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Abstract 

Background  The current diagnosis of Alzheimer’s disease (AD) is based on a series of analyses which involve clinical, 
instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might 
overlap with other dementias, resulting in misdiagnosis.

Methods  Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity 
in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in bio-
molecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS).

Results  The SAA-SERS approach supported by machine learning data analysis allowed efficient identification 
of pathological Aβ oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive 
impairment due to AD.

Conclusions  Such analytical approach can be used to recognize disease features, thus allowing early stratification 
and selection of patients, which is fundamental in clinical treatments and pharmacological trials.
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Introduction
Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder in the elderly with an incidence 
that is progressively increasing worldwide [1]. The main 
neuropathological hallmark of AD is the presence of two 
protein aggregates, extracellular amyloid plaques made 
up of amyloid-β protein (Aβ) and intracellular neurofi-
brillary tangles made up of hyperphosphorylated tubulin-
associated unit (tau) protein [2, 3]. Before aggregating, 
both proteins undergo conformational rearrangements 
which increase their propensity to form the characteris-
tic insoluble assemblies. Although several target proteins 

*Correspondence:
Paolo Matteini
p.matteini@ifac.cnr.it
Fabio Moda
fabio.moda@istituto-besta.it
1 Institute of Applied Physics “Nello Carrara”, National Research Council, 
50019 Sesto Fiorentino, Italy
2 Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto 
Neurologico Carlo Besta, 20133 Milan, Italy
3 Institute of Physical Chemistry (IPC) and Abbe Center of Photonics 
(ACP), Friedrich Schiller University Jena, 07743 Jena, Germany
4 Leibniz Institute of Photonic Technology, 07745 Jena, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40035-023-00367-9&domain=pdf
http://orcid.org/0000-0002-2820-9880


Page 2 of 12D’Andrea et al. Translational Neurodegeneration           (2023) 12:35 

and risk factors contribute to AD etiology, Aβ seems to 
play a significant role and is considered the earliest and 
main pathological actor [4–6]. Aβ is derived from the 
proteolysis of the amyloid precursor protein [7]. Upon 
misfolding, Aβ acquires pathological properties, spreads 
throughout the brain and triggers a cascade of neurotoxic 
events, ultimately leading to neurodegeneration [8–11]. 
Remarkably, the size, the morphology and the localiza-
tion of Aβ aggregates differ considerably in the brains of 
AD patients: this strengths the evidence that the disease 
is phenotypically heterogeneous, and such heterogeneity 
likely correlates with structural diversities of Aβ species 
[12–17]. Therefore, characterization of Aβ aggregates in 
the brain enables classification of AD in different sub-
groups [17].

At present, the clinical diagnosis of AD mostly relies on 
the NIA-AA (National Institute of Aging – Alzheimer’s 
Association) criteria that were proposed in 2011 and 
subsequently revised. However, the definite diagnosis 
still requires a series of neuropathological examinations 
[18, 19]. This is partially due to the fact that the clinical, 
laboratory and instrumental biomarkers are not strictly 
specific for AD and can be altered in other neurode-
generative conditions [20]. Therefore, there is a need for 
more specific, cost-effective, easy-to-identify and reliable 
biomarkers to improve the clinical diagnostic accuracy of 
AD, eventually enabling the early identification of disease 
phenotypes.

By means of a seed amplification assay (SAA) tech-
nique, the presence of pathological Aβ species (typically 
found in the brain) in the cerebrospinal fluid (CSF) of AD 
patients has been demonstrated [21]. In particular, SAA 
amplifies small amount of Aβ oligomers in biological 
fluids at the expense of synthetic Aβ peptides which are 
used as the reaction substrate. The reaction leads to the 
formation of Aβ amyloid fibrils which is monitored by 
thioflavin-T (ThT) fluorescent dye. From another point of 
view, the most recent advancements in the optical field 
led to the possibility of developing effective spectroscopy 
systems for a label-free description of Aβ species [22–
26]. In particular, Raman spectroscopy is a label-free, 
non-invasive and non-destructive vibrational technique 
that provides the molecular fingerprint of biomolecules 
[27, 28]. Taking advantages of the addition of plasmonic 
nanostructures, surface-enhanced Raman spectroscopy 
(SERS) overcomes the  Raman spectroscopy detection 
limits, pushing the biorecognition sensitivity down sev-
eral order of magnitudes [29, 30]. As an example, SERS 
proved powerful in distinguishing small   concentrations 
of specific aggregated forms of neurodegenerative bio-
markers and in postulating a correlation between their 
molecular structure and neurotoxicity [31–34].

In this work, we set up a modified SAA protocol and 
combined it with SERS (SAA-SERS) for the innova-
tive analysis of CSF collected from well-characterized 
patients with a clinical diagnosis of AD, mild cognitive 
impairment due to AD (MCI-AD) or other neurologi-
cal conditions (ONC). The aim was to evaluate whether 
the proposed combined approach could prove effective 
in improving AD clinical diagnosis, eventually allowing 
patient stratification. These analyses were supported by 
machine learning and finally correlated with the available 
clinical, instrumental and laboratory findings.

Materials and methods
Collection of CSF samples
CSF samples collected from enrolled patients were cen-
trifuged at 1000 × g for 10 min and stored in polypropyl-
ene tubes (Sarstedt, Nümbrecht, Germany) at − 80  °C 
until analysis. The demographic and neuropsychologi-
cal data as well as the available laboratory findings of the 
patients included in the study are summarized in Table 1.

Standard laboratory analyses of CSF samples
CSF samples were analyzed with LUMIPULSE®  G600II 
instrument (Fujirebio, Ghent, Belgium) to evaluate the 
concentrations of amyloid-β 1–42 (Aβ1-42) and amyloid-β 
1–40 (Aβ1-40), as previously described [35, 36] or with 
ELISA (Fujirebio) to determine the concentrations of 
total tau (t-tau; INNOTEST® hTAU Ag) and phospho-
rylated tau 181 (p-tau; INNOTEST® PHOSPHO-TAU 
(181P)).

SAA analyses of CSF samples
Each CSF sample was subjected to SAA analyses using 
two reaction mixes: (1) Mix 1: Tris–HCl 100  mM, 
synthetic Aβ1-40 peptide 10  µM (Life Technologies, 
Carlsbad, CA) and ThT 10 µM for evaluating the SAA 
aggregation kinetics; (2) Mix 2: Tris–HCl 100 mM and 
synthetic Aβ1-40 peptide 10  µM (Life Technologies) 
for SERS and atomic force microcopy (AFM) analyses. 
A single batch of Aβ1-40 peptide (purity > 95%, Ther-
moFisher Scientific, Waltham, MA) was dissolved in 
NaOH 10  mM (Merck, Darmstadt, Germany) to a 
final concentration of 230  μM and used for the analy-
ses (Additional file  1: Fig. S1a, b). Ninety microliters 
of each reaction mix (Mix 1 or Mix 2) was placed in a 
black 96-well optical flat-bottom plate (Thermo Sci-
entific) and supplemented with 10  µl of CSF samples 
reaching a final volume of 100 µl. Each CSF sample was 
analyzed in triplicate for each experimental condition 
and for at least two times by different operators. The 
plates were sealed with sealing films (ThermoFisher 
Scientific), inserted into a FLUOstar OMEGA micro-
plate reader (BMG Labtech, Ortenberg, Germany) and 
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subjected to shaking cycles of 1 min (600 rpm, double 
orbital) followed by 14  min incubation at 35  °C. For 
evaluating the aggregation kinetics, the average fluo-
rescence intensity of the three replicates of each sam-
ple (analyzed using Mix 1) was calculated and plotted 
against time together with the standard error of the 
mean (mean ± SEM). A threshold of 75 h and 550 fluo-
rescence arbitrary unit (AU) was set to discriminate 
seed-competent and seed-incompetent samples. For 
SERS and AFM experiments, the three replicates of 

each sample were pooled together and stored at − 80 °C 
before analysis.

AFM
The morphology of the SAA products was examined 
using tapping-mode AFM. An aliquot of sample solution 
(3 μl) was dried on top of freshly cleaved mica at 32  °C 
for 90 min, followed by 2 rinsing cycles in Milli-Q water 
(100  μl) to remove salts and debris and drying under a 
gentle nitrogen steam. Samples were then imaged using 

Table 1  Demographic, laboratory and neuropsychological data

*Measured with the INNOTEST® PHOSPHO-TAU (181P). Normal reference value < 61 pg/ml [50]

**Measured with the INNOTEST® hTAU Ag. Normal reference values: < 300 pg/ml, 21–50 years; < 400 pg/ml, 51–70 years; < 500 pg/ml, 71–93 years [51]

***Measured with the Lumipulse® G β-Amyloid 1–42. Normal reference value > 640 pg/ml [52]

****Measured with the Lumipulse® G β-Amyloid 1–40. Normal reference value range 7755–16,715 pg/ml [52]

***** Normal reference value range 0.068–0.115. Lower levels may be indicative or predictive of AD pathology [53]

n.a.: not available

Patient 
code

Clinical 
diagnosis

Age at CSF 
collection (years)

p-tau (pg/ml)
*

t-tau (pg/ml)
**

Aβ1-42 (pg/ml)
***

Aβ1-40 (pg/ml)
****

Aβ1-42/Aβ1-40
*****

MMSE score

AD#1 AD 63 56 452 694 n.a n.a 22/30

AD#2 AD 58 98 1195 464 n.a n.a 21/30

AD#3 AD 65 114 761 477 n.a n.a 21/30

AD#4 AD 54 138 1133 349 9376 0.037 n.a

AD#5 AD 57 74 513 267 4661 0.057 12/30

AD#6 AD 49 64 427 525 n.a n.a 26/30

AD#7 MCI-AD 52 72 451 575 n.a n.a 28/30

AD#8 AD 75 79 779 464 n.a n.a 23/30

AD#9 AD 63 52 404 483 n.a n.a n.a

AD#10 AD 75 179 1434 436 n.a n.a 26/30

AD#11 AD 62 58 430 246 4603 0.053 21/30

AD#12 AD 77 94 855 314 6581 0.048 20/30

AD#13 MCI-AD 75 115 1130 440 8292 0.053 28/30

AD#14 MCI-AD 79 93 905 394 7536 0.052 28/30

AD#15 AD 70 60.1 396 230 4095 0.056 18/30

AD#16 AD 69 214.6 1258 261 7875 0.033 24/30

AD#17 AD 70 181.5 1211 577 10,190 0.057 24/30

AD#18 AD 74 239 1387 218 3839 0.057 26/30

AD#19 AD 74 93.2 610 434 9355 0.046 22/30

AD#20 MCI-AD 84 93.1 469 361 9005 0.040 29/30

ONC#1 PSP 71 46 278 460 7750 0.046 n.a

ONC#2 PD 58 24.1 131 592 6333 0.094 n.a

ONC#3 HyC 77 29 229 801 9760 0.082 n.a

ONC#4 HyC 71 28.7 163 594 7499 0.079 n.a

ONC#5 HyC 75 12.7 95 147 2090 0.070 n.a

ONC#6 HyC 78 54.4 299 645 10,337 0.062 n.a

ONC#7 HyC 75 21.7 136 267 4150 0.064 n.a

ONC#8 HyC 44 19.1 77 382 4374 0.087 n.a

ONC#9 HyC 63 n.a n.a 163 1771 0.090 n.a

ONC#10 HyC 74 20.1 144 461 5149 0.090 n.a

ONC#11 HyC 59 26 138 1296 8101 0.160 n.a
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a JPK NanoWizard III Sense (Bruker, Germany) scanning 
probe microscope operated in AFM mode. Single-beam 
uncoated silicon cantilevers (HQ:NSC15/Cr-Au BS, Mik-
roMasch, Germany) were used, with a force constant of 
40 N/m. Drive frequency was between 250 and 300 kHz, 
and the scan rate was 0.4 Hz.

SERS analysis of SAA products
All SAA reaction products were collected at 150  h and 
analyzed using a SERS-active substrate based on net-
works of silver nanowires (AgNWs), as recently reported 
[37, 38]. Briefly, 2  ml of AgNWs/isopropyl alcohol was 
micro-filtered under nitrogen pressure through a pol-
ytetrafluoroethylene (PTFE) membrane (Sartorius, pore 
0.45  µm) by using an Amicon Stirred Cell (Millipore, 
Model 8003, total volume 3  ml) and blocked on its top 
forming a 10-µm-thick layer of intertwined wires. The 
AgNWs@PTFE substrate was then patterned in 10 iso-
lated spots of 1 mm diameter by a laser engraver (NEJE, 
λ = 405 nm, max power 3 W, spatial resolution 0.45 µm) 
(Fig. S1c). Immediately after it was thawed out to room 
temperature (RT), 2  µl of SAA product solution was 
drop-casted on a SERS-active spot, dried in air, rinsed 
twice with 2 µl of ultrapure water for 1 min in order to 
remove any residual trace of Tris buffer, and finally dried 
at RT.

SERS spectra were acquired using an XPlora micro-
Raman spectrometer (Horiba, Montpellier, France) 
working in backscattering geometry, with an excitation 
wavelength at 785  nm, focused through a 10 × objective 
(Olympus, 0.25 NA, 7 µm waist) and laser power at the 
sample of 0.6 mW. For each sample a total of 50 spec-
tra on different positions within an area of 0.24  mm2 
(600 × 400 µm2) of the AgNWs@PTFE spot were col-
lected. Each spectrum was acquired in the range of 950–
1740 cm−1, illuminating the sample for 10 s of integration 
time, dispersing the scattered light by a 1200 grooves/
mm grating, and collecting it with a Peltier cooled CCD 
detector (Horiba, France). All the spectra were cor-
rected in wavelength, by acquiring the spectrum of a 
bulk crystalline silicon sample and calibrating the grating 
at the beginning of each measurement session with the 
first-order Raman peak of c-Si (520.8  cm−1). Each SERS 
experiment was conducted in two replicates by different 
operators.

In order to exclude any signal fluctuations due to oper-
ational factors (local inhomogeneities of the AgNWs@
PTFE substrate, changes in laser focusing or in autofluo-
rescence background) and to appreciate small signal vari-
ations in ONC and AD samples, a pre-processing of the 
data was performed before their evaluation by means of 
a well-established analytical pipeline reported in litera-
ture [38, 39]. The spectra were corrected for cosmic ray 

spikes, baselined (polynomial fit), smoothed and area 
normalized by using the Labspec 6 software (Horiba) 
(Additional file 1: Fig. S2).

Machine learning analysis
Initially, SERS spectra were analyzed using t-distributed 
stochastic neighbor embedding (t-SNE) algorithm to 
obtain a bi-dimensional view of spectra distribution 
across all patients in the study [40]. Afterward, a pat-
tern classifier was trained and tested to create a predic-
tive model able to assess the presence of AD traits based 
on SERS spectra. Specifically, we trained and tested a 
supervised C-SVM model that constructs a hyperplane 
in a high-dimensional space separating the training data 
into two classes. Since, in general, the larger the margin, 
the lower the generalization error of the classifier, a good 
separation is achieved by the hyperplane that has the 
largest distance to the nearest training data points of any 
class [41]. We selected a radial kernel and a hyperparam-
eter C, a value proportional to the inverse of the regulari-
zation strength used during the training phase, equal to 
1.0. We employed a subject-level fivefold stratified cross-
validation (CV) loop to train and test the classifier. The 
subject-level CV divides the data between training and 
test sets, considering that all spectra related to the same 
CSF sample, and therefore to the same subject, must be 
entirely contained in only one of the two sets. Empiri-
cal evidence suggests that the 5- or 10-fold CV should 
be preferred to the leave-one-out (LOO) CV as reported 
by current literature and state-of-the-art machine learn-
ing development tools documentation [42, 43]. Test set 
data were not used during the learning process, thus 
preventing any form of peeking effect [44, 45]. We finally 
evaluated the generalization capabilities of our model on 
test data by computing the accuracy, specificity, sensitiv-
ity, receiver operating characteristic (ROC) curve, and 
area under the ROC curve (AUROC)  (Additional file  1: 
Appendix 1).

Results
A total number of 31 CSF samples were collected from 
patients with a clinical diagnosis of probable AD (n = 16), 
MCI-AD (n = 4) or ONC, including progressive supra-
nuclear palsy (PSP, n = 1) [46], Parkinson’s disease (PD, 
n = 1) [47] and normal pressure hydrocephalus (HyC, 
n = 9) [48, 49]. Only patients with MCI-AD or AD-
dementia underwent Mini-Mental State Examination 
(MMSE) and their scores at the time of lumbar tap are 
shown in Table 1. Remarkably, all MCI-AD patients con-
verted to AD-dementia during the time between CSF col-
lection and SAA-SERS analyses.
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A schematic representation which integrates our SAA-
SERS approach with the conventional diagnostic work-up 
for AD is shown in Fig. 1. Subjects with a clinical suspi-
cion of AD undergo several clinical and instrumental 
tests (light grey box, Fig. 1) and are typically subjected to 
CSF collection and dosage of specific protein biomarkers, 
including t-tau, p-tau, Aβ1-40 and Aβ1-42 (dark grey box, 
Fig. 1). The green box shows the integration of our com-
bined approach in the clinical diagnostic work-up for AD 
which is based on the innovative analysis of CSF samples. 
The outcomes of this approach are finally visualized and 
categorized by the support of machine learning.

CSF laboratory results
For many retrospectively collected CSF samples we had 
enough volume to measure the levels of specific protein 
markers to support the clinical diagnosis of AD, includ-
ing t-tau, p-tau, Aβ1-42 and Aβ1-40. For a few cases, the 
amount of CSF was not enough to complete the set of 
biomarker analysis reported in Table  1. However, their 
clinical diagnosis was strongly supported by other clinical 

and instrumental markers. The results of CSF analysis 
showed that the levels of p-tau were mostly increased in 
AD and MCI-AD patients, while the Aβ1-42 levels were 
mainly decreased. The Aβ1-42/Aβ1-40 ratio was below 
0.068 in AD and MCI-AD patients and this was indica-
tive or predictive of AD pathology [53]. CSF analysis of 
ONC showed normal levels of protein markers, except 
for ONC#1, #6, and #7 that were characterized by a Aβ1-

42/Aβ1-40 ratio below 0.068. Of note, all HyC showed low 
levels of Aβ1-42 and Aβ1-40 (below the normal values). 
This is a normal finding and is due to the fact that the 
increased production of CSF in these patients determines 
a dilution of all the proteins contained in the volume of 
sample analyzed.

SAA analysis of CSF samples
Concerning SAA analysis, we followed the protocol of 
Salvadores et al. [21] applying some modifications aimed 
at optimizing system stability and reproducibility. We 
observed an initial slow increase of ThT fluorescence sig-
nal (before 60 h) due to Aβ1-40 aggregation, followed by a 

Fig. 1  The green box highlights the level of integration of the proposed method with the classic diagnostic workup for AD. The products obtained 
by SAA analyses of CSF are investigated by means of SERS  supported by a machine learning approach for the visualization and prediction 
of the results
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more rapid aggregation kinetics either in the case of AD 
or ONC samples (Fig. 2). According to specific thresholds 
of time (75 h) and fluorescence (550 AU) we were able to 
determine seed-competent (seed+) and seed-incompe-
tent (seed-) samples. In particular, we observed a seeding 
activity in 9/16 AD samples (AD#1, AD#2, AD#6, AD#8, 
AD#11, AD#12, AD#15, AD#16, AD#18), in 3/4 MCI-AD 
(AD#7, AD#13, AD#14) but also in 4/11 ONC (ONC#1, 
ONC#3, ONC#5, ONC#7, the first affected by PSP, while 
the others by HyC) (Additional file 1: Fig. S3), resulting 
in 56% (only AD) or 60% (AD + MCI-AD) sensitivity and 
64% specificity in the identification of AD samples. Even 
by pooling together the aggregation kinetics obtained 
from all AD or ONC patients, we were not able at this 

stage to clearly distinguish AD from ONC, neither as a 
function of time taken to trigger Aβ1-40 aggregation nor 
of fluorescence levels reached at the end of the SAA reac-
tions (Fig. 2).

The unsatisfactory sensitivity and specificity levels 
observed led us to assess the opportunity to couple SAA 
with SERS to improve the diagnostic performance on the 
basis of possible chemo-structural differences between 
AD and ONC products, which failed to be appreciated by 
SAA alone.

Application of SERS to SAA products
Initially, ultrastructural characterization of the SAA 
end products was carried out to gain a morphologi-
cal overview of the samples under scrutiny (Fig. 3). The 
topographical analysis by AFM highlighted the pres-
ence of fibrillary structures with a size ranging from ~ 0.1 
to ~ 1.2 μm of length and ~ 6 nm of average height in all 
samples identified as seed-competent in the fluores-
cence-based SAA analysis. The formation of fibrils is in 
line with the high content of β-sheet structural motifs as 
evidenced by SAA kinetics. The widespread density of 
smaller globular structures revealed also an ubiquitarian 
sub-fibrillar content (Additional file  1: Fig. S4), charac-
teristic of oligomeric aggregates with structural features 
consistent with those observed in previous studies [54, 
55].

The SERS analysis of SAA products revealed a high 
level of intra-sample reproducibility  (Additional file  1: 
Figs. S5, S6), as evaluated through relative standard devi-
ation (RSD) values ranging between 5% and 20%. This is 

Fig. 2  Comparison between Aβ1-40 aggregation kinetics triggered 
by AD (red line), MCI-AD (pink line) and ONC (blue line) CSF samples 
by SAA. The kinetics did not significantly differ between samples 
neither in terms of time taken to trigger Aβ1-40 aggregation 
nor in terms of fluorescence levels reached at the end of the SAA 
reactions

Fig. 3  Representative AFM images of SAA products. Tapping-mode height images acquired on the SAA products generated by CSF from ONC (a) 
and AD samples (b), after the SAA analysis (the height bar is shown on the right). Panels show higher-resolution  small-scan-size  images of Αβ1-40 
fibrils
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consistent with an affordable analytical protocol, devoid 
of signal fluctuations due to variability in the optical 
response of the SERS substrate [56]. The observation of 
unique and reproducible shape profiles for each patient 
(Additional file  1: Figs. S5 and S6) suggested the exist-
ence of specific optical fingerprints identifying the differ-
ent patients. More precisely, these profiles have identical 
vibrational bands but show a relative intensity variation 
(Fig. 4). These bands were identified in Additional file 1: 
Table S1 and ascribed to characteristic vibrational modes 
of Aβ1-40 (Additional file  1: Fig. S7), which is expected 
to mainly contribute to the optical response of SAA-
processed samples due to its massive (micromolar) con-
centration in the SAA reaction mixture. The differences 
observed can thus reflect characteristic (in quality and 
quantity) interactions occurring between the oligomeric 
Aβ contained in the CSF and the supplemented Aβ1-

40, during the SAA process within each CSF sample, in 
turn generating a characteristic SERS signature. Main 
bands are assigned to the aromatic tyrosine (Tyr), histi-
dine (His), and phenylalanine (Phe) residues (1001, 1026, 
1203, 1491, 1600  cm−1), to CC, CN and CO stretching 
modes (1066, 1112  cm−1) as well as to CH2 and CH3 
deformations (1294, 1314, 1370, 1423, 1450, 1494  cm−1) 
of the peptide backbone and of the terminal amino acidic 
groups, and to the amide I and amide III modes at 1650–
1675 and 1229 cm−1, respectively (Fig. S7).

Machine learning processing
To manage our dataset collected by SERS analysis, we 
adopted a machine learning approach to differentiate 

and classify the spectral data. We analyzed SERS spec-
tra using the unsupervised t-SNE algorithm to get a 
bi-dimensional view of spectra distribution across all 
patients in the study [40]. Indeed, t-SNE is a widely used 
method in machine learning, allowing the exploration 
of high-dimensional data thanks to comprehensive two-
dimensional maps. Graphically, we found that t-SNE led 
to a clean clustering of the samples belonging to patients 
with a clinical diagnosis of AD mostly separated from 
those of ONC (Fig. 5). Therefore, after SAA running, AD 
and ONC samples were mostly separated in two distinct 
groups at a first glance. However, a few ONC samples 
(ONC#1, ONC#6 and ONC#7, associated to PSP and 
HyC, respectively) clustered with the AD group and vice-
versa (AD#4 and AD#19), denoting a deviation from the 
common trend, which requires further evaluation after 
cross-referencing with clinical data. Remarkably, ONC 
samples clustering in the group of AD (ONC#1, ONC#6, 
ONC#7) showed an Aβ1-42/Aβ1-40 ratio in the range of 
AD pathology (Table  1), which might well justify their 
AD-like behavior in the t-SNE plot. In addition, ONC#1 
and ONC#7 were also able to trigger Aβ1-40 aggregation 
by SAA, while ONC#6 did not. On the other hand, con-
clusions on unexpected responses of AD#4 and AD#19 
cannot be immediately drawn based on the available clin-
ical, neuropsychological, and instrumental data.

Interestingly, all MCI-AD cases (AD#7, AD#13, AD#14 
and AD#20) clustered together with the other AD sam-
ples (Fig.  5). On the opposite, it is worth noting the 
lack of any noticeable differentiation in the case of sam-
ples unprocessed by SAA (Additional file  1: Fig. S8), 

Fig. 4  SERS spectra of SAA products of CSF samples from  16 
AD, 4 MCI-AD and 11 ONC patients. For each patient sample 50 
SERS spectra were acquired, elaborated (as reported in Materials 
and Methods section) and the average spectrum was plotted

Fig. 5  t-SNE plot obtained by applying t-SNE algorithm to SERS 
spectra of SAA products of CSF samples. Circles in red-yellow-green 
color scale refer to SERS spectra acquired from AD patients, 
while blue-violet diamonds point out to ONC patients. Same colored 
group symbol refers to the same patient labeled by a number 
following the list in Table 1
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indicating that the SAA aggregation step is essential for 
sample discrimination.

As a further step in the discrimination of AD patients, 
we set up a predictive model able to assess the presence 
of AD traits based on SERS spectra. Specifically, we per-
formed two separate analyses. In the first one, we aimed 
to differentiate AD patients from all ONC; in the second 
one, we removed non-HyC patients (ONC#1 and ONC#2 
in Table 1, affected by PSP and PD, respectively) from the 
ONC group to compare AD patients with HyC patients 
only. Quantitatively, the classification performances were 
good in both analyses. We reported the mean values 
(over the 5-fold CV) of AUROC, accuracy, sensitivity, and 
specificity in the training and the test sets in Additional 
file  1: Table  S2 and Table  2, respectively. Specifically, in 

both test sets, AUROC values were above 0.8, with sensi-
tivity and specificity greater than 0.8 and 0.7, respectively. 
The goodness of the models obtained in both analyses 
can also be seen in the graphs of the ROC curves (Fig. 6).

The comprehensive set of results shown above supports 
that  our approach can discriminate CSF of AD and MCI-
AD patients from CSF of patients with ONC, with some 
exceptions as occurred in the case of abnormal AD-like 
dosages in the CSF of ONC patients. We did not identify 
specific clinical features (e.g. atypical clinical features), 
which might explain why AD#15, AD#16, and AD#17 
clustered together and separated from the other AD sam-
ples after applying the t-SNE algorithm to the SERS spec-
tra of SAA final products (Fig. 5).

Discussion
The clinical diagnosis of AD is based on clinical assess-
ment as well as instrumental and laboratory findings, 
which include the measurement of several CSF biomark-
ers, including Aβ1-42, Aβ1-40, t-tau, and p-tau. Molecular 
imaging tools can also highlight abnormal Aβ accumula-
tion in the brain [57].

Although the clinical diagnostic criteria for AD enable 
accurate disease identification, they have some limita-
tions, including the lack of early, sensitive and specific 
tests to recognize patients in their early disease stages 

Table 2  Performance of the classifier in the test set for both AD 
patients versus ONC patients and AD versus HyC

The HyC group was a subgroup of ONC. Data are mean (standard deviation) 
over the iterations of the 5-fold cross-validation. AD: Alzheimer’s disease; ONC: 
other neurodegenerative conditions; AUROC: area under the receiver operating 
characteristic curve; HyC: patients with normal pressure hydrocephalus

Dataset AUROC Accuracy Sensitivity Specificity

AD vs ONC 0.85 (0.16) 0.84 (0.12) 0.88 (0.13) 0.77 (0.22)

AD vs HyC 0.84 (0.20) 0.85 (0.13) 0.89 (0.13) 0.81 (0.20)

Fig. 6  Average ROC curve (over the fivefold CV) in the case of AD patients versus ONC patients analysis (blue line, left panel) and in the case of AD 
patients versus HyC patients (green line, right panel)



Page 9 of 12D’Andrea et al. Translational Neurodegeneration           (2023) 12:35 	

using easily accessible tissues. Currently, the analysis of 
CSF biomarkers is of utmost importance for support-
ing an AD diagnosis. However, there is a lack of CSF 
markers that can accurately differentiate AD from other 
dementias and eventually allowing the recognition of 
different disease phenotypes, especially in the early dis-
ease stages. Even with the development of highly sensi-
tive technologies, including the single-molecule array 
and other mass spectrometry techniques which provide 
important opportunities for the development of blood-
based biomarkers for AD, no disease-specific markers 
have been discovered yet [58–63]. It is well accepted that 
Aβ oligomers play a crucial role in AD pathogenesis and 
recent evidence shows that they can circulate in the CSF, 
thus representing specific markers for AD [5, 21, 64]. In 
2014, it was demonstrated that seeding-competent Aβ 
oligomers were detectable by SAA analysis in the CSF 
of patients with a diagnosis of probable AD [21]. In the 
current study, we adapted the SAA technology for the 
analysis of CSF collected from extensively-characterized 
patients with a diagnosis of probable AD, MCI-AD and 
other neurological conditions, including PSP, PD and 
HyC. Compared to the study by Salvadores et al. [21], we 
used monomers of Aβ1-40 peptide as reaction substrate 
since they could be easily handled and their aggregation 
could be efficiently triggered by minute amounts of Aβ1-

42 contained in the brains of patients with AD, in turn 
improving the stability of the system. However, our SAA 
assay was able to identify seeding-competent oligomers 
only in 60% of the total AD and MCI-AD CSF samples 
with an unsatisfactorily specificity of 64%. To improve 
the performance of our analytical approach, we sub-
jected the SAA end-products to SERS analysis and this 
strategy enabled us to discriminate between AD patients 
and ONC, achieving a sensitivity of 88% and a specificity 
of 77%. Interestingly, all samples collected from patients 
diagnosed with MCI-AD at the time of CSF withdrawal, 
clustered together with the group of AD dementia. These 
results suggest that SAA-SERS can potentially recognize 
AD pathology in the early disease stage. Furthermore, 
among the group of AD patients, 3 CSF samples (AD#15, 
AD#16, AD#17) clustered apart from the others, which 
may reflect the phenotypical heterogeneity of the disease. 
Notably, when simply considering the SAA aggregation 
kinetics, the CSF samples from AD#15 and AD#16 were 
able to seed Aβ1-40 while that of AD#17 did not. Thus, we 
did not find any possible link between SAA aggregation 
kinetics and SERS findings.

One of the most interesting findings is that 3 ONC 
(#1, #6, #7, the first affected by PSP, the others by HyC) 
clustered together with the AD by SERS analysis and 
they were characterized by a CSF Aβ1-42/Aβ1-40 ratio 
suggestive of AD pathology. Thus, we might not exclude 

a coincidental AD pathology in these patients. Interest-
ingly, two of these samples (ONC#1 and ONC#7) were 
also capable of efficiently triggering Aβ1-40 aggregation 
by SAA. Therefore, we might not exclude the possibil-
ity of the presence of seeding-competent Aβ oligomers 
in these ONC CSF, which are not associated with AD 
pathology but still capable of seeding Aβ1-40 aggregation. 
These results support the fact that different strains of Aβ 
are responsible for the clinical variability of AD and in 
some cases they might be present in tissues of patients 
with other neurological conditions, thus making the 
clinical diagnosis of AD even more challenging [17, 65, 
66]. Although the number of AD samples included in the 
study was limited due to the criteria for including only 
extensively characterized CSF/patients, these findings 
suggest that seeding-competent Aβ oligomers are detect-
able in the CSF of AD patients and that the integration 
of SAA with SERS makes it possible for clinical diagnosis 
of AD since the earliest disease stages. Considering the 
proof-of-concept nature of this work, it will be impor-
tant to perform additional studies in larger populations 
of AD patients and controls to verify the accuracy of our 
approach. It should be highlighted that our approach can 
recognize the peripheral effects of Aβ pathology occur-
ring in the brain, but this alteration does not only charac-
terize AD and can be observed as a coincidental finding 
in a few other neurodegenerative conditions (e.g. demen-
tia with Lewy bodies and frontotemporal dementia syn-
dromes) [67, 68]. One of the weaknesses of the study was 
that none of the patients underwent autopsy and our 
findings could be compared only with the clinical/instru-
mental assessment of these patients.

Conclusions
In conclusion, the results of our amplification-based 
approach must be well interpreted and contextualized 
in the clinical setting in which it is applied. Herein, we 
describe a proof-of-concept study in which the unique 
features of two techniques are successfully combined to 
improve Aβ-oligomer detection and characterization in 
the CSF of patients with a clinical diagnosis of AD. Our 
findings suggest that this approach might help recognize 
or even predict disease features. Stratifying AD patients, 
especially in their early disease stage, would maximize 
the efficacy of therapeutic treatment, especially con-
sidering that anti-amyloid drugs (e.g., Aducanumab 
and Lecanemab) are believed to be effective only when 
administered at the very early stages of the disease, and 
that their efficacy might depend on disease phenotypes 
[69–72]. Finally, it would be important to perform lon-
gitudinal studies using CSF periodically collected from 
the same patients to evaluate whether our findings corre-
late with disease stage and progression. However, this is 
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practically unfeasible and other biological tissues such as 
blood, urine and olfactory mucosa should be investigated 
for the presence of pathological Aβ oligomers using the 
new SAA-SERS approach.
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