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Abstract
We prove that positive solutions of the fractional Lane–Emden equation with homo-
geneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best
constant in Poincaré’s inequality on all open sets, and are isolated in L1 on smooth
bounded ones, whence we deduce the isolation of the first non-local semilinear eigen-
value.
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1 Introduction

This paper concerns a semilinear problem for the fractional Laplace operator with
homogeneous Dirichlet boundary conditions in N -dimensional Euclidean spaces with
applications to a model for non-local filtration in a porous medium. We recall that,
given s ∈ (0, 1), the s-Laplacian of a smooth function u on R

N is defined, up to a
normalisation constant depending only on N and s, by the formula

(−Δ)su(x) = lim
ε→0+

∫
RN \Bε(x)

u(x) − u(y)

|x − y|N+2s
dy. (1.1)
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The integral in (1.1) is usually multiplied by the quantity 4sΓ ( N
2 +s)/(π N/2|Γ

(−s)|), which has a precise degenerate behaviour both as s → 0+ and as s → 1−.
The specific normalisation choice has no bearing for the matter of this paper and will
be omitted.

By classical spectral theory in Hilbert spaces, it is known that the eigenvalue prob-
lem

(−Δ)su = λu

in an open set Ω ⊂ R
N , with Dirichlet conditions u = 0 in the complement RN \ Ω ,

has non trivial solutions for a discrete set of real numbers λ, which either is empty or
consists of an unbounded non-decreasing sequence of eigenvalues. The corresponding
eigenfunctions are the stationary points of the double integral

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy (1.2)

subject to an L2(Ω)-constraint.
The variational problem under an Lq(Ω)-constraint, with q �= 2, leads one to a

different non-local semilinear elliptic boundary value problem, formally

{
(−Δ)su = λ‖u‖2−q

Lq (Ω)|u|q−2u, in Ω,

u = 0, in R
N \ Ω.

(1.3)

Any fixed solution u of (1.3), if multiplied by a specific constant depending on u,
solves the fractional Lane–Emden equation

(−Δ)su = |u|q−2u, in Ω, (1.4)

with u = 0 in RN \ Ω .
The largest lower bound for the collectionS(Ω, s, q) of all positive numbers λ for

which (1.3) admits a non-trivial solution is called the first q-semilinear s-eigenvalue

λ1(Ω, s, q) = inf
ϕ∈C∞

0 (Ω)

{∫
RN

∫
RN

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy :

∫
Ω

|ϕ|q dx = 1

}
.

(1.5)
In some cases, for example wheneverΩ has finite N -dimensional volume, the embed-
ding of Ds,2

0 (Ω) into Lq(Ω) is compact, which assures the infimum to be achieved.
For q ∈ (1, 2), in fact, a necessary and sufficient condition that the embedding be

compact is that it be continuous, see [19, Theorem 1.3]. Hence, we have the following
existence and uniqueness result.

Theorem A Let N ≥ 1, s ∈ (0, 1), q ∈ (1, 2), let Ω ⊂ R
N be open, and let

λ1(Ω, s, q) > 0. Up to a multiplicative constant, there exists a unique eigenfunction
achieving the minimum in (1.5). The first eigenfunction has constant sign, and the first
eigenvalue is the unique one admitting eigenfunctions with this property.
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The proof of Theorem A follows standard methods, cf. [6]. Its conclusion implies
the uniqueness of positive least energy solutions of (1.4), i.e., positive solutions of the
fractional Lane–Emden equation, under homogeneous Dirichlet boundary conditions,
that minimise the energy functional

1

2

∫
RN

∫
RN

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω

|ϕ|q dx . (1.6)

Thus, for q ∈ (1, 2), to every open set Ω with λ1(Ω, s, q) > 0 we can uniquely
associate the positive least energy solution wΩ,s,q , also called the fractional Lane–
Emden density of Ω . In fact, the definition can be given for arbitrary open sets in
R

N , see Section 5 for details. Incidentally, even if uniqueness generally fails to hold
in the superhomogeneous case, one can however show that the simplicity property of
Theorem A holds also for q > 2 smaller than a suitable threshold depending on Ω ,
see Proposition 3.5.

Remarkably, in analogy with the local case (cf. [8]), a negative power of the frac-
tional Lane–Emden density of Ω appears as a singular weight in a sort of Hardy
inequality:

∫
Ω

u2

w
2−q
Ω,s,q

dx ≤
∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy, for all u ∈ C∞

0 (Ω). (1.7)

We refer to Proposition 5.1 for more details about (1.7). A better known Hardy-type
inequality in the fractional setting would involve the distance to the boundary, instead:

∫
Ω

u(x)2

dist(x, ∂Ω)2s
dx ≤

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy, for all u ∈ C∞

0 (Ω).

(1.8)
Inequality (1.8) always holds, e.g., on bounded Lipschitz sets (see Section 5).

For q ∈ (1, 2), (1.7) implies the strict stability of the fractional Lane–Emden
density as a critical point of the energy (1.6). In that respect, it is noteworthy that for
this special solution the following estimates hold on any (possibly unbounded) open
set supporting a Poincaré inequality.

Theorem B Let q ∈ (1, 2) and assume that λ1(Ω, s, 2) > 0. Then, wΩ,s,q ∈ L∞(Ω)

and there exists a constant C, depending only on N , s and q, such that

‖wΩ,s,q‖2−q
L∞(Ω) ≤ Cλ1(Ω, s, 2)−1. (1.9)

Conversely, for all q ∈ (1, 2), if wΩ,s,q ∈ L∞(Ω), then λ1(Ω, s, 2) ≥
‖wΩ,s,q‖q−2

L∞(Ω).

This statement is the non-local counterpart of [8, Proposition 4.3]. Note that the
qualitative consequence of estimate (1.9) is valid irrespective of the dimension, at
variance with what happens with the more difficult problem of a non-decreasing and
convex non-linearity; in fact, for such a problem, in the local case, stable solutions are
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bounded up to dimension 9, as shown in [12], whereas in higher dimensions examples
of singular solutions can be made, see [12].

From inequalities (1.7) and (1.8), thanks to fractional Hopf’s lemma, we can also
infer the local uniqueness in L1(Ω) for positive solutions of fractional Lane–Emden
equation (1.4); this means that the positive least energy solution wΩ,s,q of (1.4) is
isolated in Ds,2

0 (Ω) with respect to the topology of the convergence in L1(Ω). We
refer to Proposition 6.1 for a more precise statement. By a strategy borrowed from [5],
where the result was first proved in the local case, we draw the following consequence.

Theorem C Let N ≥ 1, s ∈ (0, 1), q ∈ (1, 2) and let Ω ⊂ R
N a bounded open

set with C1,1 boundary. Then, λ1(Ω, s, q) is isolated, i.e., there exist no sequence of
q-semilinear s-eigenvalues converging to it.

Littlemore is known about higher eigenvalues, except that they forma closed set that
does not accumulate to λ1(Ω, s, q). It is indeed possible to assemble an unbounded
sequence of q-semilinear s-eigenvalues by means of standard critical point theory
(see Remark 3.1; see also [26, Proposition 9] for the linear case) but it is not known
if that gives a complete description of the q-semilinear s-spectrum, nor is it known if
the latter is a discrete set.

Put in perspective, the simplicity (TheoremA) and the isolation (Theorem C) of the
first q-semilinear s-eigenvalue, paired with the global estimates (Theorem B), have
implications on the long-time asymptotics for the initial-boundary value problem

⎧⎪⎨
⎪⎩

∂tv + (−Δ)s(|v|m−1v) = 0, in Ω × (0, T ),

v = 0, in (RN \ Ω) × (0, T ),

v = v0, in Ω × {0},

where m = 1/(q − 1). We refer the reader to [31] for this fractional porous media
equation. We hope to return to this topic in the future, while in this paper we limit our
attention to the elliptic problem.

Plan of the paper In Section 2, after framing our problem in appropriate function
spaces we introduce the fractional semilinear eigenvalue problem and the non-local
Lane–Emden density.More details on the former are provided in Section 3, and various
properties of the latter are discussed in Section 4. The preliminary results are used to
prove (1.7) in Section 5, where (1.8) is also proved. Then, Section 6 is devoted to the
isolation of positive solutions of the non-local Lane–Emden equation; eventually, all
the partial results are used in Section 7 to prove Theorems A, B, and C.

2 Framework and (pseudo) differential equations

Throughout this paper, we fix an integer N ≥ 1, a real number s ∈ (0, 1) and an open
set Ω ⊂ R

N . The square root of

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy (2.1)
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is a norm on the vector space C∞
0 (Ω). The metric completion of this space is denoted,

here and henceforth, by Ds,2
0 (Ω).

Remark 2.1 (Analogies and differences with other spaces) Except for the special case
s = 1

2 , if Ω is bounded with Lipschitz boundary, then Ds,2
0 (Ω) coincides with the

closure Hs
0 (Ω) ofC∞

0 (Ω) in the Sobolev–Slobodeckij space Hs(Ω) of all u ∈ L2(Ω)

such that

[u]2Hs (Ω) :=
∫

Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dx dy < +∞.

In fact, in that case (see [10, Appendix B]), the “censored” Sobolev norm ‖u‖L2(Ω) +
[u]Hs (Ω) is equivalent to that defined by

‖u‖L2(Ω) +
(∫

RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy

) 1
2

and the latter is equivalent to the norm in Ds,2
0 (Ω), because Lipschitz sets support

a Poincaré-type inequality. On the contrary, if ∂Ω is not Lipschitz regular, then the
existence of functions u ∈ Hs(Ω) for which the integral

∫
Ω

∫
RN \Ω

u(x)2

|x − y|N+2s
dx dy

diverges cannot be ruled out. If Ω is bounded and Lipschitz, then Ds,2
0 (Ω) coincides

with the Hilbert space Xs
0(Ω) = {

u ∈ Hs
(
R

N
) : u = 0 a.e. in R

N \ Ω
}
considered

in [22].

For a general open set, it is not true that all the elements of Ds,2
0 (Ω) are functions;

Ds,2
0 (Ω) is not even a distribution space, in general: see, e.g., [14, 21]. A restriction

that clears off this difficulty is to consider open sets Ω supporting a Sobolev-type
inequality, on which Ds,2

0 (Ω) is a function space; namely, assuming that the infimum
in (1.5) is a positive number.

2.1 Semilinear fractional spectrum

We denote by 2∗
s the fractional Sobolev conjugate exponent, defined by 2N/(N − 2s)

if 2s < N and +∞ otherwise.

Definition 2.1 (Semilinear fractional eigenvalues) For q ∈ (1, 2∗
s ), we consider the

constrained critical points of the double integral (2.1) along the submanifold

{
u ∈ Ds,2

0 (Ω) :
∫

Ω

|u|q dx = 1

}
. (2.2)
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2198 G. Franzina and D. Licheri

We call q-semilinear s-eigenvalues the corresponding constrained critical values.
Their collection is denoted byS(Ω, s, q), and is said to be theq-semilinear s-spectrum
of Ω .

Clearly, (1.5) is the largest lower bound for S(Ω, s, q), and it is its minimum
whenever the variational problem (1.5) has a solution. The restriction q < 2∗

s in
Definition 2.1 is natural because for q > 2∗

s loss of compactness occur regardless of
the properties of Ω . If 0 < s < N/2, in the borderline case q = 2∗

s the infimum in
(1.5) is independent ofΩ , and gives the best constant in Sobolev inequality, that reads
as

S(N , s)‖v‖2
L2∗s (Ω)

≤
∫
RN

∫
RN

(v(x) − v(y))2

|x − y|N+2s
dx dy, for all v ∈ C∞

0

(
R

N
)

.

(2.3)
By Lagrange’s multipliers rule, the q-semilinear s-eigenvalues are those positive

real numbers λ for which the equation

(−Δ)su = λ‖u‖2−q
Lq (Ω)|u|q−2u (2.4)

has a non-trivial solution u ∈ Ds,2
0 (Ω) in the weak sense, viz.

∫
RN

∫
RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy = λ‖u‖2−q

Lq (Ω)

∫
Ω

|u|q−2uϕ dx, (2.5)

for all ϕ ∈ Ds,2
0 (Ω).

2.2 Fractional Lane–Emden equation

Given an open setU ⊂ R
N , we will say a weak supersolution (resp., subsolution) of

the latter in U any function u ∈ Ds,2
0 (U ) such that

∫
RN

∫
RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy ≥

∫
U

|u|q−2uϕ dx, (resp., ≤)

(2.6)
for all non-negative ϕ ∈ Ds,2

0 (U ). A function that is both a weak supersolution and a
weak subsolution inU will be called aweak solution inU . Clearly, theweak solutions
of (1.4) are the critical points on Ds,2

0 (Ω) of the free energy (1.6).

Definition 2.2 (Fractional Lane–Emden densities) Let q ∈ (1, 2) and assume that
λ1(Ω, s, q) > 0. We denote by wΩ,s,q the unique solution of the variational problem

min
ϕ∈Ds,2

0 (Ω)

{
1

2

∫
RN

∫
RN

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω

ϕq dx : ϕ ≥ 0 a.e. inΩ

}
,

(2.7)
and we call it the (s, q)–Lane–Emden density of Ω .
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Remark 2.2 By [19, Theorem 1.3], λ1(Ω, s, q) > 0 implies the compactness of the
embedding Ds,2

0 (Ω) ↪→ Lq(Ω); then, any minimising sequence for (2.7) is easily

seen to be bounded in Ds,2
0 (Ω), so it converges, up to relabelling, weakly in Ds,2

0 (Ω)

and strongly in Lq(Ω). Also, the constraint ϕ ≥ 0 is convex. Thus, solutions of (2.7)
exist by direct methods in calculus of variations. As for their uniqueness, minimisers
of the even functional (1.6) cannot change sign by Lemma 7.1, and thence constrained
minimisers are non-negative minimisers of the free energy (1.6). Then, we conclude
by the uniqueness of non-negative weak solutions of (1.4) (see Remark 4.1).

3 The fractional semilinear spectral problem

Next proposition provides quantitative L∞-bounds for q-semilinear s-eigenfunctions
u corresponding to λ ∈ S(Ω, s, q) in terms of the Lq(Ω)-norm of u and of the
eigenvalue λ. For this standard result, in the proof we limit ourselves to check that
Moser-type iterations such as those in Appendix to [8] can be repeated in this frame-
work, too.

Proposition 3.1 Let q ∈ (1, 2∗
s ) and assume the embedding Ds,2

0 (Ω) ↪→ Lq(Ω) to be

compact. Let λ ∈ S(Ω, s, q) and let u ∈ Ds,2
0 (Ω) be a corresponding q-semilinear

s-eigenfunction. Then

‖u‖L∞(Ω) ≤ C1(N , s, q)λ
2∗s

2(2∗s −q) ‖u‖Lq (Ω), if 2∗
s < +∞, (3.1a)

‖u‖L∞(Ω) ≤ C2(N , s, q, |Ω|)λ‖u‖Lq (Ω), if 2∗
s = +∞. (3.1b)

Proof With no loss of generality, we may assume that u > 0. Fix β > 1 and M > 0.
By [11, Lemma A.2] with p = 2, a = u(x), b = u(y) and g(t) = (t ∧ M)β , we get

2β

β + 1

∫
RN

∫
RN

(
(u(x) ∧ M)

β+1
2 − (u(y) ∧ M)

β+1
2

)2
|x − y|N+2s

dx dy

≤
∫
RN

∫
RN

(u(x) − u(y))
(
(u(x) ∧ M)β − (u(y) ∧ M)β

)
|x − y|N+2s

dx dy. (3.2)

Here and henceforth, we are using the following notation:

a ∧ b := min{a, b}, a ∨ b := max{a, b}.

The choice ϕ = (u ∧ M)β in (2.5) implies that the right integral in (3.2) does not
exceed

λ‖u‖2−q
Lq (Ω)

∫
Ω

uq−1(u ∧ M)β dx .
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Case N > 2s By the compactness of the embedding Ds,2
0 (Ω) ↪→ Lq(Ω) and by a

density argument, Sobolev inequality (2.3) holds with v = (u ∧ M)
β+1
2 . Thus, the left

hand side in (3.2) is at least

S(N , s)
2β

β + 1

(∫
Ω

(u ∧ M)
β+1
2 2∗

s dx

) 2
2∗s

.

As M > 0 was arbitrary, by the material above we deduce that

S(N , s)

(∫
Ω

u
β+1
2 2∗

s dx

) 2
2∗s ≤ λ‖u‖2−q

Lq (Ω)

β + 1

2β

∫
Ω

uβ+q−1 dx . (3.3)

If 1 < q < 2, by arguing as in the second part of the proof of [7, Proposition 2.5]
we see that (3.3) implies (3.1). If instead 2 ≤ q < 2∗

s , then, by Hölder’s inequality we
have

∫
Ω

uβ+q−1 dx ≤ ‖u‖q−2
Lq (Ω)

(∫
Ω

u
β+1
2 q dx

) 2
q

,

and thence it follows that

S(N , s)

(∫
Ω

u
β+1
2 2∗

s dx

) 2
2∗s ≤ λ

β + 1

2β

(∫
Ω

u
β+1
2 q dx

) 2
q

,

which leads one to (3.1) again, thanks to the iteration scheme in first part of the proof
of [7, Proposition 2.5].
Case N = 1 and 1

2 < s < 1 In this case, the conclusion is an immediate consequence
of fractional Morrey’s embedding, see [9, Corollary 2.7].
Case N = 1 and s = 1

2 The obvious fact in this borderline case is that solutions
have bounded mean oscillation. To prove they are also bounded, we first focus on
exponents q ∈ (1, 2]. By the second statement in [19, Lemma 2.3] with p = 2, N = 1
and r = 2q,

C1

(∫
Ω

ϕ2q dx

) 2
q ≤

(∫
Ω

ϕq dx

) 2
q

∫
R

∫
R

(ϕ(x) − ϕ(y))2

|x − y|2 dx dy (3.4)

holds, in particular, with ϕ = (u ∧ M)
β+1
2 , for all M > 0. The constant C1 > 0

depends only on q and s. Then, by (3.2), arguing as done in the previous case we get

C2(s, q)

(∫
Ω

u
β+1
2 2q dx

) 2
2q ≤ λ‖u‖2−q

Lq (Ω)

β + 1

2β

∫
Ω

uβ+q−1 dx .

Hence, we arrive at the desired conclusion by arguing as done after equation (13)
in [7], with minor changes (just replace 2∗ by 2q.)
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In order to deal with the exponents q > 2, we take σ ∈ ( 1
4 ,

1
2

)
with 1

2 − σ so small
that the Sobolev conjugate 2∗

σ = 2/(1 − 2σ) exceeds 2q and we observe that, for all
ϕ ∈ Ds,2

0 (Ω),

C3

∫
R

∫
R

(ϕ(x) − ϕ(y))2

|x − y|1+2σ dx dy ≤
(∫

Ω
ϕ2 dx

)2(1−2σ)
(∫

R

∫
R

(ϕ(x) − ϕ(y))2

|x − y|2 dx dy

)4σ

,

where C3 is an absolute constant. This follows by a homogeneity argument based on
the obvious remark that

∫∫
|y−x |<1

(ϕ(x) − ϕ(y))2

|x − y|1+2σ dx dy ≤
∫∫

|y−x |<1

(ϕ(x) − ϕ(y))2

|x − y|2 dx dy,

and

∫∫
|y−x |≥1

(ϕ(x) − ϕ(y))2

|x − y|1+2σ dx dy ≤ 2
∫
Ω

ϕ(x)2
∫
|y−x |≥1

dy

|x − y|1+2σ dx ≤ 2

σ

∫
Ω

ϕ2 dx .

Recalling that 2 < 2q < 2∗
σ , by interpolation we also have

(∫
Ω

ϕ2q dx

) 1
2q ≤

(∫
Ω

ϕ2 dx

) θ
2
(∫

Ω

ϕ2∗
σ dx

) 1−θ

2∗σ
,

where θ ∈ (0, 1). Then, by Sobolev inequality (2.3)with σ instead of s and byHölder’s
inequality, we have again (3.4), but with a constant different from C1, depending only
on Ω , s and q.

In conclusion, we can take ϕ = (u ∧ M)
β+1
2 and argue as done for the exponents

in the range (1, 2] to get the desired estimate also in the case q > 2. �
The following elementary proposition contains a general property of the first semi-

linear fractional eigenvalue.

Proposition 3.2 Let q ∈ (1, 2∗
s ) and assume the embedding Ds,2

0 (Ω) ↪→ Lq(Ω) to be
compact. Then, the infimum in (1.5) is a minimum. Moreover, any minimiser is either
a strictly positive or a strictly negative function.

Proof The existence of aminimiser is an immediate consequence of the directmethods
in the calculus of variations. The fact that it must have constant sign follows by
Lemma 7.1. Then, the last statement follows by the strong minimum principle of
Proposition 7.1. �

Besides the first eigenvalue (1.5), higher eigenvalues also exist. In fact, it is straight-
forward to check that the squared norm (1.2) in Ds,2

0 (Ω) satisfies the Palais–Smale
condition. Hence, in view of [29, Theorem 5.7], S(Ω, q, s) is an infinite set. More
precisely, for all n ∈ N we denote by Tn(Ω, s, q) the collection of all subsets A of

{
u ∈ Ds,2

0 (Ω) :
∫

Ω

|u|q dx = 1

}
(3.5)
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that are symmetric and compact in Ds,2
0 (Ω) and satisfy the following property; for

every k < n, there exist no odd and continuous mapping from A to R
k \ {0}. We can

rephrase last property saying that the Krasnoselskii’s genus of A is larger than or equal
to n. Then, by setting

λn(Ω, s, q) = inf
A∈Tn(Ω,s,q)

max
u∈A

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy, (3.6)

one defines an unbounded non-decreasing sequence of q-semilinear s-eigenvalues.

Remark 3.1 In general, S(Ω, s, q) is closed. Indeed, if a sequence (λ j ) j∈N ⊂
S(Ω, s, q) converges to a positive number λ, there is a corresponding sequence of
q-semilinear s-eigenfunctions [obtained by renormalisation in Lq(Ω)] which has con-
stant Lq(Ω)-norm and converging norm in Ds,2

0 (Ω). By uniform convexity, some
subsequence is converging strongly to a limit u in Lq(Ω), and this implies that u is a
q-semilinear s-eigenfunction corresponding to λ.

3.1 The sub-homogeneous case

We recall two properties of λ1(Ω, s, q) for q ≤ 2.

Proposition 3.3 Let q ∈ (1, 2] and assume that λ1(Ω, s, q) > 0. If λ ∈ S(Ω, s, q)

and u is a corresponding eigenfunction, then u ≥ 0 a.e. in Ω implies λ = λ1(Ω, s, q).

Proof By assumption, the embedding Ds,2
0 (Ω) ↪→ Lq(Ω) is continuous. Then, since

q ∈ (1, 2], by Gagliardo–Nirenberg interpolation inequality (see [19, Lemma 2.3]) it
is also compact. Thus, the assumptions of Proposition 3.2 are valid.

Let v ∈ Ds,2
0 (Ω) be a first eigenfunction, and assume that v > 0 a.e. in Ω . Then,

let λ ∈ S(Ω, s, q), let u be a corresponding eigenfunction, and assume that u ≥ 0
a.e. in Ω , as well. This implies u > 0 a.e. in Ω by the strong minimum principle of
Proposition 7.1. Being free to multiply by constants, we shall also assume both u and
v to have unit norm in Lq(Ω).

Fix ε > 0 and write uε = u + ε. For every x, y ∈ R
N , by [6, Proposition 4.2] with

p = 2,

(u(x) − u(y))

(
v(x)q

uε(x)q−1 − v(y)q

uε(y)q−1

)
≤ |v(x) − v(y)|q |u(x) − u(y)|2−q .

Multiplying by the kernel |x−y|N+2s = |x−y|N q
2 +sq+N(1− q

2 )+s(2−q) and integrating
yields

∫
RN

∫
RN

u(x) − u(y)

|x − y|N+2s

(
v(x)q

uε(x)q−1 − v(y)q

uε(y)q−1

)
dx dy ≤ λ1(Ω, s, q)

q
2 λ

2−q
2 ,

where we also used Hölder’s inequality with exponents 2
q and 2

2−q , the equations sat-

isfied by u and v, and their normalisation in Lq(Ω). Since ϕ = vq/uq−1
ε is admissible

123



A non-local semilinear eigenvalue problem 2203

in (2.5), we have

∫
RN

∫
RN

u(x) − u(y)

|x − y|N+2s

(
v(x)q

uε(x)q−1 − v(y)q

uε(y)q−1

)
dx dy = λ

∫
Ω

u(x)q−1 v(x)q

(u(x) + ε)q−1 dx .

Therefore, for every ε > 0 we end up with inequality

λ

∫
Ω

u(x)q−1 v(x)q

(u(x) + ε)q−1 dx ≤ λ1(Ω, s, q)
q
2 λ

2−q
2 . (3.7)

Since u > 0 a.e. in Ω , applying Fatou’s lemma and dividing λ out we arrive at

1 =
∫

Ω

v(x)q dx ≤
(

λ1(Ω, s, q)

λ

) q
2

,

which gives λ ≤ λ1(Ω, s, q). The definition of λ1(Ω, s, q) gives the opposite inequal-
ity. �
Proposition 3.4 Let q ∈ (1, 2] and assume that λ1(Ω, s, q) > 0. Then, λ1(Ω, s, q)

is simple, i.e., all the corresponding eigenfunctions are mutually proportional.

Proof Let u and v be first eigenfunctions. By Proposition 7.1, we may assume that
u, v > 0. Nor is there any restriction in assuming both u and v to have unit norm
in Lq(Ω). For all t ∈ [0, 1], consider the function ξt : Ω → R

2 defined by ξt (x) =(
t1/qu(x), (1 − t)1/qv(x)

)
. Let ‖ · ‖�q denote the �q -norm in R2. Then, the convexity

of τ �→ |τ |2/q implies

‖ξt (x) − ξt (y)‖2�q ≤ t(u(x) − u(y))2 + (1 − t)(v(x) − v(y))2, for all x, y ∈ Ω.

(3.8a)
Also, for every t ∈ [0, 1], set σt (x) = ‖ξt (x)‖�q for x ∈ Ω and σt (x) = 0 for
x ∈ R

N \ Ω . Then

(σt (x) − σt (y))2 = (‖ξt (x)‖�q − ‖ξt (y)‖�q )2, for all x, y ∈ Ω. (3.8b)

Hence, by triangle inequality, σt ∈ Ds,2
0 (Ω) with the estimate

∫∫
R2N

(σt (x) − σt (y))2

|x − y|N+2s
dx dy ≤ t

∫∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dx dy + (1 − t)

∫∫
R2N

(v(x) − v(y))2

|x − y|N+2s
dx dy.

The normalisation in Lq(Ω) of u and of v implies that the right hand side in the latter
equals λ1(Ω, s, q). On the other hand, the left hand side is larger than or equal to
λ1(Ω, s, q), because

∫
Ω

σt (x)q dx =
∫

Ω

‖ξt (x)‖q
�q dx = t

∫
Ω

u(x)q dx + (1 − t)
∫

Ω

v(x)q dx = 1.
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Thus, σt is admissible for the minimisation problem that defines λ1(Ω, s, q). There-
fore, for every t ∈ [0, 1], the previous integral inequality is an equality. As a
consequence, the pointwise identity

(σt (x) − σt (y))2 = t(u(x) − u(y))2 + (1 − t)(v(x) − v(y))2

holds for all t ∈ [0, 1] and for a.e. x, y ∈ Ω . In view of (3.8), the latter yields the
equality case in triangle inequality

|‖ξt (x)‖�q − ‖ξt (y)‖�q | ≤ ‖ξt (x) − ξt (y)‖�q ,

which occurs if and only if there exists α(x, y) ∈ Rwith ξt (x) = α(x, y)ξt (y). Owing
to the definition of ξt , it follows that u(x) = α(x, y)u(y) and v(x) = α(x, y)v(y). In
conclusion, for a.e. x, y, we have u(x)

v(x)
= u(y)

v(y)
and this concludes the proof. �

3.2 The super-homogeneous case

Following the proof of [7, Proposition 4.3] about an analogous property in the local
case, we show that the first eigenvalue on Ω is simple also in the super-homogeneous
case q > 2, for all q up to a suitable threshold (depending on Ω). For this purpose,
we first discuss the continuous dependence of λ1(Ω, s, q) on q with a method used
in [1, Lemma 4] to derive monotonicity of semilinear eigenvalues with respect to q in
the local case; here we limit our attention to the right continuity at q = 2, which can
be proved also by different methods (see [3, Lemma 2.1].)

Lemma 3.1 We have

lim
q→2+ λ1(Ω, s, q) = λ1(Ω, s, 2).

Proof By [19, Corollary 1.2], we have λ1(Ω, s, 2) > 0 if and only if

λ1(Ω, s, q) > 0, for every q ∈ [2, 2∗
s ). (3.9)

Hence, we can assume that (3.9) holds, otherwise the conclusion is obvious. Therefore,

sup
v∈C∞

0 (Ω)

{∫
Ω

|v|q dx :
∫
RN

∫
RN

(v(x) − v(y))2

|x − y|N+2s
dx dy = 1

}
= λ1(Ω, s, q)−

q
2 ,

(3.10)
for all q ∈ [2, 2∗

s ), which can be seen by a straightforward homogeneity argument.
Since

d2

dq2

∫
Ω

|v|q dxq =
∫

{v �=0}
|v|q(log |v|)2 dx ≥ 0, for all q > 1,

the left hand side of (3.10), as a function of q, is the pointwise supremum of a family
of lower semicontinuous convex functions on (1, 2∗

s ). Thus, q �→ λ1(Ω, s, q)−q/2 is
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continuous on [2, 2∗
s ), and thence so it is q �→ λ1(Ω, s, q) on [2, 2∗

s ), by composition.
�

Proposition 3.5 Assume that the embedding Ds,2
0 (Ω) ↪→ L2(Ω) is compact. Then,

there exists qΩ ∈ (2, 2∗
s ) such that λ1(Ω, s, q) is simple for all q ∈ (2, qΩ).

Proof Let (qn)n∈N be a decreasing sequence converging to 2 and let (un)n∈N and
(vn)n∈N be sequences in Ds,2

0 (Ω) such that, for all n ∈ N, equation (2.5) holds with
λ = λ1(Ω, s, qn) both for u = un and for u = vn . By Proposition 3.2, we may assume
un and vn to be positive functions, nor does it cause any loss of generality assuming
them to have unit Lqn (Ω)-norm. Then, by using themselves as test functions in their
own equations, in view of Lemma 3.1 we see that

lim
n→∞

∫∫
R2N

(un(x) − un(y))2

|x − y|N+2s
dx dy = lim

n→∞

∫∫
R2N

(vn(x) − vn(y))2

|x − y|N+2s
dx dy

= λ1(Ω, s, 2).

Also, because, by assumption, the infimum that defines λ1(Ω, s, 2) is achieved, we
have

λ1(Ω, s, 2) =
∫
RN

∫
RN

(ū(x) − ū(y))2

|x − y|N+2s
dx dy

for an appropriate function ū ∈ Ds,2
0 (Ω) with unit norm in L2(Ω).

By Proposition 3.4, ū is uniquely determined; hence, from the assumption that the
embedding Ds,2

0 (Ω) ↪→ L2(Ω) is compact, we infer that both (un)n∈N and (vn)n∈N
converge to ū strongly in Ds,2

0 (Ω) and pointwise a.e. in Ω , by using the last two
identities in display and the fact that, for any given γ > 2, owing to Proposition 3.1
we have

‖un − ū‖Lγ (Ω) ≤ c‖un − ū‖
2
γ

L2(Ω)
, ‖vn − ū‖Lγ (Ω) ≤ c‖vn − ū‖

2
γ

L2(Ω)

for a constant c > 0 independent of n.
As qn > 2, by Proposition 3.1 there exists C > 0, depending only on the data, with

wn := (qn − 1)
∫ 1

0
[tun + (1 − t)vn]qn−2 dt ≤ C . (3.11)

The latter appears as a weight in the equation for ψn = ‖un − vn‖−1
L2(Ω)

(un − vn), viz.

∫
RN

∫
RN

(ψn(x) − ψn(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy = λ1(Ω, s, qn)

∫
Ω

wnψnϕ dx,

(3.12)
for all ϕ ∈ Ds,2

0 (Ω). After choosing ϕ = ψn in (3.12), in view of (3.11) we see that

(ψn)n∈N is bounded inDs,2
0 (Ω). Thus, by assumption, a subsequence (not relabelled)
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converges to some limit ψ , weakly in Ds,2
0 (Ω) and strongly in L2(Ω). Then, ψ is

bound to have unit norm in L2(Ω), in particular ψ �= 0.
We claim that

wn → 1, in L2
loc(Ω). (3.13)

Thence, recalling also Lemma 3.1, by passing to the limit in (3.12) we arrive at

∫
RN

∫
RN

(ψ(x) − ψ(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy = λ1(Ω, s, 2)

∫
Ω

ψϕ dx, (3.14)

for all ϕ ∈ Ds,2
0 (Ω), i.e., ψ is a non-trivial first eigenfunction. By Proposition 3.4, it

follows that either ψ = ū or ψ = −ū. On the other hand, we can plug in ϕ = ψ±
n

into (3.12) and deduce from (3.11), for n large enough, that

∫
RN

∫
RN

(ψ±
n (x) − ψ±

n (y))2

|x − y|N+2s
dx dy ≤ 2Cλ1(Ω, s, 2)

∫
Ω

|ψ±
n |2 dx .

We argue by contradiction and we assume that un �= vn , for all n ∈ N. Hence, both
Ω+

n = {un > vn} and Ω−
n = {un < vn} must have non-zero measure, because un and

vn have the same Lq(Ω)-norm. Then, we can estimate from below the left hand side
to get

|Ω±
n | 2s

N

∫
RN

∫
RN

(ψ±
n (x) − ψ±

n (y))2

|x − y|N+2s
dx dy ≥ C ′

∫
Ω

|ψ±
n |2 dx

where C ′ depends only on N and s; indeed, if Ω±
n has infinite measure, then the latter

is trivial; otherwise, we can deduce it from the definition of λ1(Ω, s, 2), its scaling
properties and the fractional Faber–Krahn inequality [10, Theorem 3.5]. Combining
the upper and the lower bound yields infn∈N |Ω±

n | > 0, which is inconsistent with
the pointwise convergence of ψn to its constant sign limit ψ . Indeed, by Egorov’s
Theorem, the pointwise a.e. convergence implies its uniform convergence out of an
exceptional set of arbitrarily small measure; since the limit function is either positive
or negative, it follows that |Ω+

n | ∧ |Ω−
n | converges to zero as n → ∞.

Thus, we are left with proving the claim (3.13). To do so, we consider a bounded
open set Ω ′ � Ω and observe that

∫
Ω ′

(wn − 1)2 dx ≤
∫

Ω ′

∫ 1

0

[
(qn − 1)[tun + (1 − t)vn]qn−2 − 1

]2
dt dx

≤ 2
∫

Ω ′

∫ 1

0

[
(qn − 2)2

(
[tun + (1 − t)vn]qn−2

)2

+
(
[tun + (1 − t)vn]qn−2 − 1

)2]
dt dx

≤ 2C2|Ω ′| + 2
∫

Ω ′

∫ 1

0

(
|tun + (1 − t)vn|qn−2 − 1

)2
dt dx .
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By the pointwise convergence a.e. in Ω of both un and vn to ū and by (3.11), the latter
implies that wn → 1 in L2(Ω ′) by dominated convergence theorem. Since Ω ′ was
arbitrary, that entails (3.13), as desired. �

4 Fractional Lane–Emden densities

In this section we always limit our attention to exponents q ∈ (1, 2) and we prove
some properties of the fractional Lane–Emden density of Ω . We recall that in this
paper the function wΩ,s,q is introduced in Definition 2.2, under the assumption that
λ1(Ω, s, q) > 0, as a non-negative weak solution of (1.4) (see also Remark 2.2).

Remark 4.1 Equation (1.4) has indeed a unique non-negative weak solution; by Propo-
sition 3.3, any such function is a non-negative q-semilinear s-eigenfunction with

Lq(Ω)-norm equal to λ1(Ω, s, q)
1

q−2 , whence the uniqueness by Proposition 3.4.

Proposition 4.1 Let q ∈ (1, 2), let Ω1 and Ω2 be bounded open sets and, for i ∈ {1, 2},
let wi be the fractional Lane–Emden density wΩi ,s,q on Ωi . Then

Ω1 ⊂ Ω2 �⇒ w1 ≤ w2.

Proof Let us write wi = wΩi ,s,q in Ωi and wi = 0 in R
N \ Ωi , for i ∈ {1, 2}. The

inequality

(a ∨ b − c ∨ d)2 − (a − c)2 ≤ (b − d)2 − (a ∧ b − c ∧ d)2,

with a = w1(x), b = w2(x), c = w1(y) and d = w2(y) entails the submodularity
property

1

2

∫∫
R2N

((w1 ∨ w2)(x) − (w1 ∨ w2)(y))2

|x − y|N+2s
dx dy − 1

2

∫∫
R2N

(w1(x) − w1(y))2

|x − y|N+2s
dx dy

≤ 1

2

∫∫
R2N

(w2(x) − w2(y))2

|x − y|N+2s
dx dy − 1

2

∫∫
R2N

((w1 ∧ w2)(x) − (w1 ∧ w2)(y))2

|x − y|N+2s
dx dy.

By minimality of w1, we also have

1

2

∫
RN

∫
RN

(w1(x) − w1(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω1

w
q
1 dx

≤ 1

2

∫
RN

∫
RN

((w1 ∧ w2)(x) − (w1 ∧ w2)(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω1

(w1 ∧ w2)
q dx .

Then, taking into account the integral identity

1

q

∫
Ω1

w
q
1 dx − 1

q

∫
Ω2

(w1 ∨ w2)
q dx = 1

q

∫
Ω1

(w1 ∧ w2)
q dx − 1

q

∫
Ω2

w
q
2 dx
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and summing up, gives

1

2

∫
RN

∫
RN

((w1 ∨ w2)(x) − (w1 ∨ w2)(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω2

(w1 ∨ w2)
q dx

≤ 1

2

∫
RN

∫
RN

(w2(x) − w2(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω2

w
q
2 dx .

Hence, by the minimality property of w2, we infer that w2 = w1 ∨ w2, as desired. �
We can extend Definition 2.2 to the case λ1(Ω, s, q) = 0, as done in the local case

(see [8].)

Definition 4.1 Let q ∈ (1, 2). Then, we set

wΩ,s,q(x) = lim
r→∞ wΩ∩Br ,s,q(x), for all x ∈ Ω. (4.1)

and we continue to call wΩ,s,q the (s, q)–Lane–Emden density of Ω .

By Proposition 4.1, the limit (4.1) always exists, so that the definition is well posed.
The following lemma assures its consistency with Definition 2.2.

Lemma 4.1 Let q ∈ (1, 2) and assume that λ1(Ω, s, q) > 0. For every r > 0, we
set wr (x) = wΩ∩Br ,s,q(x) if x ∈ Br and wr (x) = 0 otherwise. Then, wr converge
pointwise to wΩ,s,q as r → +∞.

Proof As r → +∞, the (s, q)–Lane–Emden density wr on Ω ∩ Br converges to an
appropriate function w ≤ wΩ,s,q . By minimality, for every given ϕ ∈ C∞

0 (Ω) there
exists Rϕ > 0 such that, for all r ≥ Rϕ , we have

1

2

∫
RN

∫
RN

(wr (x) − wr (y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω∩Br

w
q
r dx

≤ 1

2

∫
RN

∫
RN

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω∩Br

|ϕ|q dx . (4.2)

Note that the equation for wr is (2.5) with Ω ∩ Br in place of Ω , u = wr and
λ = ‖wr‖q−2

Lq (Ω∩Br )
. Testing with ϕ = wr the equation for wr , we get

∫∫
R2N

(wr (x) − wr (y))2

|x − y|N+2s
dx dy

=
∫

Ω∩Br

w
q
r dx ≤ λ1(Ω, s, q)

q
2

[ ∫∫
R2N

(wr (x) − wr (y))2

|x − y|N+2s
dx dy

] q
2

,

where in the second inequality we also used that wr = 0 in Ω \ Br . Since q < 2,
we deduce that wr converges to w weakly in Ds,2

0 (Ω) and strongly in Lq(Ω). Thus,
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passing to the limit as r → ∞ in (4.2), we obtain

1

2

∫∫
R2N

(w(x) − w(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω

wq dx ≤ 1

2

∫∫
R2N

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dx dy

− 1

q

∫
Ω

|ϕ|q dx,

for all ϕ ∈ C∞
0 (Ω), which by uniqueness implies that w = wΩ,s,q . �

Following [15], for all w ∈ Ds,2
0

(
R

N
)
and for all x0 ∈ R

N , we set

Tail(w, x0, ρ) = ρ2s
∫
RN \Bρ(x0)

|w(x)|
|x − x0|N+2s

dx .

The only difference between next proposition and [15, Theorem 1.1] is in that we
consider an equation with a non-zero right hand-side; some obvious changes in the
proof of [15] give the estimate for the non-homogeneous equation. A similar estimate
holds for non-homogeneous equations with data in Lγ , γ > N/s, but that is not
relevant to our case.

Proposition 4.2 Let U ⊂ R
N be an open set, x0 ∈ U , δ ∈ (0, 1], 0 < r <

dist(x, ∂U ), f ∈ L∞(U ) and let w ∈ Ds,2
0

(
R

N
)

be a non-negative weak sub-
solution of (−Δ)sw = f in U , i.e., w ≥ 0 in U and

∫
RN

∫
RN

(w(x) − w(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy ≤

∫
U

f wϕ dx,

for all non-negative ϕ ∈ C∞
0 (U ). Then

ess sup
Br/2(x0)

w ≤ C

[
δ Tail(w, x0, r/2) + δr2s‖ f ‖L∞(U ) +

(
r N−2s

δ

) N
4s (

−
∫

Br (x0)
w2 dx

) 1
2
,

]

where the constant depends only on N and s.

5 Functional inequalities with special singular weights

In the present section, we introduce a couple of Hardy-type inequalities. In the fol-
lowing proposition, we see that Lane–Emden inequalities (see [8, Section 3]) are valid
also in the non-local case.

Proposition 5.1 Let q ∈ (1, 2) and u ∈ C∞
0 (Ω). Then

∫
Ω

u2

w
2−q
Ω,s,q

dx ≤
∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy, (5.1)
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with the agreement that the left integrand be 0 at all points where wΩ,s,q = +∞.

Proof We first prove (5.1) in the special case of a bounded open set. We write w =
wΩ,s,q , and we take ε > 0. By Proposition 3.1, w ∈ Ds,2

0 (Ω) ∩ L∞(Ω). Hence, so
does (w + ε)−1, because t �→ (t + ε)−1 is a Lipschitz function on (0,∞). Then, by
[4, Lemma 2.4] we can plug ϕ = u2/(w + ε) into the equation for w and get

∫
Ω

w(x)q−1 u(x)2

w(x) + ε
dx =

∫
RN

∫
RN

w(x) − w(y)

|x − y|N+2s

(
u(x)2

w(x) + ε
− u(y)2

w(y) + ε

)
dx dy

for all ε > 0. In view of [6, Proposition 4.2], and recalling that w > 0 a.e. in Ω , by
Fatou’s lemma it follows that

∫
Ω

u2

w2−q
dx ≤

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy.

For the general case, we take R > 0 so large that the support of u is contained in
Br for all r ≥ R. For all such radii r , by the material above we have

∫
Ω∩Br

u2

w
2−q
r

dx ≤
∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy,

where wr is the (s, q)–Lane–Emden density of Ω ∩ Br . In view of Definition 4.1, by
Fatou’s lemma we get the conclusion passing to the limit as r → ∞. �

The more familiar Hardy-type inequality of next proposition implies some restric-
tion on the domain. The assumption made below is not optimal, though; for instance,
a uniform exterior cone condition is also a valid assumption; more generally, for the
statement to hold true it would be sufficient that no boundary point belong to the
measure-theoretic interior of Ω , see [13]. The boundedness assumption is not essen-
tial, either: see [16, Theorem 1.1], or also [28, Theorem 1.10].

Proposition 5.2 Let s ∈ (0, 1) and let Ω ⊂ R
N be an open bounded Lipschitz set.

Then, for all u ∈ C∞
0 (Ω),

∫
Ω

u(x)2

dist(x, ∂Ω)2s
dx ≤ C

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy (5.2)

for a constant C > 0 depending only on Ω .

Before proving Proposition 5.2, we make a brief comment on (5.2). When it comes
to fractional Hardy inequalities, there are a number of variants of the same statement.
A stronger one just involves the Sobolev–Slobodeckij seminorm [u]Hs (Ω) in the right
hand side (instead of taking integrals on thewhole ofRN ), implying various restrictions
both on Ω and on s: for a more detailed account on the topic, we refer to [13, 16–18,
28]. Here, incidentally, in view of Remark 2.1 we may point out the following.
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Corollary 5.1 If s ∈ (0, 1) and 2s �= N , then, under the assumptions of Proposi-
tion 5.2,

∫
Ω

u(x)2

dist(x, ∂Ω)2s
dx ≤ C

(∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
dx dy +

∫
Ω

u2 dx

)

for all u ∈ C∞
0 (Ω).

Proof of Proposition 5.2 By assumption, Ω is a bounded Lipschitz set. Hence, it satis-
fies the uniform exterior cone condition, i.e., that there exists � > 0 and a cone K , with
given aperture, such that every boundary point ξ is the vertex of a cone Kξ isometric
to K that satisfies Kξ ∩ B�(ξ) ⊂ R

N \ Ω . For, see e.g. [20, Theorem 1.2.2.2].
For ease of notation,wewrite δ(x) := dist(x, ∂Ω). For all x ∈ Ω with δ(x) ≥ �, we

can pick ξx ∈ ∂Ω withminimumdistance to x andwe have |x −y| ≤ |ξx −y|+δ(x) ≤
2δ(x) for all y ∈ Kξx ∩ B�(ξx ), whence it follows that

∫
Kξx ∩B�(ξx )

dy

|x − y|N+2s
≥ (2δ(x))−(N+2s)|Kξx ∩ B�(ξx )| ≥ θ�N δ(x)−2s

2N+2s DN N
,

where θ = H N−1(K ∩ ∂ B1(0)) and D is the diameter of Ω .
The inequality |x − y| ≤ |ξx − y| + δ(x) holds also for all points x ∈ Ω with

δ(x) ≤ �, and we infer that

∫
Kξx ∩B�(ξx )

dy

|x − y|N+2s
≥

∫ δ(x)

0

θρN−1 dρ

(ρ + δ)N+2s

= θ

Nδ(x)2s

∫ 1

0

dt

(1 + t1/N )N+2s
≥ θδ(x)−2s

2N+2s N
.

Since for all x ∈ Ω we have Kξx ∩ B�(ξx ) ⊂ R
N \ Ω , it follows that

∫
RN \Ω

dy

|x − y|N+2s
≥ θδ(x)−2s

2N+2s N

(
�N

DN
∧ 1

)
.

That gives the desired conclusion, because we have

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
=

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|N+2s
+ 2

∫
Ω

u(x)2
∫
RN \Ω

dy

|x − y|N+2s
,

for all u ∈ C∞
0 (Ω). �

Remark 5.1 For the use we shall make of Proposition 5.2, we do not need to pay much
attention to the explicit value of the constant C > 0. For sure, the proof presented
implies a very rough estimate of the optimal (unknown) constant.
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2212 G. Franzina and D. Licheri

Remark 5.2 By density, the inequality of Corollary 5.1 holds for all functions that
belong toDs,2

0 (Ω). Given p ∈ (1,∞), a similar inequality, with suitable adjustments
to the exponents, is valid for functions in the homogeneous fractional Sobolev space
Ds,p

0 (Ω) defined as the completion of C∞
0 (Ω) with respect to

(∫
RN

∫
RN

|u(x) − u(y)|p

|x − y|N+sp
dx dy

) 1
p

and this can be seen by minor changes in the proof presented here. This variant was
considered, for example, in [4], where the authors provide a constant that works on
convex open sets, with stable asymptotic behaviour as s ↗ 1.

6 Local in L1 uniqueness for fractional Lane–Emden positive solutions

The following proposition is the non-local counterpart of [5, Proposition 4.1].

Proposition 6.1 Let q ∈ (1, 2) and assume that the weighted space

L2(Ω,w
q−2
Ω,s,q) =

{
u ∈ L1

loc(Ω) :
∫

Ω

w
q−2
Ω,s,qu2 dx < +∞

}
(6.1)

contains Ds,2
0 (Ω) with compact embedding. Then, every critical point of

1

2

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy − 1

q

∫
Ω

|u|q dx

must satisfy ‖u − wΩ,s,q‖L1(Ω) ≥ δ, where δ > 0 depends only on s, q, Ω and N.

Proof We will prove a contrapositive statement: if a sequence (un)n∈N, consisting of
weak solutions of the fractionalLane–Emdenequation (1.4), converges tow := wΩ,s,q

in L1(Ω), then

∫
RN

∫
RN

(ψ(x) − ψ(y))2

|x − y|N+2s
dx dy ≤ (q − 1)

∫
Ω

wq−2ψ2 dx, (6.2)

for some ψ ∈ Ds,2
0 (Ω) \ {0}. Note that (6.2) is in contradiction with Proposition 5.1,

because q < 2.
By setting Qn = (

wq−1 − |un|q−2un
)
/(w − un) at all points where w �= un and

Qn = 0 elsewhere, the weak equation for the difference w − un takes the form

∫
RN

∫
RN

((w − un)(x) − (w − un)(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy =

∫
Ω

Qn(w − un)ϕ dx,
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for ϕ ∈ Ds,2
0 (Ω); the choice ϕ = t−1

n (w − un), where tn = ∫
Ω

wq−2(w − un)2 dx ,
gives

1

tn

∫
RN

∫
RN

((w − un)(x) − (w − un)(y))2

|x − y|N+2s
dx dy =

∫
Ω

Qn

(
w − un√

tn

)2

dx .

(6.3)
By [5, Lemma A.1], we have the following pointwise bound

0 ≤ Qn(x) ≤ 22−qwq−2(x), for all x ∈ Ω, (6.4)

and, by construction, that prevents the right integral in (6.3) from exceeding the con-
stant 22−q . Therefore, setting ψn = (w − un)/

√
tn defines a bounded sequence in

Ds,2
0 (Ω), which clearly has unit norm in the weighted space (6.1).

By assumption, we deduce that ψn converges weakly in Ds,2
0 (Ω) and strongly in

the weighted space (6.1) to a non-zero limit ψ . Thus, by (6.3), we can write

∫
RN

∫
RN

(ψn(x) − ψn(y))2

|x − y|N+2s
dx dy =

∫
Ω

Qn

(
ψ2

n − ψ2
)

dx+
∫

Ω

Qnψ
2 dx . (6.5)

The convergence of the sequence ψn implies

lim sup
n→∞

∫
Ω

Qn

(
ψ2

n − ψ2
)

dx ≤ 0 (6.6)

because, by the pointwise bound (6.4) and by Hölder’s inequality, we have

∫
Ω

Qn

(
ψ2

n − ψ2
)

dx ≤ 22−q
(∫

Ω

wq−2(ψn − ψ)2 dx

) 1
2 ×

×
[(∫

Ω

wq−2ψ2
n dx

) 1
2 +

(∫
Ω

wq−2ψ2 dx

) 1
2
]

.

In order to deal with the second integral in the right hand side of (6.5), we would
better handle the pointwise limit behaviour of Qn . Since

wq−1 − |un|q−2un = −
∫ 1

0

d

dt

[
|w + t(un − w)|q−2(w + t(un − w))

]
t dt

for every x ∈ Ω , we have

Qn(x) ≤ (q − 1)
∫ 1

0
fn(x, t) dt, where fn(x, t) = |(1 − t)w(x) + tun(x)|q−2.

(6.7)
The Hölder continuity of τ �→ τ 2−q and the convexity of τ �→ τ q−2 imply

||a + t(b − a)|q−2 − aq−2| ≤ t2−q

a2−q
(b − a)2−q

[
(1 − t)aq−2 + tbq−2

]
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2214 G. Franzina and D. Licheri

for all t ∈ [0, 1] and for all a, b > 0. Then, at all points x where un(x) > 0, we have

sup
t∈[0,1]

| fn(x, t) − w2−q(x)| ≤ |w(x) − un(x)|2−q

w(x)2−q

[
(1 − t)w(x)q−2 + tun(x)q−2

]
.

(6.8)
As un converges to w in L1(Ω), a subsequence (not relabelled) also converges point-
wise a.e. in Ω . In view of (6.8), that assures the uniform convergence of fn(x, ·) to
the constant w(x)2−q for all x out of a negligible set, so that

lim
n→∞

∫ 1

0
fn(x, t) dt = w(x)2−q , for a.e. x ∈ Ω. (6.9)

From (6.7) and (6.9) we infer that

lim sup
n→∞

Qnψ
2 ≤ (q − 1)w2−qψ2, a.e. in Ω.

Hence and from (6.4), by Fatou’s Lemma for the sequence 22−qwq−2 − Qnψ2, we
arrive at

lim sup
n→∞

∫
Ω

Qnψ2 dx ≤ (q − 1)
∫

Ω

w2−qψ2 dx . (6.10)

Inserting (6.6) and (6.10) in the identity (6.5) and using the lower semicontinuity of
the left hand side of (6.5) with respect to the weak convergence inDs,2

0 (Ω), we arrive
at (6.2), as desired. �
Remark 6.1 In view of Proposition 5.1, the embeddingDs,2

0 (Ω) ↪→ L2(Ω,w
q−2
Ω,s,q) is

continuous, for example, on all open sets with finite volume. The stronger requirement
that it be compact may be met under higher regularity assumptions on ∂Ω .

Lemma 6.1 Let q ∈ (1, 2), let Ω ⊂ R
N be a bounded open set with C1,1 boundary

and let v ∈ C∞
0 (Ω). Then

∫
Ω

w
q−2
Ω,s,qv2 dx ≤

(∫
RN

∫
RN

(v(x) − v(y))2

|x − y|N+2s
dx dy

) 2−q
2

‖v‖q
L2(Ω)

. (6.11)

Proof By Hopf’s lemma for the fractional Laplacian (see [24, Lemma 7.3]) we have
a constant C > 0, only depending on Ω , N , q and s, such that

wΩ,s,q(x) ≥ C dist(x, ∂Ω)s . (6.12)

Incidentally, we mention that the more precise asymptotic boundary behaviour

wΩ,s,q � dist(·, ∂Ω)s

is known: for the semilinear equation we refer to Theorem 6.4 and the following
remarks in [2] (alternatively, see [25] for the linear equation with a bounded right hand
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side, which is also relevant to our case thanks to Proposition 3.1). Since q ∈ (1, 2),
by Hölder’s inequality with exponents 2

2−q and 2
q we have

∫
Ω

dist(x, ∂Ω)s(q−2)v2 dx ≤
(∫

Ω

v2

dist(x, ∂Ω)2s
dx

) 2−q
2

(∫
Ω

v2 dx

) q
2

. (6.13)

Then, by (6.12), Proposition 5.2 and (6.13), we improve the fractional Lane–Emden
inequality (5.1) to (6.11). �

The conclusion of the previous lemma assures compactness for the weighted
embedding. Thus, we end this section with the remark that the isolation of fractional
Lane–Emden densities holds, for example, on open sets with smooth boundary.

Proposition 6.2 Let q ∈ (1, 2) and let Ω ⊂ R
N be a bounded open set with C1,1

boundary. Then, the conclusion of Proposition 6.1 holds.

Proof By assumption,Ds,2
0 (Ω) ↪→ L2(Ω) is compact; this and Lemma 6.1 imply the

compactness of the embedding Ds,2
0 (Ω) ↪→ L2(Ω,w

q−2
Ω,s,q), too. �

7 Proof of themain results

7.1 Proof of Theorem A

Because q ∈ (1, 2), the assumption λ1(Ω, s, q) > 0 implies the compactness of the
embedding Ds,2

0 (Ω) ↪→ Lq(Ω) (see [19, Theorem 1.3]). Then, a first eigenfunction
exists by Proposition 3.2. Also, Proposition 3.4 entails uniqueness up to proportion-
ality, and the last statement is true by Proposition 3.3. �

7.2 Proof of Theorem B

Let us write w = wΩ,s,q . The last statement is a consequence of Proposition 5.1.
Then, we assume that λ1(Ω, s, 2) > 0 and we prove the following fact: there exists a
constant C2(N , s), that only depends on N and s, such that

‖w‖2−q
L∞(Ω)λ1(Ω, s, 2) ≤ C1(N , s, q) (7.1)

holds with a suitable constant C1(N , s, q), depending only on N , s and q, provided
that

‖w‖2−q
L∞(Ω) ≥ C2(N , s). (7.2)

That fact would imply ‖wΩ,s,q‖2−q
L∞(Ω)λ1(Ω, s, 2) ≤ max{C2λ1(Ω, s, 2), C1},

whence we would infer (1.9) by a scaling argument, because for all t > 0 we have

‖wtΩ,s,q‖2−q
L∞(tΩ) = t2s‖wΩ,s,q‖2−q

L∞(Ω), λ1(tΩ, s, 2) = t−2sλ1(Ω, s, 2).
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2216 G. Franzina and D. Licheri

In order to prove that, for appropriate choices of constants, (7.2) implies (7.1) as
desired, we follow the lines of the proof of [30, Theorem 9]. Since the L∞-norm is
lower semicontinuous with respect to the pointwise (monotone) convergence and the
first eigenvalue λ1(·, s, 2) is monotone non-increasing with respect to set inclusion, in
order to prove the claimwemay assumeΩ to be smooth and bounded, up to an approx-
imation argument. So, by arguing under this assumption, in view of Proposition 3.1
we will assume w to belong to L∞(Ω) and to achieve its maximum at an interior
point, that we may consider to be the origin in R

N up to an unessential translation.
We now identifyw with the function that agrees withw inΩ and equals zero every-

where else and we claim that w is a weak subsolution of the fractional Lane–Emden
equation (1.4) in R

N . To see this, we fix a non-negative function η ∈ C∞
0

(
R

N
)
and,

for every ε > 0, we take a monotone non-decreasing Lipschitz continuous function
Hε : R → R, with Hε(u) = 0 for all u ≤ 0 and Hε(u) = 1 for all u ≥ ε. Then

∫
RN

∫
RN

w(x) − w(y)

|x − y|N+2s
[Hε(w(x))η(x) − Hε(w(y))η(y)] dx dy =

∫
Ω

wq−1Hε(w)η dx

(7.3)
because of the weak equation for w with Hε(w)η as a test function. To handle the left
hand side of (7.3), we write the identity 2(aξ −bζ ) = (a +b)(ξ −ζ )+ (a −b)(ξ +ζ )

with a = η(x), b = η(y), ξ = Hε(w(x)) and ζ = Hε(w(y)). After multiplying the
result by w(x) − w(y) and integrating against the singular kernel on Ω × Ω , we see
that

2
∫

Ω

∫
Ω

w(x) − w(y)

|x − y|N+2s
[Hε(w(x))η(x) − Hε(w(y))η(y)] dx dy

=
∫

Ω

∫
Ω

w(x) − w(y)

|x − y|N+2s
(η(x) + η(y))[Hε(w(x)) − Hε(w(y))] dx dy

+
∫

Ω

∫
Ω

w(x) − w(y)

|x − y|N+2s
(η(x) − η(y))[Hε(w(x)) + Hε(w(y))] dx dy.

(7.4)

Notice that the first integral in the right hand side of (7.4) is non-negative, due to the
monotonicity of the function Hε. Thus

∫
RN

∫
RN

w(x) − w(y)

|x − y|N+2s
[Hε(w(x))η(x) − Hε(w(y))η(y)] dx dy

≥ 1

2

∫
Ω

∫
Ω

w(x) − w(y)

|x − y|N+2s
(η(x) − η(y))[Hε(w(x)) + Hε(w(y))] dx dy

+ 2
∫

Ω

∫
RN \Ω

w(x)

|x − y|N+2s
[Hε(w(x))η(x) − Hε(w(y))η(y)] dx dy.

(7.5)

By dominated convergence theorem, the limit as ε → 0+ in (7.3) and (7.5) gives

∫
Ω

∫
Ω

w(x) − w(y)

|x − y|N+2s
(η(x) − η(y)) dx dy + 2

∫
Ω

∫
RN \Ω

w(x)η(x)

|x − y|N+2s
dx dy

≤
∫

Ω

wq−1η dx,
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and that proves the claim.
We let r be a positive radius, that will be chosen later, and we take a cut-off

ζ ∈ C∞
0 (Ω) from the ball Br/2 to Br , with |∇ζ | ≤ 2

r . Since w is a weak subsolution
of (1.4), the localised Caccioppoli estimate of [11, Proposition 3.5], with F = wq−1,
p = 2, β = 1, δ = 0, L = 1 and Ω ′ = Br , gives

∫
Br

∫
Br

(w(x)ζ(x) − w(y)ζ(y))2

|x − y|N+2s
dx dy ≤ C3(N , s)

(
w(0)qr N + w(0)2r N−2s

)
,

(7.6)
whereC3(N , s) > 0 depends only on N and s.Moreover, by the fact thatw ∈ L∞(Ω),

∫
Br

∫
RN \Br

(w(x)ζ(x) − w(y)ζ(y))2

|x − y|N+2s
dx dy ≤ C4(N , s)w(0)2r N−2s, (7.7)

where C4(N , s) > 0 depends only on N and s. Also, by Proposition 4.2 we have

∫
Br

w2 dx ≥ C5(N , s, q)r N
(
w(0) − δ Tail(w, 0, r/2) − δr2sw(0)

)2
,

where the constant C5(N , s, q) depends only on N , s and q and δ ∈ (0, 1] is a
parameter that we can take as small as we wish. By combining the latter with (7.6)
and (7.7), for δ smaller than an appropriate δ0(N , s) ∈ (0, 1], we obtain

λ1(Ω, s, 2) ≤ C6(N , s, q)
(
w(0)/2 − δr2sw(0)q−2

)−2 (
w(0)q + w(0)2r−2s

)
,

(7.8)
where we set C6 = 2(C3 + C4)C

−1
5 and we used the fact that the function wζ is an

admissible competitor for the infimum that defines the constant λ1(Ω, s, 2). Then, we
take δ ≤ 2−q ∧ δ0(N , s). Hence, with the choice

r = ( 1
2w(0)

) 2−q
2s ,

we have w(0) − δr2sw(0)q−2 ≥ w(0)/4, and (7.8) gives (7.1) with C1 =
16

(
1 + 22−q

)
C6. �

Remark 7.1 If λ1(Ω, s, q) > 0, we have the stronger estimate

‖wΩ,s,q‖L∞(Ω) ≤ Cλ1(Ω, s, q)−γ

where the constant C > 0 and the exponent γ > 0 depends only on N , s and q. Indeed,

wΩ,s,q is the first q-semilinear s-eigenfunctionwith Lq(Ω)-norm λ1(Ω, s, q)
1

q−2 , and
the estimate follows at once by Proposition 3.1. In fact, this estimate can also be seen
as a particular case of the more general one of Theorem B. Indeed, the positivity of the
greatest lower bound λ1(Ω, s, 2) for the spectrumof the fractional (linear) s-Laplacian
is, by definition, equivalent to the continuity of the embedding Ds,2

0 (Ω) ↪→ L2(Ω).
Domains with this property are not necessarily bounded, nor are they required to
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have finite measure; also, an open set Ω may support a Sobolev–Poincaré inequality
that makes λ1(Ω, s, 2) strictly positive even if λ1(Ω, s, q) = 0 for all q ∈ (1, 2)
(examples are provided by bounded cylinders ω × (−M, M), with M > 0 and ω ⊂
R

N−1.) Conversely, given any q ∈ (1, 2), the fact that λ1(Ω, s, q) > 0 implies that
λ1(Ω, s, 2) > 0, too; in fact, it implies that the embedding Ds,2

0 (Ω) ↪→ L2(Ω) is
compact, by interpolation: see [19, Lemma 2.3].

7.3 Proof of Theorem C

Arguing by contradiction, we assume that a sequence (λn)n∈N ⊂ S(Ω, s, q) con-
verges to λ1(Ω, s, q). For each λn , we pick an eigenfunction un with unit norm in
Lq(Ω). That defines a bounded sequence in Ds,2

0 (Ω), due to equation (2.5) with
λ = λn and u = ϕ = un . Then, by possibly passing to a subsequence, we may assume
that un converges weakly inDs,2

0 (Ω) and strongly in Lq(Ω) to a limit function u with
unit norm in Lq(Ω). Hence, by passing to the limit as n → ∞ in (2.5) with u = un

and λ = λn , it is easily seen that u is a first q-semilinear s-eigenfunction. Owing to
Theorem A, up to changing everywhere sign to each element of the sequence, u > 0

and its multiple w = λ1(Ω, s, q)
1

q−2 u is the fractional Lane–Emden density of Ω .

Moreover, each function vn = λ1(Ω, s, q)
1

q−2 un is a weak solution of the fractional
Lane–Emden equation (1.4); yet, by construction, vn converges towΩ,s,q inDs,2

0 (Ω),
in contradiction with Proposition 6.2. �
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Appendix A

The following one is an obvious consequence of inequality (|a| − |b|)2 ≤ (a − b)2,

that is strict if and only if ab < 0.

Lemma 7.1 For all u ∈ Ds,2
0 (Ω), we have

∫
RN

∫
RN

(|u(x)| − |u(y)|)2
|x − y|N+2s

dx dy ≤
∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s
dx dy (A.1)

with strict inequality unless either u ≥ 0 or u ≤ 0 a.e. in Ω .

Incidentally, we observe that for all functions u ∈ Ds,2
0 (Ω) the following identity

also holds: ∫∫
R2N

(|u(x)| − |u(y)|)2
|x − y|N+2s

dx dy

=
∫∫

R2N

((u ∧ 0)(x) − (u ∧ 0)(y))2

|x − y|N+2s
dx dy

+
∫∫

R2N

((u ∨ 0)(x) − (u ∨ 0)(y))2

|x − y|N+2s
dx dy

+ 4
∫
{u(x)>0}

∫
{u(y)<0}

u(x)u(y)

|x − y|N+2s
dx dy.

Sine the last integral is negative, the previous Lemma can also be deduced from the
submodularity of the squared seminorm, see [23, Lemma 3] with v = 0.

The following form of the minimum principle for supersolutions is well known:
e.g., see [27, Lemma 6]. For convenience of the reader, we present the proof of its
statement in the setting relevant to the present manuscript, and we point out that Ω is
not required to be connected.

Proposition 7.1 Let u ∈ Ds,2
0 (Ω) satisfy

∫
RN

∫
RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy ≥ 0 for all non-negative ϕ ∈ C∞

0 (Ω)

and assume that u ≥ 0 a.e. in Ω . Then, either u = 0 a.e. in Ω or u > 0 a.e. in Ω .

Proof By [6, Theorem A.1], u > 0 in each connected component where it is not
identically zero. Then, we argue as in the proof of [11, Proposition 2.6] and we prove
a contrapositive statement: if u ≡ 0 in a connected component Ω0 of Ω , then, by
assumption, for all ϕ ∈ C∞

0 (Ω0) \ {0} such that ϕ ≥ 0,

∫
Ω\Ω0

∫
Ω0

u(x)ϕ(y)

|x − y|n+2s
dx dy − 1

2

∫
RN

∫
RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s
dx dy ≤ 0

which, by Fubini’s theorem, implies u = 0 a.e. in Ω \ Ω0, hence a.e. in Ω . �
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