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ABSTRACT: Over the past decade we have developed Koopmans
functionals, a computationally efficient approach for predicting
spectral properties with an orbital-density-dependent functional
framework. These functionals impose a generalized piecewise
linearity condition to the entire electronic manifold, ensuring that
orbital energies match the corresponding electron removal/
addition energy differences (in contrast to semilocal DFT, where
a mismatch between the two lies at the heart of the band gap
problem and, more generally, the unreliability of Kohn−Sham
orbital energies). This strategy has proven to be very powerful,
yielding molecular orbital energies and solid-state band structures
with comparable accuracy to many-body perturbation theory but at
greatly reduced computational cost while preserving a functional
formulation. This paper reviews the theory of Koopmans functionals, discusses the algorithms necessary for their implementation,
and introduces koopmans, an open-source package that contains all of the code and workflows needed to perform Koopmans
functional calculations and obtain reliable spectral properties of molecules and materials.

1. INTRODUCTION
How can one accurately and efficiently predict spectral
properties of molecules and materials ab initio? Currently,
the most accurate and popular approaches to compute charged
excitation energies are Green’s functions methods such as
many-body perturbation theory (GW)1,2 or wave function
methods such as quantum Monte Carlo3 and equation-of-
motion coupled cluster.4 Although for the latter, calculations
for the solid state (rather than for molecules) are far from
routine. Of these approaches, GW is computationally the least
expensive, scaling as N( )4 , where N is the number of
electrons in the system.
Despite ongoing progress in the field of GW,5 performing

these calculations is not straightforward. The aforementioned
scaling of N( )4 can still be an obstacle, and the calculations
themselves can be challenging: they converge slowly with
respect to the number of empty states included (which
increases the importance of constructing transferable pseudo-
potentials that avoid ghost states6), and there is a strong
interdependence of the results on different calculation
parameters, which makes achieving convergence challenging
at best. This hampers routine applications of GW (especially in
a high-throughput context, where the calculations must be
unsupervised).7 Finally, while in principle GW and many-body
perturbation theory are systematically improvable�that is to
say, by increasing the number of diagrams included in the

calculations, the results should progressively converge to the
correct answer (with GW outperforming GW0 in turn
outperforming G0W0)�in practice this does not appear to
hold.8

Alternatively, one could try and calculate the energies of
electronic excitations with density-functional theory (DFT).9,10

DFT has proven to be a remarkably successful theory for
predicting the ground-state properties of solids, surfaces,
nanoparticles, and molecules.11,12 It is typically inexpensive,
and these days such calculations are generally robust and can
be treated as a “black box”. However, DFT is a theory of total
energies, and while the Kohn−Sham auxiliary system is a
powerful construct, the Kohn−Sham eigenvalues are not
necessarily related to the energies of charged excitations (with
the exception of the highest occupied molecular orbital, or
HOMO, which is related to the exponential decay of the
density13). Nevertheless, these eigenvalues can bear qualitative
or even quantitative resemblance to experimental quasiparticle
energies, and it is common practice to interpret them as such,
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motivated by the fact that the Kohn−Sham potential is the best
local and static approximation to the electronic self-energy.14

Aside from this theoretical disconnect, problems also arise
from the additional approximations inherent in exchange-
correlation functionals. In the case of local and semilocal
functionals, a key qualitative failure arises from the erroneous
convex curvature in the total energy as a function of the total
number of electrons in the system, which should instead be
piecewise-linear.15 This curvature explains in part the disagree-
ment between first ionization potentials as calculated via total
energy differences compared to Kohn−Sham eigenvalues.
Many strategies have emerged that attempt to restore the

piecewise linearity of the energy functional � the hope being
that the resulting Kohn−Sham eigenvalues will yield accurate
excitation energies. For example, DFT+U imposes a penalty
functional to a localized subspace that restores linearity in the
energy with respect to the occupation of this subspace.16,17

Similarly, hybrid functionals mix semilocal functionals with
Hartree−Fock exchange (which happens to exhibit a concave
curvature), which means that for a specific mixing fraction of
the two functionals there will be an overall error
cancellation.18−21 Recent state-of-the-art approaches that
employ curvature corrections to yield reliable quasiparticle
energies include screened, range-separated, and dielectric-
dependent hybrid functionals with tuned mixing or range-
separation parameters,22−27 as well as the Koopmans−Wannier
method of Wang and co-workers28 and the localized orbital
scaling correction (LOSC) of Yang and co-workers.29−31

Piecewise linearity is also central to ensemble density
functional theory.32,33 Even DM21, the recent machine-learned
exchange-correlation functional created by Google DeepMind,
was constructed around the idea of restoring piecewise
linearity.34

Starting in 2009, we have introduced and developed the
concept of Koopmans functionals.35−47 By imposing a
generalized piecewise linearity condition and relating quasi-
particle energies to total energy differences, these functionals
address the above issues, and as a consequence they yield
spectroscopic properties (such as molecular ionization
potentials, electron affinities, solid-state band structures, and
band-edge alignments) with comparable accuracy to state-of-
the-art GW approaches, but at greatly reduced computational
cost while preserving a functional formulation. This has all
been implemented in koopmans, an open-source package
that allows nonexperts to perform their own Koopmans
functional calculations, and which is built upon the popular
Quantum ESPRESSO distribution. This paper provides an
overview of the theory of Koopmans functionals (Section 2),
describes the algorithms that enable their implementation in
the koopmans package (Section 3), and demonstrates how
these tools can be deployed to predict spectral properties using
the examples of ozone, silicon, and zinc oxide (Section 4).

2. KOOPMANS FUNCTIONALS
2.1. Fundamental Concepts. For a spectral theory, the

orbital energies εi should match the total energy differences
corresponding to electron removal E(N) − Ei(N − 1) and
addition Ei(N + 1) − E(N). This is trivially true for the exact
Green’s function, whose poles correspond directly to these
total energy differences, but there is no such connection in
Kohn−Sham DFT. The only exception to this is the HOMO,
but even there the violation of piecewise linearity in density
functional approximations leads to a mismatch between the

HOMO eigenvalue with the corresponding total energy
difference (i.e., the negative of the ionization potential).
Koopmans functionals restore this correspondence, by

imposing the condition that the orbital energies
= =Hi i i

E
f

d
d i

of orbitals φi should be independent of

that orbital’s occupation f i:

= fconstant with respect toi i (1)

It follows from Janak’s theorem that this is equivalent to a
“generalized” piecewise linearity condition where the total
energy of the system is piecewise linear with respect to the
change of occupation of any orbital. This is a sufficient but not
a necessary condition to fulfill the much more well-known
piecewise linearity condition,48 which states that the total
energy of the system is piecewise linear with respect to its total
number of electrons. In passing, we mention that eq 1 is
reminiscent of a photoemission experiment, where an electron
is removed from a Dyson orbital.
Imposing this condition will require a beyond-DFT

approach, and is not simply a matter of correcting density
functional approximations within a DFT framework. We can
see that this must be the case by considering the exact density
functional, for which the Koopmans corrections must be
nonvanishing. (This is because while the negative of the
HOMO energy for the exact density functional matches the
ionization potential, there is no such guarantee for the other
eigenenergies.13)
The generalized piecewise linearity condition of eq 1 is

imposed on a “base” functional (here, approximate or exact
DFT) by removing, orbital-by-orbital, the nonlinear depend-
ence of the energy E on the orbital occupation f i and replacing
it with a term that is linear in f i:

= + +
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ( )E E E E f
i f i i

Koopmans DFT DFT DFT

0i

(2)

where EDFT|f di=f corresponds to the DFT energy of the (N − 1 +
f)-electron system, with the occupancy of orbital i constrained
to be f. The first term in the square brackets removes the
dependence of the total energy on f, and the second term
replaces it with a term explicitly linear in f. This construction is
reminiscent of the SIC functional of ref 49., but here the
correction is generalized to the entire electronic manifold.
Here, one must choose a suitable slope ηi for this linear

term; one option is to use the energy difference between fully
occupied and empty orbitals

=
= =

E Ei f f

KI DFT

1

DFT

0i i (3)

giving rise to the Koopmans integer (KI) functional. Note that
this formulation provides Koopmans functionals with mean-
ingful eigenvalues, because they now correspond to total
energy differences, which in the scope of DFT are formally
meaningful and much more reliable than Kohn−Sham
eigenvalues. It can be seen from eqs 2 and 3 that the KI
functional gives, at integer occupations, the same total energy
as the base functional, but has different derivatives and hence
yields different spectral properties. (This will be discussed
further in Section 2.4.1.)
Equations 2 and 3 are difficult to evaluate unless we only

consider the explicit dependence of the DFT energy on the
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orbital occupancies, neglecting the implicit dependence of the
orbitals φi(r) on their own occupation f i, in which case

= [ + ]
=

E E fn
f f i i

DFT DFT

i (4)

where ni(r) = |φi(r)|2 is the density of orbital i and ρi(r) =
f i|φi(r)|2 = f ini(r) is the occupancy-weighted density of orbital
i. Orbital relaxation�or, equivalently, screening�is instead
accounted for post hoc by scaling the unscreened correction by
a scalar coefficient αi. Crucially, these coefficients can be
calculated ab initio at the level of DFT via linear response or
total energy differences.43,44 This brings us, finally, to the
Koopmans energy functional:

[ { }]

= [ ] + [ ] [ ] +
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

E

E E E f

,

( )

i

i
i i i i

Koopmans

DFT DFT DFT

(5)

In Figure 1 we show the efficacy of this linearizing correction
when applied to two orbitals in methane. The full derivation of

eq 5 can be found in Supporting Information S1. This
functional is actually very different from semilocal DFT
functionals; this will be elaborated upon in the following
sections.
2.2. Orbital-Density Dependence. The one important

distinction that is worth making immediately is that Koopmans
functionals are not density functionals, but orbital-density-
dependent (ODD) functionals. This is because they are
dependent on the individual orbital densities {ρi} and not
just the total electronic density ρ. A direct consequence of this
is that Koopmans functionals � much like other ODD
functionals such as the Perdew−Zunger self-interaction
correction (PZSIC)�are no more invariant under unitary
transformation of the occupied manifold, and their minimiza-
tion requires extra care. The variation of EKoopmans in eq 5 with
respect to an arbitrary change of each orbital φi (density ρi)
leads to the Euler−Lagrange equations

+ =h vi i i
j

ji j
DFT ODD

(6)

where =h r( ) E
r

DFT
( )

DFT

is the Hamiltonian of the underlying

DFT energy functional, viODD(r) is the orbital-density-depend-
ent potential associated with the orbital φi, and Λji is the matrix
of Lagrangian multipliers enforcing orthonormality constraints.
Because of the ODD contribution, within the space spanned by
the orbitals {φi}) the energy is representation-dependent and a
proper minimization of the functional requires its variation
with respect to infinitesimal unitary transformations among the
occupied orbitals to vanish,40,50,51 leading to the Pederson
condition50

| | = | |h hi i j i j j (7)

The self-consistent solution of eqs 6 and 7 define the proper
minimum of the Koopmans functionals, and the minimizing
orbitals are known as the variational orbitals. The implemen-
tation of this minimization procedure will be discussed later in
Section 3.1.
At the minimum, as a consequence of eq 7, the Λ matrix

becomes Hermitian and can be diagonalized allowing us to
define a set of canonical orbitals and energies. This mirrors the
definition of canonical orbitals and energy in Hartree−Fock
theory where, among all the equivalent sets of orbitals (those
related by a unitary transformations) that minimize the
functional, the canonical orbitals are recognized as those that
also make the energy functional stationary when a fraction of
electron is added to or removed from the system, thus
qualifying these as electron addition/removal energies. This
also applies to ODD functionals, as discussed in detail in ref 52
for the case of PZSIC. Moreover, canonical orbitals typically
display the symmetry of the Hamiltonian operator (e.g., are
Bloch states in periodic systems45 as shown in Figure 2a) and,
in analogy to exact DFT, the energy of the highest occupied

Figure 1. Total energy E of a CH4 molecule as a function of the
occupancy of the 1a1 molecular orbital (crosses) and one of the 1t2
molecular orbitals (pluses). The absolute total energy is shown in
panel (a) while the deviation from piecewise linearity is shown in
panel (b). For both orbitals, PBE gives a total energy that is
erroneously convex, while the KI correction successfully linearizes the
total energy. Screening is key to this success; in its absence, the KI
correction overcorrects the PBE base functional and yields a concave
energy curve. Note that each orbital φi is obtained from the charge-
neutral system ( f i = 1) and is frozen throughout (while all others are
relaxed). If that orbital was not frozen, then as f i → 0 the orbital
would always morph into the LUMO of the N − 1-electron system
and both sets of curves would be identical.

Figure 2. Example canonical and variational orbitals of polyethylene. Adapted from ref 43.
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canonical orbitals has been numerically shown to determine
the asymptotic decay of the ground-state charge density.53 For
all these reasons, the canonical orbitals and the corresponding
eigenvalues are usually interpreted as Dyson orbitals and
quasiparticle energies. Nevertheless, it is important to stress
that the reliability of canonical energies (and their
correspondence with total energy differences) is not directly
imposed by the Koopmans correction, but instead is inherited
via the variational orbitals. That is to say: the Koopmans
corrections are applied to the variational orbitals, and thus the
Koopmans functional is linear with respect to the occupancy of
variational orbitals. The canonical orbitals are composed of
some linear combination of variational orbitals, and their
energies (i.e., the quasiparticle energies) are subject to a
weighted combination of corrective potentials arising from
their constituent variational orbitals.
Given their central role in the theory, it is important to

discuss the key features of variational orbitals. In contrast to
canonical orbitals, variational orbitals are typically very
localized in space (see Figure 2b). As was recognized long
ago,50 eq 7 is a localization condition that, once satisfied, leads
to orbitals that resemble Boys orbitals in molecules or,
equivalently, maximally localized Wannier functions in periodic
systems.54 The localization of the variational orbitals is a
common feature of ODD functionals and a key property for
Koopmans functionals, in particular when it comes to dealing
with periodic systems. By applying Koopmans corrections to a
set of localized orbitals, the corrections are well-defined and
nonvanishing for both small molecules, infinite bulk systems,
and everything in between, preserving size-consistency.43

Contrast this to if we were to apply the corrections to the
canonical orbitals, in which case they would become ill-defined
in the bulk limit. In order to understand why this is the case, it
is useful to return to the connection between the Koopmans
construction and the ΔSCF approach. In a nutshell, the
ultimate effect of the Koopmans correction is to revert the
wrong eigenvalue from the underlying (approximate) density
functional into a total energy difference (ΔSCF) between the
neutral system and the system with plus or minus one electron
evaluated using the same density functional. This means that
the success of the approach relies on the quality of the ΔSCF
value at the approximate DFT level. It is well-known that
evaluating this total energy difference when removing an
electron from a completely delocalized state reduces to the
derivative of the total energy with respect to the particle
number,55−57 which, for a local or semilocal density-functional
approximation, is the negative of the KS-DFT eigenvalue. This
means that for a standard density functional in the
thermodynamic limit there is no difference between the
ΔSCF and the KS eigenvalues and as a consequence the
Koopmans corrections vanish. To overcome this issue, two
routes are possible: either improving the base functional in
such a way to have improved ΔSCF energies in the most
general case, or retaining the simplicity of local and semilocal
density-functionals and working in a localized representation of
the orbitals.28,58 Indeed, the total energy differences of
approximate density functionals also become accurate when
computed on localized orbitals (e.g., typically, semilocal ΔSCF
calculations accurately predict localized defect levels relative to
the average electrostatic potential59). Thus, by applying the
Koopmans corrections to the variational orbitals (and not the
canonical orbitals), the Koopmans corrections are well-defined
and nonvanishing also in the bulk limit, and yield accurate

band structures compared to experiment. See ref 43 for more
details.
Moving from a DFT framework to an ODDFT framework

may appear like an unnecessary complication. This is not the
case: ODDFTs are a very natural way to generalize a static
functional theory like DFT to predict spectral information.
Ultimately, the spectral properties of a many-body electronic
system are exactly described by its nonlocal and dynamic self-
energy. The exact Kohn−Sham potential is the best local and
approximation to this self-energy.14 If we instead consider local
but dynamic approximations, one enters into the domain of
spectral functional theories, where the exact spectral functional
predicts exactly the spectral density ρ(r, ω).60 ODDFTs can be
interpreted as energy-discretized spectral functional theories,39

so as such an ODDFT framework is a sensible choice when
attempting to predict spectral properties.
2.3. Accounting for Screening Effects. As discussed

earlier in Section 2.1, we account for orbital relaxation post hoc
via screening parameters {αi} and we can calculate these
parameters ab initio. But how?
The crucial point is that we would like the total energy to be

piecewise linear: that is, we would like orbital energies
(specifically, the expectation value of the Hamiltonian on a
given variational orbital) to match the corresponding total
energy differences when adding/removing an electron from
this orbital, without the frozen-orbital assumption that we
made earlier. Specifically, we would like λii(α, f) = ΔEiKoopmans,
where

= + =
=

=

f h v E
f

( , )ii i i
f f i f f

DFT Koopmans
Koopmans

i
i

(8)

is the expectation value of the Hamiltonian for a given
variational orbital φi, and

=
+

l

m

ooooooooo

n

oooooooo
E

E N E N

E N E N

( ) ( 1)
for occupied orbitals

( 1) ( )
for empty orbitals

i

i

i

Koopmans

Koopmans Koopmans

Koopmans Koopmans

(9)

where EiKoopmans(N ± 1) is the total energy of the system where
we add/remove an electron from variational orbital i and allow
the rest of the system to relax, with all the other orbitals
remaining orthogonal to |φi⟩.
We use this condition to determine the screening parameters

ab initio. Specifically, given a starting guess {αi0} for the
screening parameters, an improved guess for the screening
parameters can be obtained via

=

=

+ E

E E N E N

(0, 1)
( , 1) (0, 1)

;

( ) ( 1)

i
n

i
n i ii

ii i
n

ii

i i

1
Koopmans

Koopmans Koopmans Koopmans (10)

for occupied orbitals and

=

= +

+ E

E E N E N

(0, 0)
( , 0) (0, 0)

;

( 1) ( )

i
n

i
n i ii

ii i
n

ii

i i

1
Koopmans

Koopmans Koopmans Koopmans
(11)
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for empty orbitals, where EiKoopmans(N ± 1) is the total energy
of the N ± 1 electron system where we take the N-electron
system, take this variational orbital i and fill/empty it, and then
hold it frozen while the rest of the system is allowed to relax
(while remaining orthogonal). These equations yield the
screening parameters that satisfy λii(α, f) = ΔEiKoopmans if we
assume a linear dependence of λii on αi and approximate the
total energy as a function of f i to second order. By iterating to
self-consistency we lift these approximations and guarantee
that λii(α, f) = ΔEiKoopmans is satisfied. Typically, only a few
iterations are required in order to reach self-consistency,
especially if one starts from a physically motiviated initial guess
(such as the static limit of the inverse dielectric function ε−1 in
the case of bulk systems). All of these ingredients for
calculating αin+1 are obtained from constrained Koopmans
and DFT calculations. Specifically, a N-electron Koopmans
calculation yields EKoopmans(N) and λii(α, f) (for both α = αin
and 0, and f = 1 for filled orbitals and 0 for empty). Meanwhile,
a constrained N ± 1-electron calculation yields EiKoopmans(N ±
1).
For a periodic system, this method for determining the

screening parameters requires a supercell treatment. This is
because the N ± 1-electron systems contain a charged defect
(because we have filled/emptied a localized orbital) and a
supercell is required in order to remove the spurious
interactions between periodic images.43,45 Section 3.3 will
discuss an efficient linear-response reformulation of this
problem that avoids a supercell treatment (and can also be
used for molecules).
2.4. Koopmans Variants. As we saw previously in Section

2.1, there is some freedom in how one defines a Koopmans
functional. Namely, one must choose values for ηi, the gradient
of the energy as a function of the occupancy of orbital i, for
each value of i (modulo the corresponding screening term). In
that section, we briefly introduced the Koopmans integer (KI)
approach (eq 3), but that is just one of several different ways
one can define these gradient terms, and it is possible to define
several variants.
2.4.1. KI. In the KI approach, ηi is chosen as the total energy

difference of two adjacent electronic configurations with
integer occupations as given by the base DFT functional:

= =
= =

E E h f f( ) di
f f

i i
KI DFT

1

DFT

0 0

1 DFT

i i

(12)

where ĥDFT( f) is the DFT Hamiltonian with the occupancy of
orbital i constrained to f. In this case, the explicit expression for
the unscreened KI Koopmans’ correction to orbital i, which we
denote as Πi

KI, becomes

= [ ] [ ]

+ [ + ] [ ]

E E
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i i

i i i i

KI
Hxc Hxc

Hxc Hxc (13)

where ρi(r) = f i|φi(r)|2 and ni(r) = |φi(r)|2. EHxc denotes the
Hartree and exchange-correlation energy corresponding to the
underlying base functional.
It can be seen that at integer occupations the KI energy

correction vanishes; that is, Πi
KI = 0. In other words, for integer

occupations the KI functional preserves the potential energy
surface of the base functional! But while the energy correction
is vanishing, the potential is nonvanishing�for example, the
KI potential correction to an occupied variational orbital is
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[ ]

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

E n E

v n

r

r r r

( )

d ( ) ( )

i

j
i

i ij

KI

Hxc Hxc

Hxc (14)

(here the spin index σ has been decoupled from the orbital
index). Unlike the energy correction in eq 13, this term is
nonzero, which means that the KI correction will affect the
spectral properties of the system while leaving the total energy
unchanged.
2.4.2. KIPZ. In the KIPZ approach the slope ηi is also chosen

as the total energy difference of two adjacent electronic
configurations with integer occupations, but this time using the
Perdew−Zunger (PZ) one-electron-self-interaction corrected
(SIC) functional applied to the approximate DFT base
functional

= =
= =

E E h s s( ) di
f f

i i i
KIPZ PZ

1

PZ

0 0

1 PZ

i i (15)

In this instance, the explicit expression for the unscreened
energy correction corresponding to orbital i (denoted Πi

KIPZ)
becomes

= + |h f f f h f f( ) d ( ) di

f

i i i i i i
KIPZ

0

DFT

0

1 PZi

(16)

where

= [ | | ]h f h f v f r( ) ( ) ( )i i
PZ DFT

Hxc
DFT 2

(17)

is the PZ self-interaction correction applied to the ith
variational orbital with constrained occupation f, which
removes the Hartree-plus-exchange-correlation potential for
that orbital. The KIPZ correction can be rewritten as

= [ ]f E ni i i i
KIPZ KI

Hxc (18)

which makes the physics of this correction clear: it is nothing
less than the KI correction with the addition of a (screened)
Perdew−Zunger self-interaction correction. This added
correction removes one-electron self-interaction and makes
the KIPZ functional exact for one-electron systems. In the
many-electron case, it provides different (and typically
improved) total energies and forces than the base functional,41

albeit with a screening coefficient for the Perdew−Zunger
correction that is inherited from a spectral condition. More
details are provided in Supporting Information S2.
2.4.3. Comparing KI and KIPZ. The KIPZ correction is

more computationally expensive than the KI approach, for the
following reasons: we have already mentioned that the KI
energy correction vanishes for integer orbital occupations.
Furthermore, for occupied orbitals, the KI corrective potential
is scalar (i.e., it does not have a spatial dependence) and
therefore the total energy is invariant with respect to unitary
rotations of the variational orbitals, provided we are at the
minimum of the DFT energy. Consequently, once the
occupied variational orbitals (and, by extension, the total
density) are initialized they do not require further
optimization. This also implies that the screening parameters
of occupied variational orbitals converge instantly (in eq 10,
ΔEi and λii(0, 1) are independent of αin and λii(αin, 1) is linear
in αin). Contrast this with KIPZ: the KIPZ energy does not
match that of the base functional, nor is it invariant with
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respect to the unitary rotations of occupied orbitals. This
means we must directly minimize the energy with respect to
the shape of the variational orbitals, greatly increasing the
computational cost of these calculations. Furthermore, the
KIPZ ground-state density and variational orbitals are a
function of the screening parameters, which means that the
screening parameters must be calculated self-consistently,
further increasing the computational cost.
Despite its additional computational cost, KIPZ has some

desirable advantages over KI: for instance, it is one-electron-
self-interaction-free. For this reason, we also have introduced
the “perturbative KIPZ” (pKIPZ) method, where the KIPZ
Hamiltonian is applied non-self-consistently to the KI density
and variational orbitals, as a way of approximating the KIPZ
result at reduced computational cost without significantly
compromising the accuracy.46

It is important to note that the KI functional’s invariance
with respect to unitary rotations of the occupied variational
orbitals introduces an ambiguity in its definition: the
variational orbitals are no longer well-defined. This ambiguity
is resolved by formally defining the KI functional as the γ → 0
limit of the “KIγPZ” functional, which is the KIPZ functional
with the PZ contribution to the correction scaled by a
prefactor γ. This is discussed further in Supporting Information
S3.1.1.
Finally, we note that the original formulations of Koopmans

functionals also introduced the K and the KPZ func-
tionals.35,36,38 These are similar to the KI and KIPZ
functionals, except that the slope ηi is evaluated at half-
occupation rather than as the total energy difference between
integer occupations. These formulations provide almost
identical results but more cumbersome than their integer
counterparts.
2.4.4. Total Energies and Forces with Different Koopmans

Variants. The design of Koopmans functionals focuses on
predicting spectral properties. However, it is worthwhile
pausing to consider how accurately these functionals will
predict structural properties (namely, total energies and
forces). The KI functional, as we have already discussed,
yields the same total energy�and by extension, the same
forces�as its base functional. The KIPZ functional, on the
other hand, gives total energies and forces that correspond to
its base functional augmented with a screened PZ correction.
There are instances where these two approaches yield

significantly different results. For example, in a study of the
geometry of adenine, thymine, and uracil, the KIPZ@PBE
functional predicted bond lengths with a relative mean
absolute error compared to experiment of 0.65%, which was
slightly better than PBE0 (0.76%) and PZ@PBE (0.83%), and
was markedly better than PBE (1.63%)�and, by extension,
KI@PBE.42 That same study showed that the KIPZ@PBE
functional captured the tilt of the amino groups of nucleobases
with respect to their aromatic rings, whereas PBE wrongly
predicts a near-planar structure. However, the addition of a PZ
correction does not necessarily improve structural properties
across the board. Ref 38 compared structural properties for the
reference G2-1 set of molecules, and found that KIPZ@PBE
predicted bond angles less accurately (with a mean relative
error of 2.2% for KIPZ@PBE compared to 1.4% for PBE)
despite predicting bond lengths slightly better (1.5% for
KIPZ@PBE compared to 2.3% for PBE).
We stress that these considerations regarding structural

properties are somewhat orthogonal to the Koopmans

functional formalism. One should not use the KI functional
to calculate structural properties alone (because the ODD
formalism comes at increased computational cost but provides
no change in the structural properties). If desired, improved
geometrical properties and accurate spectral properties can be
simultaneously obtained by combining the KI correction with a
more advanced base functional that predicts structural
properties more reliably.
2.5. Important Caveats. Before concluding this section,

there are a few further important points that must be made.
2.5.1. Restriction to Systems with a Nonzero Band Gap.

First, the Koopmans formulation is only well-defined for
systems with a nonzero band gap. This is because the
Koopmans correction (eq 8) is defined in terms of the diagonal
elements of the occupation matrix. A band gap (however
small) means that the occupancy matrix is block-diagonal, and
can always be chosen to be the identity for the occupied
manifold and zero for the unoccupied manifold. In the absence
of a band gap, the occupancy matrix is not block-diagonal and
a well-defined Koopmans functional would require some
(currently unknown) corrections for the off-diagonal compo-
nents. While it would be desirable to derive an off-diagonal
correction and to lift this restriction, the current theory
remains powerful�after all, it is in insulating and semi-
conducting systems where DFT exhibits one of its most
striking failures in the underestimation of the band gap.
However, we note that we often rely on semilocal DFT as

the base functional to define or initialize the variational
orbitals. If the base functional also predicts a nonzero band
gap, then the valence and conduction manifold can be
disentangled,61 the occupancy matrix will be block-diagonal,
and the Koopmans correction can immediately be applied.
However, if the base functional wrongly predicts a metallic
state, then the valence and conduction manifolds are not so
easily disentangled. In these cases, one might be able to first
employ other base functionals to open a gap (such as DFT+U)
or deploy novel projectability disentanglement methods to
separate the valence and conduction manifolds.62

The occupancies of variational orbitals f i have been a central
quantity in constructing the Koopmans formalism. This
restriction to systems with a band gap means that these
variational orbital occupancies will always be either 0 or 1, and
consequently some terms in the formalism vanish (for example,
the KI correction to the energy; eq 13) but others do not (for
example, the KI correction to the potential; eq 14).
2.5.2. Empty State Localization in the Bulk Limit. While

minimizing the Koopmans energy functional for bulk systems
leads to well-localized occupied orbitals, the same process does
not lead to well-localized empty orbitals. This is because (a)
low-lying conduction bands are often entangled with highly
delocalized nearly free-electron bands, and (b) the Koopmans
correction to empty states contains a leading Hartree term that
incentivizes delocalization (see ref 38). However, the Koop-
mans correction ought to be applied to localized orbitals, and
vanishes in the limit of infinitely delocalized states (as
discussed in Section 2.2). In light of this, we typically apply
the Koopmans correction non-self-consistently on a maximally
localized Wannier function representation of the empty
manifold. This approach is heuristic but effective, as
demonstrated by previous works.43,45

2.5.3. Symmetries. Because a Koopmans potential
vKoopmans[ρ, ρi] is constructed via a variational orbital density,
these potentials can break the translational symmetry of
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periodic systems. However, the variational orbitals crucially
possess the translational properties of Wannier functions; that
is, for each variational orbital φR there exists a periodic replica
φR+R′ such that

= +r R r( ) ( )R R R (19)

where R and R′ can be any pair of Bravais lattice vectors.
Thanks to this property, the collective potential
∑i vKoopmans[ρ, ρi]|φi⟩⟨φi| inherits the translational symmetry
of the overall system and thus it remains possible to describe
the system’s electronic structure with a band-structure picture.
For more details, refer to ref 45.
More generally, the orbital-density dependence of Koop-

mans functionals might unphysically break the crystal point
group symmetry. This is a common feature of nonrotationally
invariant methods that are based on localized orbitals.53,63

Here, the symmetry of the localized representation plays an
important role, especially in small systems and in the atomic
limit. Possible solutions to this issue have been recently
suggested,64 and this point is worthy of further investigation.

3. ALGORITHMS AND IMPLEMENTATION
The formulation of Koopmans functionals, as outlined in the
previous section, is inherently more complex than a “standard”
semilocal DFT calculation, and requires nonstandard algo-
rithms and bespoke implementation within electronic-structure
codes. This section describes these algorithms and describes
how Koopmans functionals have been implemented in
Quantum ESPRESSO and the open-source package koop-
mans.
3.1. Orbital Optimization. In order to work with

Koopmans functionals, we must be able to minimize an
orbital-density-dependent functional. In other words, we must
optimize a set of orbital densities {ρi} such that the Koopmans
energy functional (eq 5) is minimized. This orbital
optimization is performed separately for the occupied and
then the empty manifold using an optimization algorithm
similar to that employed in the ensemble DFT approach:65 the
orbital densities are parametrized via a set of wave functions ϕi
and a unitary rotation matrix U, such that ρi = |(Uϕ)i|2, and
then the energy is then minimized via the nested loop:

= [{| | }]
{ }

E E Umin(min ( ) )
U

i
Koopmans 2

i (20)

where in the inner loop the unitary rotation matrix U is
optimized (which leaves the total density unchanged), and in
the outer loop the wave functions are optimized. Both steps are
performed using the conjugate-gradient algorithm. The
optimization is performed separately for the occupied and
empty manifolds to ensure that the occupation matrix remains
block-diagonal (as discussed in Section 2.5.1).
One important ingredient in ODD energy minimization is

the use of complex orbitals. Because the ODD energy is not
invariant with respect to unitary rotations of the variational
orbitals, it can no longer be assumed (as in the case for DFT)
that the variational orbitals are real, and thus the afore-
mentioned wave functions ϕi must be complex in order to find
the true minimum of the ODD functional.38,63,66−68

In addition to the generic orbital minimization procedure,
we must also perform constrained minimization calculations
(as required by the finite-difference method for calculating
screening parameters; Section 2.3). Here, the total ODD
energy is minimized while removing/adding one electron to a

particular variational orbital. (This gives us Ei(N ± 1) from eq
9). This orbital must be frozen during the minimization,
otherwise it would morph into the valence band maximum/
conduction band minimum, and one must also impose the
standard orthogonality condition with all other orbitals
belonging to the same spin channel. Image correction methods
such as Martina-Tuckerman or Gygi-Baldereschi69,70 must be
used to avoid spurious interaction between charged periodic
images. For periodic systems this also means that these
calculations must be performed in a supercell. These charged
defect calculations also require special care in low-dimensional
materials.71 Further details regarding the orbital minimization
procedure are presented in ref 40.
3.2. The kcp.x Code. These orbital minimization

algorithms are implemented in the code kcp.x. In other
words, kcp.x can be used to obtain the ground-state energy
and the minimizing set of variational orbitals of an arbitrary
system for a given orbital-density-dependent functional (PZ,
KI, or KIPZ).
kcp.x can be used to calculate screening parameters via

the finite-difference approach, and is applicable to both
periodic and aperiodic systems. By design, it does not use k-
point sampling for periodic systems, because the finite-
difference approach mandates the use of a supercell (as
discussed above), rendering k-point sampling of the Brillouin
zone superfluous. Instead, the dimensions of the supercell can
be used to effectively sample k-space for bulk systems, and the
band structure for the equivalent primitive cell can be
reconstructed at the end of the calculation using an unfolding
procedure.45 Despite the absence of k-space sampling (which
is embarrassingly parallel), the kcp.x code still uses MPI
parallelism: it is parallelized over the plane wave basis. This
allows for the distribution of linear algebra operations and
Fourier transforms across processors.
Because Koopmans functionals are a correction applied on

top of a local or semilocal functional, and these functionals are
computationally inexpensive compared to their ODD counter-
parts, before commencing orbital minimization with kcp.x it
is efficient to initialize the variational orbitals as Kohn−Sham
orbitals or maximally localized Wannier functions.54 To
support the use of Wannier functions for periodic systems,
we have implemented an interface that takes set of k-indexed
Wannier functions from a Wannier90 calculation and maps
it to an enlarged set of Γ-only Wannier functions defined on
the corresponding supercell. Given that kcp.x implements
the full minimization of the ODD functional, in principle one
could use the output of kcp.x to perform geometry
optimizations, calculate phonons via the frozen-phonon
method, calculate electron−phonon coupling, model excitons,
and so on.
For historical reasons, kcp.x is implemented on top of

cp.x, the code within Quantum ESPRESSO usually
responsible for performing Car−Parrinello molecular dynamics
(hence the name “kcp.x”), which already contained
algorithms similar to the direct functional minimization
required by Koopmans functionals. It is important to note
that kcp.x is not meant to perform molecular dynamics like
cp.x. The implementation is built on top of version 4.1 of
Quantum ESPRESSO. The modifications made to imple-
ment Koopmans functionals are (a) extensive and (b) of no
relevance to the standard functioning of the cp.x code, so
these modifications have not yet been incorporated within the
official Quantum ESPRESSO repository, nor was the private
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version of the code kept aligned with subsequent Quantum
ESPRESSO releases. Fast-forward to today, and kcp.x has
effectively become a standalone code.
3.3. Screening Parameters via Linear Response

Calculations in Reciprocal Space. While the finite-differ-
ence approach of kcp.x can provide us with all of the
ingredients to calculate the screening parameters, it is
somewhat cumbersome, since one must perform several
constrained DFT and Koopmans calculations, and for periodic
systems these must be performed in a supercell. An alternative
to this approach is to compute the screening coefficients via
density-functional perturbation theory (DFPT).72

In this approach, one first approximates the energy as a
quadratic function of the occupation number (which is
typically a very good approximation), and the expression for
the screening coefficients reduces to
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| |

| |
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/i

i

i

i i

i i
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2
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Hxc
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where d
dfi

(
fi
) represents variations that do (do not) account

for orbital relaxation, ϵ(r, r′) is the microscopic dielectric
function of the material, fHxc(r, r′) = δ2EHxc/δρ(r)δρ(r′) is the
Hartree-plus-exchange-and-correlation kernel, and ni(r) =
|φi(r)|2 is the orbital density at integer occupation.44 This
can be evaluated by considering the density response Δin(r)
induced in the system by the perturbing potential vperti (r) =
∫ dr′f Hxc(r, r′)ni(r′). This perturbation is the Hartree-plus-
exchange-and-correlation potential generated when adding/
removing an infinitesimal fraction of an electron to/from
orbital i. One determines Δin self-consistently via DFPT,73 and
then the screening parameters are given by
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|
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i i

i
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Evaluating the screening coefficients within this linear-response
approach only requires quantities available from a N-electron
calculation, which means that in the case of periodic solids
there is no need for a supercell. Instead, we can reduce the cost
of these calculations by taking advantage of the translational
symmetry of the system45 and recasting the supercell problem
in a basis of Wannier functions. These Wannier functions take
the form wR i(r), where the orbital label explicitly denotes the
lattice vector R of the home cell inside the supercell. In this
basis, the DFPT expression for the screening coefficients (eq
22) can be decomposed into a set of independent problems
(monochromatic perturbations), one for each q point sampling
the Brillouin zone of the primitive cell.73 The now q-
dependent charge density variation Δnq0i(r) induced by the
perturbing potential vpert,q0i is obtained self-consistently via
DFPT (eqs 15−17 of ref 73), and then the screening
coefficients are obtained by summing over q:

= +
|

|

v n

n v
1i

i i

i i0
q q

0
q
0

q q
0

q
0

pert,

pert, (23)

The KI Hamiltonian at a particular k point is then given to
second order by

= +H H Hk k k( ) ( ) ( )ij ij j ij0
KI(2) DFT KI(2)

(24)

where the second-order KI contribution to the Hamiltonian is
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for conduction bands, where nk,k+qcc′ (r) = (wkc(r))*wk+qc′ (r);
wkc(r) is the periodic part of the electronic state in the Wannier
gauge. As expected, the KI contribution to the valence bands is
k-independent. The total Hamiltonian is then diagonalized in
order to obtain the canonical eigenstates and energies. Given
the fact that the Hamiltonian is written in a basis of Wannier
functions, it is also possible to employ standard interpolation
techniques to obtain the KI eigenvalues at any arbitrary k-
point.54

However, the DFPT approach does come with some
limitations. The principal limitation is that the energy is
approximated to second order in the perturbing potential. In
most cases this is very accurate, correctly capturing the
quadratic Hartree contribution and only missing the non-
quadratic, higher-order exchange-correlation contributions.
3.4. The kcw.x Code. The calculation of screening

parameters via DFPT and the subsequent construction of the
Koopmans Hamiltonian and band structure, as described
above, has been implemented in the code kcw.x. Because all
of these calculations are performed in a basis of Wannier
functions, this code obtains Wannier functions via an interface
with Wannier90. (The “w” in kcw stands for “Wannier”.)
Because all of these equations are formulated in terms of a
primitive cell with k-point sampling, kcw.x uses MPI to
parallelize over k-points. It also parallelizes over plane-wave
orbitals (as already introduced in the context of kcp.x).
While much of the above applies to periodic systems,

kcw.x can still be used to perform calculations on aperiodic
systems. The Wannier function basis still remains valid, but we
no longer have multiple k-points.
kcw.x is part of the official Quantum ESPRESSO

distribution (from version 7.1 onward).
3.5. Comparing kcp.x and kcw.x. kcp.x and

kcw.x implement different Koopmans strategies and, as
such, they have different use-cases, largely defined by their
computational scaling. The two codes scale differently largely
due to the fact that kcw.x operates in a primitive cell while
kcp.x operates in a supercell. Calculating one screening
parameter using kcp.x requires multiple SCF calculations,
each of which takes a computational time TSC that roughly
scales as N(( ) )orb

SC 3 , where Norb
SC is the number of orbitals in

the supercell. Meanwhile, calculating one screening parameter
using the kcw.x DFPT approach scales as TPC ∝ NqNkNorb

PCd

3

.
This is the typical computational time for the SCF cycle
NkNorb

PCd

3

times the number of independent monochromatic
perturbations Nq. Using the relation Norb

SC = NkNorb
PC and the fact

that Nq ≲Nk, the ratio between the supercell and primitive
computational times is roughly proportional to Nq. Thus, as
the supercell size (or equivalently the number of q-points in
the primitive cell) increases, the kcw.x DFPT approach
becomes more and more computationally efficient.73 For
aperiodic systems, Nq = 1 and the two approaches scale
similarly, but with different prefactors.
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Note that these scaling relations pertain to the calculation of
a single screening parameter, whereas a full Koopmans
workflow requires the calculation of one screening parameter
per unique variational orbital in the system. Here, the word
“unique” is very important; orbitals that are related by
symmetry will share the same screening parameter and
therefore the screening does not need to be recalculated for
each orbital. This means that in the worst-case scenario, where
none of the variational orbitals are related by symmetry, the
overall scaling of the workflow has an additional Norb prefactor,
but for many systems (and for periodic systems in particular)
the number of unique variational orbitals in the system can be
many times smaller than the total number of orbitals.
Furthermore, (a) the calculation of screening parameters for
separate orbitals is embarrassingly parallelizable, and (b) it is
possible to predict the screening parameters via machine
learning, avoiding the need to repetitively calculate screening
parameters altogether.74

The superior scaling of kcw.x comes at a cost, as it makes
two approximations that kcp.x does not: the DFPT
approach expands the total energy only to second order
when computing screening parameters (see Section 3.3), and it
does not optimize the variational orbitals. These are instead
defined via Wannier functions, which often closely resemble
the minimizing orbitals of the Koopmans energy functional.
This also means that kcw.x only implements the KI
functional. Without orbital minimization one cannot perform
KIPZ calculations, and pKIPZ would require the PZ kernel
(i.e., the second derivative of the PZ energy with respect to the
density), and this is not implemented in common electronic-
structure codes.
3.6. Workflow Management. Running a Koopmans

calculation with either kcp.x or kcw.x requires a few
additional steps compared to a standard semilocal DFT
calculation. In this section, we will focus on the workflows that
one needs to perform in order to complete a Koopmans
functional calculation, and how these are publicly disseminated
in open-source form.
Typically, these workflows can be divided into three steps:
1. an initialization step, where the variational orbitals are

initialized
2. the calculation of screening parameters
3. a final calculation using the final screening parameters

Depending on the method used for calculating screening
parameters (that is, either finite differences with kcp.x or
DFPT with kcw.x), the resulting workflows look very
different. Differences also emerge between calculations on
molecules and solids. For the latter (and for large molecular
systems), we have already seen that maximally localized
Wannier functions are typically used as the variational orbitals
(for KI) or as a starting guess for the variational orbitals (for
KIPZ). This necessitates an additional Wannierization
procedure54 and an interface between Wannier90 and
kcp.x/kcw.x. Meanwhile, for calculating the screening
parameters via finite differences, we must perform a
combination of different constrained orbital minimizations.
In all cases, the workflows typically comprise of several if not
dozens of calculations, often involving different electronic
structure codes that must handshake with one another. This
can greatly benefit from automation.
3.7. The koopmans Package. These workflows are all

implemented within the koopmans package. Users exclu-

sively interact with koopmans, rather than the electronic
structure codes directly (which can include, in addition to
kcp.x and kcw.x, pre-existing codes such as pw.x,
pw2wannier90.x, and wannier90.x75−77).
Typically, a user provides koopmans with a single input

JSON file (some examples are provided in Supporting
Information S4). Based on the settings provided in this input
file, koopmans proceeds through the requested workflow.
Whenever an electronic structure calculation needs to be
performed, it generates the corresponding input file, calls the
relevant code, waits for it to complete, and then parses the
output file. Between successive calculations, it computes
intermediate variables, moves and modifies files, etc. In other
words, the workflow runner takes care of the banal aspects of
performing a Koopmans calculation, allowing users to concern
themselves with scientific matters (e.g., “what functional do I
want to use?”) rather than getting bogged down in practical
details (e.g., “are the Wannier function files in the correct
format for the next calculation to be able to read?”)
The koopmans package is shipped with versions of

Quantum ESPRESSO that contain kcp.x and kcw.x,
meaning that it contains everything that is required to perform
Koopmans functional calculations from start to finish.
Further details on the koopmans package can be found in

Supporting Information S5. A step-by-step explanation of the
workflows themselves can be found in Supporting Information
S3.

4. EXAMPLE CALCULATIONS
This Koopmans functional formalism has already proven to be
very powerful. In ref 46, Koopmans functionals were found to
predict the ionization potentials of a set of 100 small molecules
with comparable/superior accuracy to state-of-the-art GW
approaches. Importantly, Koopmans functionals do not only
correct the ionization potential (i.e., the charged excitation
where the most weakly bound electron is removed) but any
single-particle charged excitation. This was shown for a large
set of molecules relevant for photovoltaic applications,41 with
Koopmans functionals yielding ultraviolet photoemission
spectra that agree quantitatively with experiment. One can
see similar accuracy in the prediction of band gaps and band
structures of periodic systems;43,45,73 in a study of prototypical
semiconductors and insulators, Koopmans functionals were
found to yield band gaps with a mean absolute error of 0.22
eV, compared to 0.18 eV when using self-consistent GW with
vertex corrections.43 Importantly, alignment between the
valence band edge and the vacuum level was also very good:
across six semiconductors the mean absolute error was 0.19
eV, compared to 0.39 eV for G0W0 and 0.49 eV for self-
consistent GW with vertex corrections. Finally, Koopmans
functionals can accurately describe the spectral properties of
liquids, with the KIPZ functional predicting the electronic
density of states of liquid water with comparable accuracy to
self-consistent GW with vertex corrections.78

However, all of these calculations were performed by
individuals with expert knowledge of Koopmans functionals
and with specific expertise on the codes that implement them.
This final section demonstrates the capabilities of the
koopmans package by way of several examples. All of the
following calculations are possible using a very minimalist
input file (see Supporting Information S4). Note that the
following calculations use slightly underconverged parameters
(specifically, the energy cutoff, cell size, and/or the size of the
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k-point grid). Our focus here is to provide example calculations
that can be reproduced easily by readers, rather than providing
high-quality reference results.
4.1. The Ionization Potential and Electron Affinity of

Ozone. First, we present the calculation of the ionization
potential and electron affinity of ozone using koopmans.
This calculation is run with the simple command

koopmans ozone.json; the input and output files for
which can be found in Supporting Information S4.1. In short,
this command prompts the full sequence of Quantum
ESPRESSO calculations necessary to initialize the density
and variational orbitals, calculate the screening parameters, and
run a final KI calculation. The Quantum ESPRESSO input
and output files for these calculations are all stored in various
subdirectories of the current working directory. In principle
one can then simply parse the quantities of interest from the
output files (but there are easier ways, as explained in
Supporting Information S5.2). Refer to Supporting Informa-
tion S3.1 for a detailed step-by-step description of this
workflow.
The ionization potential (IP) and electron affinity (EA) of

ozone, as given by this calculation, are listed in Table 1,
showing the excellent performance of the KI functional
compared to state-of-the-art methods.

4.2. The Band Structure of Silicon. koopmans can also
perform calculations on bulk systems. Here one typically
performs a Wannierization procedure in order to generate
maximally localized Wannier functions to use as variational
orbitals. Running this calculation gives rise to a similar output
to the previous case, with the notable exception that the
initialization procedure now involves Wannierization (see
Supporting Information S4.2).
The band structure that one obtains from this calculation is

shown in Figure 3, the band gap is displayed in Table 2,
alongside energy differences between particular symmetry
points in the band structure.
The experimental band gap is reproduced with accuracy

comparable to self-consistent GW with vertex corrections, and
the energy differences between symmetry points are repro-
duced with comparable accuracy to G0W0 (the only

perturbative method for which these data were available).
Note that the PBE and KI valence-to-valence energy
differences match. This occurs because the occupied manifold
is comprised of four identical Wannier functions, and thus the
KI correction to these bands amounts to a rigid shift. Contrast
this with the valence-to-conduction energy differences, which
are markedly better for the KI functional.
4.3. The Band Structure of Zinc Oxide. The previous

example used the finite-difference approach for calculating the
screening parameters. In this final example, we will instead use
the DFPT approach to calculate the band structure of zinc
oxide. Refer to Supporting Information S3.2 for a step-by-step
description of what this entails. The calculated band structure
is shown in Figure 4 and the band gaps are listed in Table 3.
The corresponding input and output files are provided in
Supporting Information S4.3. In this instance, the band gap is
predicted with better accuracy than state-of-the-art self-
consistent GW with vertex corrections. This is also true of
the average d-band energy, although these bands remain
slightly too high in energy relative to experiment. Finally, the
bandwidth of the oxygen 2p bands (the six highest-energy
occupied bands) is much improved going from LDA to KI.
Note that this is a major departure from the earlier calculations
on silicon, where the KI correction to the occupied bands
amounts to a rigid shift and thus such a bandwidth would not
change. In this instance, these bands comprise of variational
orbitals of multiple different characters, each of which is
subject to its own potential shift, and thus the overall band
shape can (and does) change.

5. CONCLUSIONS
Koopmans functionals are a powerful computational tool for
predicting the spectral properties of atoms, molecules, liquids,
and crystalline and amorphous solids from first-principles with
a functional approach. This has already been demonstrated in
their ability to calculate the ionization potentials and electron
affinities of small molecules,41,46 the photoemission spectra of
large molecules,41,42 the electronic structure of liquid water,78

and the band structures and ionization potentials of
prototypical semiconductors and insulators,43,45,73 all at a

Table 1. Vertical Ionization Potential (IP) and Electron
Affinity (EA) of Ozone, As Calculated Using Functional,
Perturbative, and Quantum Chemistry Methods, as well as
Experiment

IP EA

PBE 7.95 6.17 This work
G0W0

a 11.80 ± 0.25 2.34 ± 0.25 Ref 79
scGW0@PBE 12.57 Ref 80
scGW0@HF 13.16 Ref 80
scGW 12.54 Ref 80
qsGW 13.21 Ref 80
CCSD(T) 12.55 Ref 81

KI@[PBE,KS]b
12.52 1.82 This work
12.91 Ref 46

experiment 12.73 2.10 Refs 82−85
aThe uncertainties in the G0W0 correspond to the standard deviation
of values reported in ref 79, which presents calculations using a range
of codes and basis sets. bThe KI correction on top of the PBE base
functional, with Kohn−Sham orbitals defining the variational orbitals,
showing excellent performance compared to state-of-the-art methods.

Figure 3. Band structure of bulk silicon, calculated using the KI
functional with the PBE base functional, MLWFs as variational
orbitals, and screening parameters calculated via finite differences.
The PBE band structure is also plotted for comparison.
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level of accuracy comparable to state-of-the-art many-body
perturbation methods.
The newly released koopmans package now makes it

possible, for the first time, for nonexperts to use these
functionals in their own research. Experts will also benefit from

their calculations becoming much more robust and reprodu-
cible. For more information, we refer the reader to the website
koopmans-functionals.org.
The koopmans package will continue to be maintained

and developed. In particular, Koopmans calculations on
periodic systems require the user to perform a Wannierization
of the electronic states, and correctly configuring this
calculation can be onerous. In the near future we will add
support for automated Wannierization.61,62

The second focus of ongoing development will be
parallelization. Large swathes of the Koopmans workflow (for
example, the calculation of screening parameters) are
embarrassingly parallel. For example, one could calculate a
revised value of the screening parameter for orbital i entirely
independently of the calculation of the screening parameter for
orbital j. (This is true for both the finite difference and DFPT
schemes.) However, koopmans performs each calculation in
the workflow serially, i.e., multiple calculations are not run
simultaneously. (N.B. We are not saying that individual
calculations must be run on a single core; all the codes
support MPI parallelization.) Integration of the workflows
within a workflow engine such as AiiDA would allow us to
massively reduce the workflows’ walltimes.95 Integration within
AiiDA would come with the added benefits of provenance
tracking and error detection/recovery. Combined with the
automated Wannierization and efficient parallelism, high-

Table 2. Band Gap Eg and Energy Differences between Symmetry Points in the Band Structure of Bulk Silicon (in eV),
Calculated with Various Functional and Perturbative Approachesa

KI@[PBE,MLWFs]

PBEb G0W0
c scGW̃d This work Ref 45 KIPZ@PBEe Expf

Eg 0.49 1.06 1.14 1.16 1.12 1.15 1.17
Γ1v → Γ25′v 11.97 12.04 11.97 11.96 12.09 12.5 ± 0.6
X1v → Γ25′v 7.82 7.82 7.75
X4v → Γ25′v 2.85 2.99 2.85 2.84 2.86 2.90
L2′v → Γ25′v 9.63 9.79 9.63 9.63 9.74 9.3 ± 0.4
L1v → Γ25′v 6.98 7.18 6.98 6.96 7.04 6.8 ± 0.2
L3′v → Γ25′v 1.19 1.27 1.19 1.2 ± 0.2
Γ25′v → Γ15c 2.48 3.29 3.17 3.18 3.20 3.35 ± 0.01
Γ25′v → Γ2′c 3.28 4.02 3.95 3.94 3.95 4.15 ± 0.05
Γ25′v → X1c 0.62 1.38 1.28 1.30 1.31 1.13
Γ25′v → L1c 1.45 2.21 2.12 2.12 2.13 2.04 ± 0.06
Γ25′v → L3c 3.24 4.18 3.91 3.93 3.94 3.9 ± 0.1
MSE 0.35 0.02 0.01 0.00 0.03
MAE 0.44 0.21 0.14 0.16 0.17

aThese are compared against experimental values via the mean signed and mean absolute errors (MSE and MAE respectively). The calculated
values for the band gap and the valence-to-conduction transitions have been shifted by −0.06 eV to account for zero-point renormalization.90 bThis
work. cRef 86 for Eg and ref 87 for the transitions. dRef 88. eRef 45. fRef 89.

Figure 4. Band structure of zinc oxide, calculated using the KI
functional with the LDA base functional, MLWFs as variational
orbitals, and screening parameters calculated via DFPT. The LDA
band structure is also plotted for comparison.

Table 3. Band Gap Eg, Average d-Band Energy ⟨εd⟩, and Bandwidth Δ of Bulk Zinc Oxide (all in eV), As Given by Various
Functional and Perturbative Approaches, and Compared to Experimenta

LDAb KI@[LDA,MLWFs]b

This work Ref 73 G0W0
c GW0

d scGW̃d This work Ref 73 Exp

Eg 0.53 0.63 1.96 2.84 3.04 3.35 3.52 3.44e

⟨εd⟩ −5.42 −5.14 −6.1 −6.4 −6.7 −7.06 −6.93 −7.5 to −8.81f

Δ 4.43 4.15 4.93 4.99 5.3g

aAll of the computational values for the band gap have been shifted by −0.16 eV to account for zero-point renormalization.90,94 bIn contrast to the
earlier calculation on bulk silicon, here we used the LDA base functional to align with ref 73. That work used finer parameters than this work (most
notably, a finer k-point grid throughout). cRef 86. dRef 88. eRef 91. fRef 92. gRef 93.
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throughput studies with Koopmans functionals are just around
the corner.
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