analysis is based on the use of two alternative subdivision
strategies, i.e. the use of fixed time intervals or variable intervals
based on the Bayesian blocks algorithm. Therefore the user can se-
lect only onemethod and, consequently, the form field depends on
the parameter named Time_Interval_Selection_Bayesian,
because one and only one of them must have the ’’no’’ value.
This is specified with the dependencies and isValid properties.
Fig. 7 shows also the error message raised in the GUI when the
condition related to the parameters are not verified. In Fig. 8,

an example of Json-GUI Builder interface corresponding to the
Time_Interval_Selection parameter is shown.

5. Impact and sustainability

Json-GUI represents a step towards closing the gap between the
high level and low level layers of a science gateway, represented re-
spectively by the community-specific GUI and the general-purpose
middleware plus the computational infrastructure. Most of the
available framework to develop science gateways do not provide
a suitable support for the definition of customized GUI [7]. This
may be challenging for non-IT communities, and awrong selection
of the front-end technology, combined with frequent developer



A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34 33

Fig. 6. An example of parameter definition with Json-GUI-Builder.

Fig. 7. An example of parameter and consistency check definition with Json-GUI.

Fig. 8. An example of parameter definition with Json-GUI-Builder.



34 A. Galizia, G. Zereik, L. Roverelli et al. / SoftwareX 9 (2019) 28–34

turnover, can represent a major issue for the gateway sustainabil-
ity [3]. Json-GUI definitely accomplishes this task while adding
valuable features.

Actually, Json-GUI allows the dynamic generation of web forms
without the need to write any line of code. However this does
not limit its expressiveness. The possibility to define customized
rules on/among parameters in facts gives Json-GUI the potential
to specify all standard constraints of HTML5 forms. The possible
complexity in the definition of parameters rules are delegated to
the Json-GUI-Builder, therefore again, this task does not suppose
specific programming expertise. By contrast, more expert users
could extend the tool to address their requirements since Json-GUI
is open-source, based on widespread technologies and based on
modern architectural pattern.

Furthermore, since user interfaces are dynamically generated
starting from a JSON Object, it is possible to modify a web form
interface on the fly by simply modifying the object without the
need to re-deploy or restart any service. The resulting faster devel-
opment cycle is very relevant in research fields relying on software
tools developed (and frequently updated) by the community. Of
course, such reduction has an impact also in terms of costs, thus
becoming appealing in a general-purpose context.

Focusing on the added value features, the most valuable are
constraints and conditions. The consistency check among param-
eters supports the proper configuration of experiments and, per-
formed before the actual execution of themodels, avoids thewaste
of CPU time due to execution of a misconfigured experiment. Also
the possibility to draw geographical domains has been actually
appreciated in the scientific community, and a great effort as been
dedicated to this point, as outlined in Section 4.

And last but not least, Json-GUI effectively supports the cre-
ation of configuration files that can be directly ingested by target
applications. Validated data collected through the generated form
interfaces in fact can be stored as Json object or text file, e.g. as
classical key–value format, but it is possible to define further cus-
tomization to match the expectations of the models/applications.
A user can develop and override any standard behavior of the
generation phase: a transformation function can be defined for
each field as well as for the final configuration file. This file can be
used by the specific tools in charge for application execution; the
actual submission can then be performed by the science gateway
services, as described in [6].

As for software sustainability, this represents an open problem
thatmay strongly affect the usefulness of new software tools. Json-
GUI has the potentiality of satisfyingmost of the features requested
to define software sustainability [11]. User interfaces developed
using Json-GUI are: (1) easy to maintain because no specific pro-
gramming expertise are required, without limiting their expres-
siveness. Furthermore they support a flexible approach to require-
ments and quick user-feedback and fast refinements; (2) easy to
evolve because they are based on technologies and an architectural
pattern that separate logic and presentation layers. This supports
the possibility to simply implement customized solutions; (3) able
to fulfill their aim in a dynamic environment since it is possible to
easy adapt them to changing requirements.

6. Conclusions

We presented Json-GUI, an AngularJS front-end module which
allows to quickly create form-based web interfaces. The module
supports the export of the parameters in structured data files,
which are often used for configuring complex experiments. The
tool demonstrated its effectiveness (a) in supporting users for the
configuration of scientific experiments, where it is important to
keep consistency among the inserted values, and (b) in supporting
non-IT experts for the design of such complex interfaces. Due to
the successful user experience gained with two communities, we
plan further effort to improve the visibility of tool and to engage
other scientific communities.

Conflict of interest

Wewish to confirm that there are no known conflict of interest
associated with its publication and there has been no significant
financial support for this work that could have influenced its out-
come.

References

[1] Andronico G, Ardizzone V, Barbera R, Becker B, Bruno R, Calanducci A, Car-
valho D, Ciuffo L, Fargetta M, Giorgio E, et al. E-Infrastructures for e-science:
a global view. J Grid Comput 2011;9(2):155–84.

[2] Kacsuk P. Science gateways for distributed computing infrastructures.
Springer Intl Publ 2014;10. 978–3.

[3] Lawrence KA, Zentner M, Wilkins-Diehr N, Wernert JA, Pierce M, Marru S,
Michael S. Science gateways today and tomorrow: positive perspectives of
nearly 5000 members of the research community. Concurr Comput: Pract
Exper 2015;27(16):4252–68.

[4] Rivero JM, Grigera J, Rossi G, Luna ER, Montero F, Gaedke M. Mockup-driven
development: providing agile support for model-driven web engineering. Inf
Softw Technol 2014;56(6):670–87.

[5] D’Agostino D, Roverelli L, Zereik G, Rocca GL, Luca AD, Salvaterra R, Belfiore A,
Lisini G, Novara G, Tiengo A. A science gateway for Exploring the X-ray
Transient and variable sky using EGI Federated Cloud. Future Gener Comput
Syst 2018. http://dx.doi.org/10.1016/j.future.2017.12.028.

[6] Galizia A, Roverelli L, Zereik G, Danovaro E, Clematis A, D’Agostino D. Using
apache airavata and easygateway for the creation of complex science gate-
way front-end. Future Gener Comput Syst 2017. http://dx.doi.org/10.1016/j.
future.2017.11.033.

[7] D’Agostino D, Danovaro E, Clematis A, Roverelli L, Zereik G, Galizia A. From
lesson learned to the refactoring of the DRIHM science gateway for hydro-
meteorological research. J Grid Comput 2016;14(4):575–88.

[8] D’Souza C, Deufemia V, Ginige A, Polese G. Enabling the generation of web
applications from mockups. Softw - Pract Exp; 48(4)(2018):945–73.

[9] Torrecilla-Salinas C, Sedeño J, Escalona M, Mejías M. Agile, web engineering
and capability maturity model integration: a systematic literature review. Inf
Softw Technol 2016;71:92–107.

[10] Danovaro E, Roverelli L, Zereik G, Galizia A, DAgostino D, Paschina G,
Quarati A, Clematis A, Delogu F, Fiori E, Parodi A, Straube C, Felde N,
HarphamQ, Jagers B, Garrote L, Dekic L, Ivkovic M, Caumont O, Richard E. Set-
ting up an hydro-meteo experiment in minutes: The DRIHM e-infrastructure
for HM research. In: 2014 IEEE 10th international conference on e-science,
vol. 1; 2014. p. 47–54.

[11] Venters C, Jay C, Lau L, Griffiths MK, Holmes V, Ward R, Austin J, Dibsdale CE,
Xu J. Software sustainability: the modern tower of babel. In: Proceedings of
the third international workshop on requirements engineering for sustain-
able systems co-located with 22nd international conference on requirements
engineering, RE 2014, vol. 1216. RWTH Aachen University; 2014.

http://refhub.elsevier.com/S2352-7110(18)30050-5/sb1
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb1
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb1
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb1
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb1
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb2
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb2
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb2
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb3
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb4
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb4
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb4
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb4
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb4
http://dx.doi.org/10.1016/j.future.2017.12.028
http://dx.doi.org/10.1016/j.future.2017.11.033
http://dx.doi.org/10.1016/j.future.2017.11.033
http://dx.doi.org/10.1016/j.future.2017.11.033
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb7
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb7
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb7
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb7
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb7
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb9
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb9
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb9
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb9
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb9
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11
http://refhub.elsevier.com/S2352-7110(18)30050-5/sb11

	Json-GUI—A module for the dynamic generation of form-based web interfaces
	Motivation and significance
	Scientific and technological context
	Software description
	Illustrative Examples
	Impact and sustainability
	Conclusions
	
	Conflict of interest
	References


