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Abstract

Statechart diagrams provide a graphical notation to model dynamic aspects of system
behaviour within the Unified Modelling Language (UML). In this paper we present a formal
framework for notions related to testing and model based test generation for a behavioural
subset of UML Statecharts (UMLSCs). This framework builds, on one hand, upon formal
testing and conformance theory that has originally been developed in the context of process
algebras and Labeled Transition Systems (LTSs), and, on the other hand, upon previous work
of ours on formal semantics for UMLSCs. The paper covers the development of proper exten-
sional testing preorders and equivalence for UMLSCs. An algorithm for testing equivalence
verification is presented which is based on an intensional characterization of the testing re-
lations. Testing equivalence verification is reduced to bisimulation equivalence verification.
The paper also addresses the issue of conformance testing and presents a formal conformance
relation together with a test case generation algorithm which is proved sound and exhaustive
w.r.t. the conformance relation. We show results also on the formal relationship of the testing
relations with the conformance one. The comprehensive and uniform approach presented in
this paper sets the theoretical basis for UMLSCs testing frameworks and makes them available
for practitioners in industry where the UML has become a de facto standard, in particular
there where it is used for the development of compex concurrent systems.
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1 Introduction

Modern societies strongly depend, for their functioning as well as for the protection of their citizens,
on systems of highly interconnected and interdependent infrastructures, which are increasingly
based on computer systems and software. The complexity of such systems, and those of the near
future, will be higher than that of any artifact which has been built so far. In recent years,
the Unified Modeling Language (UML) [34] has been introduced as a notation for modeling and
reasoning about large and complex systems, and their design, across a wide range of application
domains. Moreover system modeling and analysis techniques, especially those based on formal
methods, are more and more used for enhancing traditional System Engineering techniques for
improving system quality. In particular this holds for testing and model-based formal test case
derivation using formal conformance testing.

*The work presented in the present paper has been partially funded by projects EU-IST IST-2001-32747 (AGILE)
and MIUR/SP4
TCorresponding Author; phone: +39 0503152982



Testing and conformance relations in the context of labeled transition systems (LTSs) have
been thoroughly investigated in the literature. Broadly speaking, conformance testing refers to a
field of theory, methodology and applications for testing that a given implementation of a system
conforms to its abstract specification, where a proper conformance relation is defined using the
formal semantics of the notation(s) at hand. An account of the major results in the area of testing
and conformance relations can be found in [9, 17, 40, 41, 42]. The theory has been developed
mainly in the context of process algebras and input/output transition systems.

In this paper we present a uniform, formal, approach to a testing theory and equivalence as
well as conformance testing and test case generation for UML Statecharts! (UMLSCs, for short),
based on previous work of ours presented in [25, 26, 16].

The UML consists of a number of diagrammatic specification languages, among which UMLSCs,
that are intended for the specification of behavioral aspects of software systems. This diagram-
matic notation differs considerably from process algebraic notations. In UMLSCs, transitions are
labeled by input/output-pairs (i/o-pairs), where the relation between input and output is main-
tained at the level of the single transitions. This is neither the case in traditional testing theories,
like [17], where no distinction is made between input and output, nor for the input/output transi-
tion systems used in standard conformance testing theory [42]. In our approach we use transition
systems labeled over i/o-pairs where a generic transition models a step of the associated state-
chart (step-transition), thus preserving the atomicity of input acquisition and output generation
in a single step. The advantages of sush a semantic model choice are discussed in [16], where the
interested reader is referred to.

In [25] a general testing theory for UMLSCs has been defined using a framework similar to
that proposed in [31], which was in turn inspired by the work of Hennessy for traditional LTSs
[17]. The general approach of the above mentioned theories is based on the well known notions of
MAY and MUST preorders and related equivalences. Intuitively, for systems A and B, A EMAY B
means that if a generic experimenter (i.e. test case) E has a successful test run while testing
A, then E has also a successful test run when testing B. On the other hand, A EMUST
means that if all test runs of a generic experimenter F are successful when testing A, then it
must be the case that all test runs of E are successful when testing B. It can be shown that
L4, coincides with trace inclusion and that AL~ Bimplies BT~ A. Thus, the testing
preorders focus essentially on the observable behavior of systems and are strongly related to their
internal non-determinism and deadlock capabilities; intuitively, if both A EMAY Band A EMUST
hold, then A is “more non-deterministic” than B and can generate more deadlocks than B can,
when tested by an experimenter. Finally, if also the reverse preorders hold, i.e. B EMAY A and

B EMUST A as well, then A and B are testing equivalent since no experimenter can distinguish
them. The main semantic assumptions in [17] are that (i) system interaction is modeled by
action-synchronization rather than input/output exchanges, and (ii) absence of reaction from a
system to a stimulus presented by an experimenter results in a deadlock affecting both the system
and the experimenter. In [31], and later in [25] specifically for UMLSCs, assumption (i) has been
replaced by modeling system interaction as input/output exchanges, but assumption (ii) remained
unchanged. In particular, in [25], absence of reaction of a given state s on a given input i is
represented by the absence of any transition with such an input ¢ from s, in a way which is typical of
the process-algebraic approach. We refer to the resulting semantic model as the “non-stuttering”
one. The testing equivalence verification algorithm has originally been developed on the non-
stuttering semantics and exploits an intensional characterization of testing preorders/equivalence.
More specifically, Functional Acceptance Automata (FAAs), a compact representation of the LTSs
associated to UMLSCs by their semantics, is defined using the intensional characterization of
testing relations. It is shown that testing equivalence of UMLSCs coincides with bisimulation
equivalence of (a variant of) their associated FAAs. The algorithm translates the LTSs associated
to the UMLSCs into FAAs and checks their bisimulation equivalence after proper manipulation of
their labels. It is partially based on results proposed in [4].

1 Although we refer to UML 1.5, the main features of the notation of interest for our work have not changed in
later versions.



In [16] we proposed a formal conformance testing relation and a test case generation algorithm
for input enabled labeled transition systems over i/o-pairs, i.e. LTSs where each state has (at
least) one outgoing transition for each element of the input alphabet of the transition system.
Intuitively, such transition systems cannot refuse any of the specified input events, in the sense
that they cannot deadlock when such events are offered to them by the external environment.
Whenever a machine, in a given state, does not react on a given input, its modeling LTS has a
specific loop-transition from the corresponding state to itself, labeled by that input and a special
“stuttering” output-label.

Input enabled LTSs over i/o-pairs have been used as semantic model, which we call the “stutter-
ing semantics”, for a behavioral subset of UMLSCs [14], which can be seen as system specifications.
Moreover, input enabled LTSs over i/o-pairs are also suitable for modeling implementations of sys-
tems specified by such diagrams. Modeling implementations as input enabled LTSs is common
practice in the context of formal conformance testing —see e.g. [42]. The conformance relation
we defined in [14] is similar to the one of Tretmans [42], with adaptations which take care of our
semantic framework for UMLSCs.

The test case generation algorithm we present is both ezhaustive and sound with respect to the
conformance relation. Exhaustiveness ensures that if an implementation passes all test cases gener-
ated by the algorithm from a given specification, then it conforms to the specification. Conversely,
soundness ensures that if an implementation conforms to a specification, then it passes all test
cases generated by the algorithm from such a specification. The testing equivalence verification
algorithm naturally extends to the case of stuttering semantics.

The two different ways of dealing with absence of reaction, and in particular, the ability for
experimenters to explicitly detect absence of reaction turns out to be of major importance for
determining the relative expressive power of the various semantics. More specifically, we define
MAY and MUST preorders also for the stuttering semantics and we provide a formal comparison
between the Hennessy-like, non-stuttering semantics [25, 17], and the stuttering semantics w.r.t.
testing and conformance ordering relations; we show that if two UMLSCs, say A and B, are in
conformance relation (i.e. A conforms to B) in the stuttering semantics, then they are also in
MAY and in the reverse-MUST relations (ie. AT~ Band BT~ A)in the non-stuttering
semantics, but not vice-versa. This shows that the Hennessy-like, non-stuttering, semantics [25, 17]
is not adequate for reasoning about issues of conformance, since the detection of absence of re-
action, explicitly modeled only in the stuttering semantics, plays a major role when dealing with
conformance. Accordingly, the following results are proved: in the stuttering semantics, the con-
formance relation essentially coincides with the MAY preorder, and is strictly weaker than the
testing preorder. Moreover, in the stuttering semantics, nice substitutivity properties hold; for
instance, testing equivalent implementations conform to the same specifications and implementa-
tions conform to testing equivalent specifications. The above results have been originally presented
in [26] and in the present paper we include all related proofs.

As an additional result our work, we also defined a specific test case language which we use
uniformly in the present paper both for what concerns the testing preorders/equivalence and for
automatic test case generation as well as what concerns conformance.

The present paper is organized as follows. Sect.2 discusses the relationship of the work pre-
sented in the present paper with the literature. In Sect. 3 the major background notions, necessary
for the development of the testing and conformance theories are recalled. Sect. 4 addresses the
testing preorders and the equivalence verification algorithm. Sect. 5 addresses conformance testing
and the test case generation algorithm. Sect. 6 studies the relationships between the two views at
the semantics of UMLSCs presented and used in Sections 4 and 5—namely the “non-stuttering”
and the “stuttering” semantics—and compares the testing and the conformance relations. Tech-
nical details and results on the dynamic semantics of UMLSCs on which our work is based, and
in particular their “core semantics” are given in Appendix A. Appendix B contains the detailed
formal proofs of all results presented in this paper.



2 Related Work

As briefly mentioned in Sect. 1, the basic work on formal theories for testing, mainly in the
context of Process Algebra and LTSs, has been proposed by De Nicola and Hennessy (see e.g.
[9, 17]). Tretmans addressed more the issues related to conformance testing in a formal, LTS-
based, framework [40, 41, 42].

The results addressed in the present paper have been originally proposed in [25, 26, 16], al-
though in isolation, while in the present paper they are dealt with in a uniform framework and
notation. Moreover all proofs, some of which were omitted in the above mentioned papers, are
provided in the present paper.

Our LTSs labeled over i/o-pairs are very similar to Finite State Machines (FSMs), in particular
Mealy Machines. A considerable number of studies in the field of testing FSMs are available in
the literature. An excellent survey can be found in [28]. Many such proposals deal with test case
generation but mainly in the context of deterministic machines, as, e.g., in the seminal work of
Chow [38], or in [11], where practical applicablity of model-based test case generation is addressed.
In some proposals, like the one in [5], further restrictions on the machines are introduced, requiring
e.g. that they must be strongly connected. Non-determinism in the context of conformance testing
FSMs is addressed in [35], where specifications may be non-deterministic, while implementations
are required to be deterministic. Specifications and implementations are required to share the
same input alphabet. Moreover, only so called observable non-deterministic FSMs are considered.
Observable non-deterministic FSMs are FSMs which cannot produce the same output on the same
input while moving to different next states, i.e. if they move from the current state to different
next states they must also produce different outputs. Specification FSMs are not required to be
completely specified, i.e. there can be states which have no outgoing transition for some input
event (the notion of complete specification is the FSMs analogous of input-enabled in the context
of LTSs). A conformance relation on FSMs, called reduction, is given which is very similar to the
conformance relation we use in the present paper, and a finite test suites generation algorithm
is proposed which is complete in the class of all implementation with a given upper bound on
the number of states (completeness in the context of FSMs corresponds to eshaustiveness in the
context of LTSs). In [18] the methods are extended in such a way that adaptive testing is possible,
i.e. information is gathered from the output of an implementation under test that can be used for
guiding future testing. Neither [35] nor [18] adresses the issue of linking the testing methodology
and algorithms they propose to a general framework where the very notion of testing computing
devices, its formalization and the equivalence it induces are addressed, as e.g. in [9, 17]. Moreover,
we think that the restriction to observable FSMs is a rather strong one, if non-deterministic
behaviour is to be addressed. In fact, although for each (completely specified) non-observable
FSM there exists an equivalent observable one [18], such an equivalence takes into account only
the language defined by the machine and not its deadlock properties, which can be of major interest
in specific contexts, possibly different from conformance testing (e.g. non-stuttering semantics of
UMLSCs). Furthermore UMLSCs can easily violate the observability constraint. Restricting
testing theories to deterministic implementations seems also a rather strong limitation, especially
in the context of distributed or concurrent implementations. In such a context, non-determinism
arising from concurrency cannot be avoided and, in fact, non-determinism is a key notion in
the area of formal approaches to system modeling and verification and it is a central notion in
traditional concurrency and testing theories for LTSs [19, 33, 9, 17]. Consequently we use generic
LTSs over i/o-pairs without any limitation on the form of non-determinism they may exhibit.
The restriction to input-enabled LTSs, when we address conformance, adequately models the
UMLSCs stuttering phenomenon. Furthermore, the link we provide to testing equivalence, rather
than language equivalence, and in particular its definition in terms of experimenters, in the sense
of [9, 17], brings in—without renouncing to a solid mathematical framework—a strong intuitive
support which is sometimes missing in the above mentioned works on FSMs testing.

In [21] algorithms for test case generation from UML statecharts are presented which cover
both control flow issues and data flow ones. As far as flow control is concerned, statecharts are
mapped to (extended) FSMs. The semantic framework on which the presented work is based



is a flat one, i.e. the hierarchical structure of UMLSCs is not exploited in the definition of the
operational semantics. Moreover, the model presented does not take transition priorities into
consideration. The relationship with general testing theories for state/transition structures is not
addressed.

Further related work on automatic test generation based on UMLSCs has been developed in
the context of the Agedis project [39, 8]. In that approach a system model, composed of class,
object and statechart diagrams is translated into a model expressed in an intermediate format
suitable as input for model checking and test generation tools. It follows a pragmatic, industrial
approach with a clear focus on the test selection problem, but with less emphasis on UML formal
semantics. In contrast, we follow a ’Semantics-first’ approach (also) with respect to conformance
testing.

Similarly, in [36] emphasis is put primarily on support tool implementation. The semantics of
UMLSC:s is defined by means of the tool umlout—which generates LTSs with inputs and outputs
events, in the style of [42]. In particular, no formal definition of such semantics is given in [36].
We already addressed the issues related to the use of LTSs with separate input and output events
as a model for UMLSCs semantics.

Other approaches to automatic test generation include [37] that describes the use of the CASE
tool AutoFocus. The authors emphasize the need for a formally defined semantics and use state
transition diagrams that resemble a subset of the UML-RT, but it seems there is no formal rela-
tion between their diagrams and the subset of the UML-RT. Automated test generation has been
developed also for classical Harel statechart diagrams, e.g. [3], which semantically differ consider-
ably from UMLSCs (e.g., a different priority schema as well as a different semantics for the input
queues are used).

3 Basic Notions

In this section we summarize the definitions concerning LTSs, with particular reference to LTSs
over input/output-pairs (i/o-pairs, for short), hierarchical automata, experimenters, experimental
systems and their computations, which form the basis for the formal semantics of UMLSCs and
related testing and conformance notions as presented in [15, 25, 26, 16].

The definition of a sound “basic” kernel of a notation, to be extended only after its main features
have been investigated, has already proved to be a valuable and fruitful methodology and is often
standard practice in many fields of concurrency theory, like process-algebra. We refer to e.g. [23]
for a deeper discussion on such “basic-notation-first” and “semantics-first” versus “full-notation-
first” issue. In line with this approach, in the present paper, we consider a subset of UMLSCs,
which includes all the interesting conceptual issues related to concurrency in dynamic behavior—
like sequentialization, non-determinism and parallelism—as well as UMLSCs specific issues—like
state refinement, transition priorities, interlevel/join /fork transitions. We do not consider history,
action and activity states; we restrict events to signals without parameters (actually we do not
interpret events at all); time and change events, object creation and destruction events, and
deferred events are not considered neither are branch transitions; also variables and data are not
allowed so that actions are required to be just (sequences of) events. We also abstract from entry
and exit actions of states. We refer to [27] for object-based extensions of our basic model which
include, among others, object management, e.g. object creation/destruction.

In Sect. 3.1 basic notions related to Labeled Transition Systems are briefly recalled; Hierarchical
Automata are shortly described in Sect. 3.2 while Sect. 3.3 recalls the major notions related to
testing theories.

3.1 Labeled Transition Systems
The notion of Labeled Transition System (LTS) is central in the present paper:

Definition 3.1 (LTS)
A Labeled Transition System (LTS) S is a tuple (S, Sin, L, —) where S is the set of states with



Sin € S being the initial state, L is the set of (transition) labels and — C S x L x S is the
transition relation of the LTS. o
For (s,l,s') € — we write s - s'. The notation s —L; will be a shorthand for 3s'. s - s'. Some
standard definitions are given below 2.

Definition 3.2
For LTS S = (S, 8in, L, =), s,8',8" € S,l€ L,y€ L*, we L™

e The transition relation -1 over finite sequences is defined in the obvious way: (a) s s
, I
and (b) if s> s' and ' — §", then s 25 s";

e By s we mean that there exists an infinite sequence sos152 ... of states in S, with s =
89,w = loly - .., such that for all n > 0 we have s, l—">8n+1

e The language of S is the set of all its finite traces: lan S =4 {y € L* | 3s". s;p —> 5'};
e The labels of S after vy is the set SS v =g {l € L | 35,58' € S. sin 35 As -1 5'}

e The acceptance sets of S after «y is the set ASS v =45 {S s €| 3s. sip 1> s} o

Notice that in the definition of acceptance sets we have treated state s € S of LTS S as a LTS
in turn. The set S, of states of such LTS contains all and only those elements of S which are
reachable from s via — (i.e. S; =4¢ {8’ € S| Iy. s 1> s'}), the initial state being s; the transition
relation of the LTS is — N (Ss x Ss). We will often treat states of LTSs as LTSs in turn, as above.

In the rest of this paper we will use LTSs where the labels in L are i/o-pairs, i.e. L = Ly x Ly,
for some input set L; and output set Ly; we will refer to such LTSs as LTSs over Ly x Ly.

3.2 Hierarchical Automata

As briefly mentioned in Sect. 1 we use hierarchical automata (HAs) [32] as an abstract syntax for
UMLSCs. HAs for UMLSCs have been introduced in [24, 15]. The relevant definitions concerning
HAs, like their dynamic semantics, are recalled in Appendix A. In this section we recall, informally,
only the main notions which are necessary for the understanding of the paper.
Let us consider, as a small example, the UMLSC of Fig.1 and its corresponding HA in Fig. 2.
Roughly speaking, each OR-state of the UMLSC is mapped into a sequential automaton of
the HA while basic states and AND-states are mapped into states of the sequential automaton
corresponding to the OR-state immediately containing them. Moreover, a refinement function
maps each state in the HA corresponding to an AND-state into the set of the sequential automata
corresponding to its component OR-states. In the example OR-states s0, s4, s5 and s7 are mapped
to sequential automata A0, A1, A2 and A3, while state s1 of A0, corresponding to AND-state sl
of the UMLSC, is refined into { A1, A2}. Non-interlevel transitions are represented in the obvious
way: for instance transition t8 of the HA represents the transition from state s8 to state s9 of
the UMLSC. The labels of transitions are collected in Table 1; for example the trigger event of t8,
namely EV t8, is e2 while its associated output event, namely AC t8 is el. An interlevel transition
is represented as a transition ¢ departing from (the HA state corresponding to) its highest source
and pointing to (the HA state corresponding to) its highest target. The set of the other sources,
resp., targets, are recorded in the source restriction - SR t, resp. target determinator T D t, of t.
So, for instance, SR t1 = {s6} means that a necessary condition for ¢1 to be enabled is that the
current state configuration contains not only s1 (the source of t1), but also $6. Similarly, when

2In this paper we will freely use a functional programming like notation where currying will be used in function
application, i.e. f a1 a2... an will be used instead of f(a1,a2,...,as) and function application will be considered
left-associative. Moreover, for set X, the set of finite (resp. infinite) sequences over X will be denoted by X* (resp.
X°); for z € X we let  denote also the sequence in X* consisting of the single element z, while for v,7 € X* we
let the juxtaposition 7' of v with 7 denote their concatenation. Concatenation is extended to infinite sequences
in with 7y’ = when v is infinite, and 7’ defined in the usual way otherwise.



Figure 1: A sample UMLSC
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Figure 2: The HA representing the sample UMLSC of Fig. 1

¢ |1 |2 |3 |4 |5 |t6 | ¢7 |8 | t9 | ¢10 | ¢11
SRt || {s6} |0 0 | {s8} |0 0 0 |0 |0 |0 |{s10}
EVit|rl al el | r2 a2 el flle2]| f2]e2 |e2
ACt || al r2 € | a2 el f1 rl | el | e e2 | e2
TDt || ¢ {s6,s8} | 0 | 0 {s6,59} | {s10} |0 |0 |0 |0 |©

Table 1: Transition Labels for the HA of Fig. 2



firing ¢2 the new state configuration will contain s6 and s8, besides s1. Finally, each transition
has a guard G t, not shown in this example.

Summarizing, basically a HA H = (F, E, p) is composed of a finite (non-empty) collection F
of sequential automata related by a refinement function p which imposes on H the hierarchical
state nesting-structure of the associated statechart: p maps every state s of each automaton in
F into a (possibly empty) set of elements of F' which refine s. The automata in F are finite, i.e.
they have a finite set of states and a finite number of transitions. FE is the finite set of events
labeling the transitions of the elements of F. Inter-level transitions are encoded by means of
proper annotations in transition labels. Global states of H, called state configurations are sets of
states of the automata in F' which respect the tree-like structure imposed by p. We let Confy
denote the set of all configurations of H and Cj, its initial configuration, i.e. the configuration
composed only of initial states of automata in F.

An issue which deserves to be briefly addressed here is the way in which we deal with the so
called input-queue of UMLSCs, i.e. their “external environment”. In the standard definition of
UML statecharts semantics [34], a scheduler is in charge of selecting an event from the input-queue
of an object, feeding it into the associated state-machine, and letting such a machine produce a
step transition. Such a step transition corresponds to the firing of a maximal set of enabled non-
conflicting transitions of the statechart associated to the object, provided that certain transition
priority constraints are not violated. After such transitions are fired and when the execution
of all the actions labeling them is completed, the step itself is completed and the scheduler can
choose another event from a queue and start the next cycle. While in classical statecharts the
external environment is modeled by a set, in the definition of UML statecharts, the nature of
the input-queue of a statechart is not specified; in particular, the management policy of such a
queue is not defined. In our overall approach to UMLSCs semantics definition, we choose not to
fix any particular semantics, such as set, or multi-set or FIFO-queue etc., but to model the input
queue in a policy-independent way, freely using a notion of abstract data types. In the following
we assume that for set D, ©p denotes the class of all structures of a certain kind (like FIFO
queues, or multi-sets, or sets) over D and we assume to have basic operations for manipulating
such structures. In particular, in the present paper, we let Add d D denote the structure obtained
inserting element d in structure D and the predicate (Sel D d D') states that D' is the structure
resulting from selecting d from D; of course, the selection policy depends on the choice for the
particular semantics. Similarly, (Join D D') denotes the structure obtained by merging D with D’.
We assume that if D is the empty structure, denoted by (), then (Sel D d D’) yields FALSE for all
d and D'. We shall often speak of the input queue, or simply queue, by that meaning a structure
in Op, abstracting from the particular choice for the semantics of ©p.

The operational semantics of HA H characterizes the relation (C,&) -5 (C', ') between sta-
tuses and transitions fired during a step. A status is a pair (C,£) where C is the current configu-
ration and £ is the current input queue. (C,&) -5 (C', ') means that a step-transition of H can
be performed in the current status (C, &) by firing the transitions belonging to set £ and reaching
the new status (C',&'). The new configuration (resp. input-queue) of H after the step will be C’
(resp. &'). The definition of the step-transition relation is given below:

Definition 3.3 (Transition Deduction System)
(SelEe&™)

H10:(C{e}) £ (C,E)
(C,&) £ (C', (Join E"EN)

The above definition makes use of the so called Core Semantics, i.e. the relation
AT P:(CE L (8.

The role of the Core Semantics is the characterization of the set £ of transitions to be fired, their
related output-events, £’ and the resulting configuration C’, when HA A is in status (C, &), under
specific constraints P related to transition priorities. All issues of (event) ordering, concurrency,



and non-determinism within single statecharts are dealt with by the Core Semantics. Although
essential for the definition of the formal semantics, all the above issues are concerned with an
intensional view of the statechart behavior, thus they are technically quite orthogonal to the
testing and conformance issues which we address in the present paper and which are intrinsically
extensional, and, therefore, the details of the Core Semantics are given in Appendix A.

3.3 Definitions Related to Testing

In order to model how test cases are performed over systems represented by LTSs over L; x Ly
we first of all need to formalize the notion of experimenters. An ezperimenter is similar to a
transition system where some states—namely the input states, i.e. states in which the experimenter
is supposed to get some output generated by the system to experiment with—are actually total
functions from output labels Ly to output states. Totality guarantees that any output of the
system under test is accepted by the experimenter, in that state. On the basis of the particular
value received, the experimenter will move to the next output state. Output states are those
in which the experimenter can produce specific events to be delivered to the system, or silently
move, via 7, to other (output) states, or produce the special action W by which it reports that the
experiment has been successful. As it clearly appears from the above description, an experimenter
can be non-deterministic. The formal definition of experimenters follows:

Definition 3.4 (Experimenter)

An Experimenter T over Ly x Ly is a tuple (Ty, Vin, Tr, L1, Ly, — ) where Ty is the set of output
states, with v, € Ty being the initial (output) state, Ty C Ly — Ty is the set of input states,
each input state being a total function from Ly to output states. Finally — C (Ty x Ly x Tr) U
(Ty x {T, W} x Ty) is the transition relation, with (L; U Ly) N {r, W} =0. o

We say that an experimenter 7 is finite whenever Ty, T and — are finite sets.

It is worth pointing out here that, although for generality in the above definition an input state
is a function in Ly — Ty, for any practical purposes it is sufficient to consider finite functions
[25].

Experimentation of a LTS over Ly x Ly against an experimenter 7 is modeled by the Experi-
mental System they characterize:

Definition 3.5 (Experimental System)

For LTS S = (S, 8in, L1 X Ly, —) and experimenter T = (Ty,vin,Tr, L1, Ly, —) , the experi-
mental system < T,S > is the transition system (Ty X S, (Vin, Sin),~). The transition relation
~C (Ty x S) x (Ty x S) is the smallest relation induced by the deduction system below where
s,8' €8, v,v'" €Ty, v € Tt and for ((v,s),(V',s")) €~ we write v || s~ V' || §'

vy, sy o (Lu) =0 v
oTs~ v s o~ v s
The Success set of the experimental system is the set {v € Ty | W' € Ty. v L0’} o

Notice that in the first rule in the above definition function ¢ is applied to u to obtain the next
(output) state of v, namely v'. The effect of silent moves of experimenters is defined by the second
rule. Single experiments are modeled by computations:

Definition 3.6 (Computations)
A computation of experimental system < T,S > is a sequence of the form:

vo || S0~ v || st~ e || sa~o ok || S~ L

which is maximal, i.e. either it is infinite or it is finite with terminal element vy, || s, which has
the property that vy, || s, ~ V' || 8" for no pair v', s'. vy and sy are the initial states vy, and sy,

of T and S.

A computation is successful iff v, € Success for some k > 0, otherwise it is unsuccessful. )



Figure 3: Two language-equivalent but not testing equivalent LTSs

We let Comp(7,S) denote the set of all computations of < 7,8 >. From the definition of
experimental system we know that every computation n € Comp(7,S) gives rise to a transition
sin —1» over finite or infinite sequence v on the side of the LTS. In this case, we say that n runs
over .

Definition 3.7 (Testing Equivalence)
For experimental system < T,S > we let the set Result(T,S) C {T, L} be defined as follows:

T € Result(T,S) iff Comp(T,S) contains a successful computation
1 € Result(T,S) iff Comp(T,S) contains an unsuccessful computation

We say S and S' are testing equivalent, written S ~ S’ iff for all experimenters T Result(7T,S) =
Result(7,S") o

Intuitively, the above definition establishes that we can consider two systems S and S’ equiv-
alent if and only if no experimenter 7 can distinguish them on the basis of the fact that its com-
putations have reported success or not. This notion completely captures the idea of equivalence
based on the externally observable behavior of the two systems. Notice that testing equivalence
for LTSs is strictly stronger than language equivalence for FSMs, in the sense that, as we shall see
in Sect. 4, testing equivalent LTSs characterize the same language, while the converse does not
hold. This can be easily seen using the exammple of Fig. 3. We leave it to the reader to prove
that the two LTSs in the figure are not testing equivalent but they have the same language.

In the rest of the paper it will often be useful to define specific experimenters. To that purpose
we define below a language of experimenter specifications. Let IE and OS be countable sets such
that (JEUOS) N {r,W} = —we call IE the set of events and OS the set of possible outputs.
The abstract syntax of output experimenter expressions U—resp. input experimenter expressions
Z—of the language is given below, where e € I E is an event, a € {7, W}, U C OS, P (resp. z) is
an experimenter (resp. input) variable, X is a parameter of type ©D, g is a boolean expression
of the form “ z = u” or “x # u”, for u € OS, or “z & X” for X C OS. The notion of free (input)
variable is the same as in lambda-calculus. Brackets as well as proper indentation will be used
whenever necessary.

Uz=b|legT|aU|g=>U|U+U| P(X)

Ta=Xz:UU

An experimenter specification consists of a pair (U, U) where U is an output experimenter expres-
sion and U C OS. We will require that no input variable occurs free in &/ and that a unique

experimenter definition P(X) 2 U’ is associated with any experimenter variable P occurring in
U in the context where the experimenter specification is used. Moreover, all input experimenter
sub-expressions of ¢ must use the same set U in their defining lambda-expression.

Let us briefly describe the semantics of the language of experimenter specifications. The
experimenter ¢ performs no action. Expression e;Z offers event e and then behaves like Z which
is an input experimenter expression, namely a function. Such a function will be applied to the
output produced by the system to experiment with in an experimental system (see Def.3.5). The
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Figure 4: Experimenter Expressions Operational Semantics

specific (output) state resulting from the application is obtained according to the semantics of
input experimenter expressions, as given by the following rewrite rule for function application:

Az:UU) u=Uu/z]

where U[u/z] denotes U where all free occurrences of z are simultaneously replaced by u. Notice
that the above rule is a simplification of S-reduction of the lambda-calculus since u is just an
element of OS: it cannot contain variables or lambda-expressions. Expression a;U produces a
and then behaves like ¢/. Notice that a can be either 7 or the success action W. In order for
a guarded action prefix to proceed it is necessary that the guard evaluates to true. The choice

expression U1 + U= behaves as Uy or Us. Finally, if P = U is the definition for P, P behaves like U.
If the optional parameter X is used in the definition of P, then P(D) behaves as U[D/X] where
again we use substitution. In the following, we will assume D be an element of L, or L*, 2%, or
Op, the particular case being clear from the context. Finally, we will often use an extended form
of parametrized experimenter P(X}, ..., X}) with the obvious meaning,.

The operational semantics of experimenter specifications is given in a similar way as for process
algebra, by means of the Structural Operational Semantics rules of Fig. 4 where p € IEU {7, W}
and O stands both for output and for input experimenter expressions.

In order to formally derive the experimenter denoted by an experimenter specification we first
need a couple of auxiliary definitions where by F U -+ O we mean that U £+ O can be deduced
using the rules of Fig. 4.

Definition 3.8 (Derivatives)
The derivatives of experimenter specification (U,U) is the smallest set Dy, vy of experimenter
expressions which satisfies the following three conditions:

1. U S ’D(u’ U),"
2. if output experimenter expression U' is in Dy, vy and = U' £ O then also O is in Dy, v);
8. if input experimenter expression I is in Dy, vy then (Z u) is in Dy, vy for allu € U. )

Definition 3.9 (Labels)
The labels of experimenter specification (U,U), Lab(ld) is defined recursively as follows:
Lab(8) =a5 0
Lab(e;T) =4 {e}
Lab(a;U) =45 {a} U Lab(Uf)
Lab(g = U) =47 Lab(U)
Lab(Lﬁ + UQ) =df Lab(Z,{l) U Lab(Uz)
(P

Lab(P (D)) =4 Lab(U[D/X]) where P(X) 2 U is the definition for P o

We can now formally define the experimenter associated with experimenter specification (U, U):

11



Definition 3.10

The experimenter associated with experimenter specification (U,U) is the experimenter over L =
Lab(U) xU with output states the output experimenter expressions in Dw, vy, the initial state being
U, input states the input experimenter expressions in Dy, vy and transition relation {({U', u, O) |
U',0 e Dy, vy, U -+ 0} o

In the sequel we will omit set U in experimenter specification ({,U) when U is clear from the
context. Moreover we will identify (I/,U) with the experimenter it denotes. The following is an
example of a very simple experimenter over I x U, where I = {r1} and U = {{a1},{e1}, {r2}}
which starts by sending r; to the system to experiment with and then, if the latter responds with
{a1} it reports success, otherwise it stops without reporting success:

ri; AU z={a1} = 7; W; 6
+
z ¢ {{a}}t =9

4 Testing Relations

In this section we develop a general testing theory for UMLSCs, originally proposed in [25], using
a framework similar to that proposed in [31], which was in turn inspired by the work of Hennessy
for traditional LTSs [17]. The general approach is based on the well known notions of MAY and
MUST preorders and related equivalences. The main semantic assumptions in [17] are that (i)
system interaction is modeled by action-synchronization rather than input/output exchanges, and
(ii) absence of reaction from a system to a stimulus presented by an experimenter results in a
deadlock affecting both the system and the experimenter. In [31], and later in [25] specifically
for UMLSCs, assumption (i) has been replaced by modeling system interaction as input/output
exchanges, but assumption (ii) remains unchanged. In the following we shall first recall the
semantic interpretation of HAs as proposed in [25], which we call the non-stuttering semantics
for HAs, for reasons which will be clear in the sequel, and we show its formal relation with the
original semantics for HAs recalled in Sect. 3.2. In the rest of this section we will develop the
above mentioned testing theory based on the non-stuttering semantics.

The non-stuttering semantics is recalled in Sect. 4.1 while its relationship with the original
semantics of UMLSCs proposed in [15] is addressed in Sect. 4.2. In Sect. 4.3 relevant testing
preorders are given which bring to the notion of testing equivalence. In Sect.4.4 an alternative,
intensional, characterization of such preorders/equivalence is addressed which serves as a link
to a finite representation for (the LTSs denoted by) UMLSCs used for automatic verification in
Sect. 4.6.

4.1 Non-stuttering Semantics

The non-stuttering semantics associates a LTS to each HA.

Definition 4.1 (Non-stuttering semantics)

The non-stuttering semantics of an HA H = (F,E,p) is the LTS over E x O LTS(H) =4
(Confy,Cin, — ) where (i) Confy is the set of configurations, (i) Ci, € Confy is the initial
configuration, (ii) — C Confy x (E x Of) x Confy is the step-transition relation defined below.
o]

We write C —£5¢" for C,(e,E),C") € —. Any such transition denotes the result of firing a
maximal set of non-conflicting transitions of the sequential automata of H which respect priorities
when the state machine associated to H is given event e as an input. £ is the collection of output
events generated by the transition which have been fired. Relation — is the smallest relation
which satisfies the rule below:

12



Figure 5: LTS(H), for H of Fig. 2

Definition 4.2 (Non-stuttering Transition Deduction System)

e€E, L#0, H10: (C,{e}) £ (C,E)
<&

[e]

Also in the above rule we make use of the Core Semantics A + P :: (C,€) £ (C',£"). Tt is worth
pointing out that the LTS associated by non-stuttering semantics to a generic HA is finite. This
nice property can be easily understood by considering that each HA has a finite set of events, a
finite set of configurations and that the total set of transitions is finite, so that there is a finite
number of subsets of transitions, i.e. there is a finite number of possible step-transitions. For HA
H as in Fig. 2, the corresponding LTS(H) is shown in Fig.5%.

4.2 Correctness

The original operational semantics proposed in [24] was proved correct w.r.t. the official UML
Statechart Diagrams semantics, although the latter are defined only informally. The correctness
theorem in [24] essentially states that the set of transitions fired during an arbitrary step is a
mazimal set £ such that (a) all transitions in £ are enabled, (b) they are non-conflicting and
(¢) there is no transition outside £ which is enabled in the current status and which has higher
priority than a transition in L.

In this section we shall provide a correctness result for the non-stuttering semantics, showing
its formal relation with the original semantics, in the form presented in [15] and recalled in Sect. 3.2
(Def. 3.3), which differs from that presented in [24] only in that each step-transition is explicitly
labeled by set £, which is omitted in [24].

In order to present the correctness result it is convenient to model the UML input-queue as a
specific experimenter, namely the experimenter which simulates the data structure used for the
queue. The experimenter we are interested in is Queue(&y) where & is the initial content of the
input-queue and Queue is recursively defined, as shown in Fig. 6.

3For the sake of simplicity, in the examples in the present paper, the events generated as outputs are collected
as sets, i.e. O is chosen to be 2¥; moreover, a singleton set {e} is denoted by the element e it contains, when this
cannot cause confusion.
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Intuitively, for structure £ in Og, Queue(E) will produce a transition if and only if there exist
event e and structure &' such that (Sel £ e £') holds, i.e. £ is not empty. Moreover, f is bound
to e and F' is bound to £'. The expression (f; AF".Queue(join F' F")) is an action prefiz which
performs the event (action) currently bound to f, say e, and then behaves like the abstraction
AF" . Queue(join F' F'"). The latter is a function which, when applied to a structure, say £", will
behave again like a queue but with a different argument, i.e. Queue(join &' E").

The following proposition, proved in Appendix B, establishes the correctness of the new se-
mantics definition. The transition relation in the operational semantics given in [15] is denoted
by 4.

Proposition 4.1
For HA H = (F,E, p),C,C' € Confy,E,E',E" € OF, the following holds: L. L #D A (C,E) £,
(C', (join E" ")) if and only if (Queue(E) || C) ~ (Queue(join E" E') || C") O

So the two semantic models generate the same step-transitions, except for stuttering. We
remind here that a HA H stutters on input event e when there is no transition of any sequential
automaton of H enabled by e in the current status. In other words, stuttering happens when the
machine does not accept e in the current state. This refusal is modeled in the new semantics by
not generating a step-transition at all. This last behavior is in line with traditional testing theories
as developed e.g. in [17].

4.3 Testing Preorders

Below we define preorders which will allow us to “order” non-deterministic i/o-pair-LTSs, like
HAs, according to their “amount of non-determinism” and to recollect testing equivalence as the
equivalence induced by such preorders.

Definition 4.3 (Testing Preorders)
For 8,8 i/o-pair LTSs we let

i) ST S iff for every T: if T € Result(T,S) then T € Result(7,S")
i) ST S' iff for every T: if L & Result(T,S) then L ¢ Result(T,S’)
i) SE S iff (ST SHYANSE S o

~YMUST
~NMAY ~MUST
SoS EMAY S’ means that if a generic experimenter 7 may report success when experimenting with
S it must be the case that T may report success also when experimenting with S’. Symmetrically,
St &' means that if a generic experimenter 7" must report success when experimenting with
S it must be the case that 7 must report success also when experimenting with $’. In other
words if we know that S may pass a generic test 7 and S EM S’ then we know also that S’
may pass the test, where “may pass the test” is the informal equlvalent of T € Result(T,S), with
the intuitive meaning that there may be a successful computation starting from the initial state
of the experimental system < 7,8 >. Similarly if we know that S must pass a generic test T
and S EM S’ then we know also that S’ must pass the test, where “must pass the test” is the
informal equlvalent of L ¢ Result(7,S), with the intuitive meaning that all computations starting
from the initial state of the experimental system < 7,8 > must be successful.
We let = denote the equivalence induced by the testing preorders, i.e. S = &' iff ST S’ and
S LS. The proposition below easily follows from the relevant definitions and allows to identify
~ with =

Queue(F : OF) =
(Sel F f F') = (f; A\F".Queue(Join F' F"))

Figure 6: Definition of Queue(F)
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Proposition 4.2
S~Siff S8 <o

Finally, we let E iy E& E denote the relativized preorders. For example S EMUST S
iff for every T € N 1 ¢ Result(T S) = 1 & Result(7,8").

4.4 Alternative characterization of testing preorders

The characterization of testing preoprders by means of the concepts of MAY and MUST is intu-
itively appealing, but is problematic when it comes to automatic verification of testing equivalence
of LTSs. Such an aoutomatic verification can be performed based on so called Acceptance Au-
tomata, which are a variant of Acceptance Trees originally proposed by Hennessy. In order to be
able to show the correspondence between testing equivalence defined in terms of the MAY and
MUST preorders and the Acceptance Automata—which will be introduced in the next section—we
give an intermediate alternative characterization of testing preorders in this section. First we
introduce two auxiliary notions; set closure and mazimal functional subsets.

Definition 4.4 (Set Closure)
For X a finite set of finite subsets of L, the closure of X, ¢ X is the smallest set such that:

i) XCcX
i) if x1,22 € ¢ X then also x1 Uy € c X
ii1) if x1,22 € ¢ X and 1 C x C x5 then also x € ¢ X. o

The following definition is necessary for identifying the functional subsets of subsets of L whenever
L is a set of i/o-pairs. Functional sets, which are in fact (finite) functions, are used for modeling
single steps of input/output behavior.

Definition 4.5 (mfs)
For X finite set of finite subsets of L we let

mfs X =g U (mf z)

rzeX
where
mf x =4 {y € (funcz) |2y’ € (funcz).y Cy'} and
funcz =g {y C x| VY(i1,u1), (i2,u2) € y. iy =i2 = vy = us} )

For finite set X of finite subsets of L, mfs X generates the mazimal functional subsets of the
elements of X, by applying function mf to each of them. Function mf splits each set into
its maximal functional subsets. Each functional set is indeed a function from input-events to
output-events. As we will see, intuitively, every such a set represents an instance of external
non-determinism relative to a single step of the machine. Similarly, but in a complementary
way, internal non-determinism relative to a single step of the machine is coded by means of
having different functional sets as elements of the same set associated to such a step. Notice that
func® = {0} =mf 0 and mfs {0} = {0}. The following definitions introduce a preorder on finite
LTSs which will be used for defining the intermediate equivalence = and which will be proved
to coincide with the testing preorder.

Definition 4.6
For finite LTSs S,S' over L =Ly x Ly

i) S <<y S iff (lan8S) C (lan 8")
i) S <<mywsr S iff Vy € L*. mfs(c (ASS' 7)) cC mfs(c (ASS 7))
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i) S << S iff S <<pay S'AS <<wmpsr S
where X CCY iff Vie X.JyeY.yCx o

It is easy to show that << is indeed a preorder so that it induces the following equivalence:

Definition 4.7
For finite LTSs S,S' over LS ~ 8" iff S << S&'AS' << S8 o

The following theorem establishes the first correspondence result, namely the correspondence
between the testing preorders (Def. 4.3) and the preorders defined in Def. 4.6:

Theorem 4.1
For dll finite LTSs S = (S, 84n, L, =) §' = (5", 8t,.,L, =) over L = Ly x Ly the following holds:

a) S& S'"iff S <<pay &

~NMAY
b) ST S"iff S <<mvsr S’

~;MUST
¢) SLS iff S << & o
As a corollary we have the link between testing equivalence and the relation = defined on LTSs.

Corollary 4.1
For finite LTSs S,S8' over L=L; x Ly, S< S8 iff S ~ & O

At this point we can already say something about the exact nature of this notion of testing
LTSs over L. Essentially it has to do with internal non-determinism, as it can be detected by means
of “black-box” testing. Intuitively S & &' if they have the same set of traces but in some sense
S is “more non-deterministic”, or equivalently, “more chaotic” then S’. In other words, although
the sequences of input/output interactions of both systems are the same, an experimenter 7 may
experience failures with § “more often” than with &’. In this sense, $ has a“higher degree of
non-determinism” than S'.

4.5 Finite Acceptance Automata

In this section we introduce the model of Finite Acceptance Automata (FAAs), equipped with a
preorder <p,, and the equivalence relation =g,, it induces. FAAs are a natural extension
of Finite Acceptance Trees to the case of i/o-pairs LTS. Finite Acceptance Trees have been orig-
inally introduced by Hennessy [17]; they have been adapted to the case of systems with explicit
input/output behavior in [31]. Both in [17] and [31] Acceptance Trees form a semantic domain
within a denotational approach. So, Acceptance Trees modeling systems with traces of unlimited
length—even finite state systems—are characterized by infinite fixpoints. In this paper, instead,
we are using an operational—rather than denotational—approach and we shall use FA As for mod-
eling the behavior of finite state systems with i/o-labels, including those with traces of unlimited
length. In other words, our acceptance structures are generic finite graphs and not simply finite
trees or directed acyclic graphs.

The reason why we introduce FAAs is fairly simple: they can easily be mapped into finite
deterministic LTSs on which strong bisimulation equivalence can be automatically checked, and
such a mapping preserves the equivalence =p,, on FAAs. On the other hand, we can map
finite LTSs over i/o-pairs into FAAs in such a way that testing equivalence is preserved, i.e. two
finite LTSs over i/o-pairs are testing equivalent if and only if their images via such a mapping are
equivalent according to =z,, . In conclusion, FAAs represent an effective model for performing
automatic verification of testing equivalence over UMLSDs.

Before defining the FAA model, we need to define the notion of saturated sets.

Definition 4.8 (Saturated sets)
For finite subset S of L, an S-set A is a finite, non-empty set of subsets of L which satisfies:
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For S finite LTS over L = L; x Ly, let (Teaa S) be the FAA computed as follows:

1. Apply the Aho-Ullman ”Subset Construction” Algorithm ([1], pag. 93) to S, getting
deterministic automaton d = (D, di,, — 4) over L;

2. Let (Teaa S) be the FAA o = (A4, Qin, — o, ASraa @) defined as follows:

(a) A
(b) @in = din
(c) For all o/,a" € A, (i,u) € L, o/ <245 , o iff o/ -5 0"
(d) For all v € L* let

e ASunay=mfs(c (ASS~w)),if y€lan S

e ASpiaay=10,ify&lanS

Figure 7: The algorithm for mapping Tgaa

i)VXeA. XCS
i) Vee S.AX e Az e X
i) VX1,Xo0€e A . X3 UXo€ A
w) VX1, X0 e AX X1 CXCXo=>XeA
A finite set A of finite subsets of L is saturated if it is an S-set for some S. o

Finite Acceptance Automata (FAAs) are defined below

Definition 4.9 (FAA)

A finite acceptance automaton « over L is a deterministic finite LTS over L, where also nodes are
labeled*. The node of o identified by sequence y € lan o is labeled by (mfs A) for some (S a v)-set
A. Such a label will be denoted by ASgan @ v, and is assumed equal to ) whenever v & lana. o

It is easy to see that the relation on FAA defined below is a preorder ( but not a partial order).

Definition 4.10 ( <p,, and =;,,)
For FAAs a,a' over L, a <p,, o iff

e lana = land', and
o Vv € lana. ASpan &' v C ASpan a7y

The equivalence induced by <pa, 1is denoted by =paa . o

Intuitively, @ <p,. o' if they have the same set of traces but a represents “more non-
deterministic” systems. Such non-determinism is coded in the acceptance sets. In order to compute
the FAA (Teaa S) associated to any S, finite LTS over L, we proceed in a similar way as in [4].
The algorithm is defined in Fig.7. Fig.9 (a) shows the result of applying mapping Teaa to the LTS
of Fig.8 (b) which is the semantics of the UMLSD of Fig.8 (a).

The following proposition easily derives from the fact that, by construction, Tpaa S is deter-
ministic, finite and its language is the same as lan S; moreover, for the node of Tgaa S identified
by sequence v, ¢ (AS S ) is an (S S ¥)-set as it can easily be seen from the definitions of ¢ and
AS.

4All definitions for LTS are thus valid also for FAAs.
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@ (b)

Figure 8: A simple UMLSD (a) and its LTS (b)

(a0} (%{{(aX)}})©/
alx (ax){{(by)} {(b:2}})
{ by} { (b2}
@ (N EOHID |\ (b2} 1)
o . (@)@}
{{(c,t)},{}} @ dv (COHEM - @wtt@om
o (v} {3}
(10) div
{dw}}
@ (b)

Figure 9: FAA (a) and related deterministic LTS (b) associated to the LTS of Fig.8
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Proposition 4.3
For finite LTS S over L = Ly X Ly, Teaa S is a FAA over L. O

We are now ready for giving the second correspondence theorem

Theorem 4.2
For all finite LTSs S, 8" over L = Ly x Ly the following holds: S << &' iff (Teaa S) <paa
(Tran S') o

As a corollary of Theorem 4.2 we have the link between the relation =~ on LTSs and the
equivalence of FAAs.

Corollary 4.2
For finite LTSs S,S' over L, S = S' iff (Traa S) =ran (Tran S'). O

4.6 Testing Equivalence Verification

In this section we show how the results given in the previous section can be used for effective
verification of testing equivalence over UMLSDs. We start by stating the final correspondence
result, which easily follows from Corollaries 4.1 and 4.2.

Corollary 4.3
For all finite LTSs S, 8" over L, S < S' iff (Teaa S) =run (TeanS') )

The above result allows us to reduce the problem of checking whether two UMLSDs S and S’ are
testing equivalent to the problem of checking whether (Teaa (LTS(H))) =raa (Teaa (LTS(H')))
where H (resp. H') is the HA representing S (resp. S’). In the remainder of the paper we show
that checking @ =p.4 o, for FAAs a, o, can be reduced in turn to checking (strong) bisimulation
equivalence. Below we recall the definition of bisimulation equivalence [33].

Definition 4.11
A binary relation R on states of LTSs over label set L is a (strong) bisimulation iff for alll € L
and s1, 82 with s1 R s

o whenever s; - s for some s\ also sy -1 sb for some sl such that s} R sb, and

e whenever s; -1 sb, for some sb also s; 15 s} for some s such that s} R sb o

We say that s1 and so are (strong) bisimulation equivalent, written s1 ~p;s S2 in this paper, iff
there exists a bisimulation R such that s; R ss.

Two LTSs S and &' are bisimulation equivalent, written S ~%;; S', if and only if their initial
states are so. It is important to point out that there are tools available nowadays for automatic
verification of bisimulation equivalence for finite LTSs (see, e.g. [13]). In order to reduce our
problem to bisimulation equivalence checking we first build the LTS Up « for FAA « according
to the algorithm shown in Fig.10. The algorithm simply moves node labels up to the transitions
pointing to such nodes, introducing a new node and a new transition for the label of the initial
node. Fig.9 (b) shows the result of applying the algorithm to the FAA of Fig.9 (a). It is easy to
see that the two lemmas below directly follow from the definitions of Up and =74, .

Lemma 4.1

For FAA « over L, (Up ) is a deterministic, finite LTS. o

Lemma 4.2
For FAAs a and o' over L the following holds: o =paa ' iff lan (Up @) = lan (Up &) o

But then, since strong bisimulation equivalence coincides with trace equivalence for deterministic
LTSs (see e.g. [22]), from the above two lemmas we can easily prove the following
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For FAA over L o = (A, &in, = o, ASraa @), let Up a be the finite LTS over L x 22"
d = (D, di, — 4) defined as follows:

1. D=AU{din}, with din ¢ A
2. — 4 is the smallest relation over D x (L x 22L) x D such that the following holds:

o din % qain with v = (/,ASpan @ €) and \/ € L

e Foralld',d" € D,z € L and v € L* such that v identifies d’ in « and yx identifies
d'in a, d % 4d" iff d 25 ,d" and v = (2, ASgaa @ V).

Figure 10: The algorithm for mapping Up

Figure 11: A UMLSD testing equivalent to that of Fig.8.

Theorem 4.3
For all finite LTSs S, S’ over L = Lyx Ly the following holds: S < S if and only if Up(Teaa S) ~pis
Up( TFAA S') o

We leave it to the reader to verify that the UMLSD of Fig.11 is testing equivalent® to that of Fig.8
(a).

5 Conformance Testing

Broadly speaking, conformance testing refers to a field of theory, methodology and applications
for testing that a given implementation of a system conforms to its abstract specification, where
a proper conformance relation is defined using the formal semantics of the notation(s) at hand.
An account of the major results in the area of conformance relations and conformance testing can
be found in [42]. The theory has been developed mainly in the context of process algebras and
input /output LTSs. Input/output LTSs® [29] are LTSs where the set of labels is partitioned into
two separate sets, i.e. input labels and output ones. Moreover, in the context of conformance
testing theories, such LTSs are required to be input enabled, i.e. for each label of the input set, in

5 Actually, the associated deterministic LTSs turn out to be not only bisimulation equivalent, but also isomorphic.
Obviously this does not need to be the case in general.
6Strictly speaking ” Automata”.
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each state of the LTS there must be at least one outgoing transition labeled by such a label. Finally,
the situation in which, in a given state, an LTS does not generate any output at all is modeled by
an outgoing transition labeled by a special label denoting “quiescence”. Both specifications and
implementations are modeled by input enabled LTSs with quiescence.

Under the above modeling assumptions, one of the most successful formal conformance relations
is the ioco relation proposed by Tretmans in the above mentioned work [42]. Informally, for
specification § and implementation S’, §' ioco S means that S’ can never produce an output
which could not be produced by S “in the same situation”, i.e. after the same sequence of steps.

In the previous section we have developed a model of system behavior based on the assumption
that absence of reaction by a system to a stimulus presented by an experimenter results in a
deadlock affecting both the system and the experimenter. In this section, instead, we define a
slightly richer semantics for HAs, which we call the stuttering semantics, where absence of reaction
is represented explicitly in the associated LTSs, in a way which is similar to quiescence and which
naturally represents the notion of stuttering in the context of UMLSCs. A HA H (or equivalently
the UMLSC it represents) experiences a stuttering step on input event e whenever, in the current
configuration C mo transition is enabled on such input e. The input event e is consumed anyway
but no state change occurs in H”. As we will see, in the stuttering semantics when stuttering
occurs, the output component of the label of the involved step-transition is the special symbol X.
Thus, in the remainder of this paper we will focus on input enabled LTSs over L; X Ly where X,
with ¥ ¢ L;, may belong to L. Moreover we will let *0 5 denote O U {Z}.

In Sect. 5.1 the stuttering semantics is given and its relation with the original semantics of
UMLSCs proposed in [15] is addressed in Sect. 5.2. In Sect. 5.3, the Conformance Relation is
introduced, on which the test case generation algorithm (Sect. 5.4) is based.

Before proceeding with the definition of the stuttering semantics we need some further auxiliary
definitions related to the Conformance Relation and to test case generation:

Definition 5.1
For LTS S = (S, $in, L, =), with L=L; x Ly,i€ Lf,s€ S, ZCS,veL*, F CL*:

o the states of s after v is the set (s aftery) =4 {s' | s — s'}.

the output of Z on i is the set (out Z i) =g5 J,c,{v € Ly | s (z;u;}’ we let (OUT s v i) be
the set (out (s after v) i); moreover, we will often denote (OUT s;y, v i) by (OUT S ~ i);

the traces of F after vy is the set (F after” v) =4 {7 | vv' € F};

the output of F on i is the set (out* Fi) =4 {u € Ly | Fv. (i,u)y € F}; we let (OUT" F v i)
be the set (out* (F after” ~y) i)

S is input enabled iff Vs € S;i € Ly. Ju € Ly. s "—”2 o

5.1 Stuttering Semantics

Definition 5.2

The stuttering semantics of an HA H = (F,E,p) is the LTS over E x *Og, *LTS(H) =4
(Confy,Cin, — =) where (i) Confy is the set of configurations, (i) Ciy € Confy is the initial
configuration, (ii) — s C Confg x (E x YOf) x Confy is the step-transition relation defined
below. o

As usual, we write C L&, o' for C,(e,€),C") e —%.

"In fact in UML the notion of deferred events is introduced in order not to loose events as a consequence of
stuttering. In our work we do not take deferred events into consideration.
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Figure 12: L TS(H), for H of Fig. 2

Definition 5.3 (Stuttering Transition Deduction System)

e€E, LAD, HT0:(C,{e})Ls5(C,E)
c s s

(1)

ecE;HT0:(C{e}) L s(C,E)
¢ L2 5!

(2)

Fig. 12 shows *LTS(H), for H as in Fig. 2. For simplicity, several stuttering loops from/to the
same state, labeled by i1 /%, . ..,i;/% have been collapsed to a single loop labeled by 41, . ..,4; /2.

The following lemma shows some interesting features of the stuttering semantics:

Lemma 5.1
For HA H = (F,E,p), all C € Confy, and e € E the following holds:

i) Ju € *Op,C' € Confy.C L/;lz C', i.e. *LTS(H) is input enabled over E x 0.
i) C e—/i:g C' for some C' € Confy implies C =C'.

iii) C <55 C implies 7€ € O5,C' € Confry. ¢ <L ¢,

Finally, it is easy to see that also the stuttering semantics associates a finite LTS to each HA.
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5.2 Correctness

As in the case of the non-stuttering semantics, also for the stuttering semantics we show the formal
link to and the original semantics, presented in [15], and recalled in Sect. 3.2.

We recursively define a specific experimenter which behaves like a queue and is the same as
that used in Sect. 4.2, except that it has to deal also with X. In particular, when receiving ¥ from
the HA, it disregards it, as it can be seen in Fig. 13.

The following proposition establishes the correctness of the stuttering semantics definition.
The transition relation in the operational semantics given in [15] is denoted by —£s.

Proposition 5.1
For hierarchical automaton H = (F,E,p),C,C' € Confy, &, &', £" € Og, the following holds:

(EQueue(€) || C) ~ (EQueue(Join E" E') || C") iff L. (C,E) N (C', (Join E" E") O

5.3 Conformance Relation

In the context of the present work, we assume that a specification of system behavior is given in
the form of a UMLSC H (in practice we use its HAs representation) and we make reference mainly
to the LTS associated to H by the stuttering semantics, i.e. *LTS(H), over L = L x Ly. An
implementation for H will be modeled by an input-enabled LTS over L' = L} x L; (with L} not
necessarily equal to Ly). Under the above assumptions, for simplicity, we often speak of specifi-
cations over L and implementations over L'. We remind the reader that ¥ ¢ L; U L} is assumed
while ¥ € Ly (resp. ¥ € Lj;) represents stuttering of the specification (resp. implementation).
Notice that we do not require that input-enabled LTSs modeling implementations are necessarily
generated from UMLSCs. Any such a model can be obtained by any means, obviously including,
but not limited to the case in which the implementation is itself a UMLSC. The above assumptions
are quite standard in the context of formal conformance theory and its application [41].

In the approach to conformance testing introduced by Tretmans, [42], inputs and outputs are
“irregularly” scattered throughout the LTS, and a “quiescence” transition from a state means
that in this particular state no output is produced by the system. We remark that, in such an
approach, input is not (always) required in order to produce some output. In our setting, there is a
clear causal relation between input and related output. They both appear in the same transition.
A stuttering transition in a given state—actually a stuttering loop—is labeled by (i,X), which
means that in that state the system produces no output, or better, does not react at all, on input
i.

On the basis of the above considerations, with particular reference to the role played by the
input events of transitions, we give the following definition of our conformance relation. We define
it for generic LTSs over i/o-pairs, although we will use it only for input-enabled ones. Finally, we
point out that we actually define a class of conformance relations, in a similar way as in [41]. The
class is indexed by a set F of traces which determines the discriminatory power of the relation.
Such a parametric definition turns out to be of technical help in the definition of the test case
generation algorithm in the next section and in the proof of its properties. The definition of the
Conformance Relation CZ, follows:

Definition 5.4
For LTSs 8 = (S, 8in, L,—), with L =Ly x Ly, §' = (S, s,,,L',—'), with L' = L, x L};, and

FC(LyxLy)*: 8 CL S iffVye F,i€ L;. OUTS' vi COUT S vi °

YQueue(F : Of) =

(Sel F f F') = (£;AX : 95. ((X # Z = XQueue(Join F' X))+
(X = ¥ = SQueue(F"))))

Figure 13: Definition of YQueue(F)
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In the following we will let C_, (i.e. “conforms to”) denote gﬁ'j’" ) and we will mainly focus on
C..- Intuitively, ' C_, S means that S’ can never produce an output which could not be produced
by § in the same situation, i.e. after the same i/o sequence and the same input. In general, it is
not required that Ly = LY: for partial specifications we have that L; C L', while for incomplete
implementations we have that L} C Ly; The case that Ly N L} = () does not make so much sense.
Notice that when ¥ € Ly the above definition implies that &' may produce no output at all due
to stuttering only if S can do so. This is also the case in [41, 42] but its technical definition has
been adapted here for UMLSCs. The following lemmas relate the conformance relation with LTS
languages.

Lemma 5.2
For §' finite LTS over L x Ly;, S finite LTS over Ly x Ly, the following holds:
(lan 8'") C (lan S) implies S' C_, S <o

Lemma 5.3
For §' finite LTS over L x Ly;, S finite LTS over Lt x Ly, with L'y C Ly, the following holds:
S'" E,, S implies (lanS") C (lan S) <O

The notion of verdict of is central in conformance testing. A verdict is the result of testing a system
S against a test case T, the latter being an experimenter as defined in Sect. 3. The test is passed
if all computations are successful:

Definition 5.5 (Verdict)
The verdict V of T on S is defined as follows:

pass if L ¢ Result(T,S)
fail  otherwise

v7s={

A test suite is a set of test cases. The verdict function is extended to test suites in the obvious

way; for test suite N
pass if VT € X. VT S = pass
fail  otherwise

VNS:{

o

The following definition relates test suites to specifications using conformance relations and intro-
duces the notions of sound and exhaustive test suites.

Definition 5.6 (Completeness)
Given specification S and test suite N

e X s sound w.r.t. S and CF iff S' T, S implies V X S' = pass, for all implementations

—co

S';

e R is exhaustive w.r.t. S and CZ, iff V R S’ = pass implies S' T, S, for all implementations
S

We say that a test suite is complete if it is both erhaustive and sound. )

5.4 The Test Case Generation Algorithm

Once a formal specification of a system has been developed, it is possible to mechanically generate
test cases for that specification. The test case generation algorithm TD proposed in this paper is
a non-deterministic algorithm which given L = L; x Ly and L' = L} x Ly; and F C L*, after
a finite number of recursive calls, returns a test case U in the test case language introduced in
Sect. 3.3. The definition of the test case generation algorithm TD is given in Fig.14. The intuitive
behavior of the algorithm is rather simple; at each call, the algorithm generates a single test case.
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For L =L; x Ly and L' = L x L}; we define the following
non-deterministic algorithm which, given set F C L*, after
a finite number of recursive calls, returns a test case in the
test language.

TDL7LI .7: =
Non-deterministically choose between options (1) and (2) below
1) generate “r; W’
2) generate “e; Az : L.z =u1 = Ui
+

+

r=ur = U

+

xg{ul,...,uk} = ¢
where:
e is non-deterministically chosen in L; N L
such that out® Fe = {u1,...,ux} # 0, and
Uj € TD v (F after” (e,uy)) for j=1,...,k

Figure 14: The Test Case Generation Algorithm

In particular, at each call, it may (non-deterministically) either generate the test which always
reports success (7; W;4d), after which it terminates, or generate a test case as follows. An event
e is (non-deterministically) chosen which belongs both to the input alphabet of the specification
(Lr) and to that of the implementation (L) and such that the set out* F e = {uq,...,ux}
is non-empty (notice that such an e exists when dealing with input enabled LTS over i/o-pairs
associated to UMLSCs); Intuitively, ug,...,ur are the expected correct values for the output of
the implementation under test as reaction to input e. Consequently, a test case is generated which
first sends e to the implementation and then, if the output of the implementation does not match
any of the expected values uy, ..., uy, it stops without reporting success, otherwise, assuming that
the output of the implementation is w;, it continues as Uf;. Notice that test case U is generated
by a recursive call of the algorithm.

The set of all test cases which can be generated from F, L and L' by repeated application of
TD is denoted by (TDy - F). Notice that, by construction, test cases generated by TD have a
tree-like structure; there is no looping possibility in their execution.

The following proposition easily follows from the definition of the algorithm, and the above con-
siderations, by observing that sets {uy,...,us} are finite when F is the language of 2L TS(H) for
some HA H.

Proposition 5.2
For every HA H with *LTS(H) over i/o-pair set L, and i/o-pair set L', every test case U €
TDr.1 (lan(*LTS(H))) is finite. o

Typically lan(*LTS(H)) is an infinite set. This does not affect the effectiveness of TD since, at
each recursive step, it uses only the first elements of the traces in the set, postponing the use of
their tails to the next recursive calls. Thus, proper lazy techniques can be used for the evaluation
of lan(*LTS(H)). Notice also that the set of all test cases generated using TDy, 1 on lan(*LTS(H))
is infinite. Each individual test case is however finite. As an immediate consequence of the above
lemma and the fact that the test cases generated by the algorithm do not contain loops, we have
that all computations involving test cases in TDy, 1+ (lan(*LTS(H))) are finite.

The following theorem establishes completeness of the test case generation algorithm, when
applied to (the language of) a specification *LTS(H):
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Theorem 5.1
For every HA H with *LTS(H) over L = L; x Ly, and set L' = L x L};, the test suite

TDy,1v (lan(*LTS(H)))
is complete w.r.t. *LTS(H) and C_,. o

The above important result means that if a test case generated by the algorithm for a certain
specification H reports a failure when running against an implementation, then we can be sure
that the latter does not conform to the specification H; moreover, if an implementation does not
conform to specification H, then a test case can be generated by the algorithm which will report
failure when executed against such an implementation.

We close this section with an application of the test case derivation algorithm to our running
example. Let us consider again the specification S of Fig. 2 and the (obviously incomplete)
implementation S’ over L} x Ly, with L} = {ai,e1,es,71,72} and Ly, = {X,{a1},{e1}, {r2}}
given in Fig.15. We can apply the algorithm in order to obtain, among others, the test case U
shown in Fig. 16. It is easy to see that V U; &' = pass. On the other hand, &' IZ_, S, and this
can be checked using the test case Us shown in Fig. 17, which is also derived using the algorithm.
Clearly V UsS' = fail.

6 Relating Testing and Conformance Relations

In this section we report the major results concerning the relationship between the stuttering and
the non-stuttering semantics and the relationship between the Testing Preorders (and Equivalence)
and the Conformance Relation. We shall make explicit reference to HAs representing UMLSCs.
In particular, in the following we shall assume that for each (HA representing a specific) UMLSC
H the set of events E on which H is defined, i.e. its alphabet, is given explicitly. Set E will include
all the events occurring in H. Under the above conditions, we will speak of UMLSC H on E.
Moreover, in the case of specifications where the behavior of the system is only partially specified,
there might be elements of E which do not occur in H.

It is worth reminding the reader here that both LTS(H) and LTS(H) have a finite number of
states and a finite number of step-transitions. Furthermore, they are defined on the same set of
states, namely the set Confpy of configurations of H. In the remainder of this paper we will use
the notation *C for configuration C when we want to emphasize it being a state of *LTS(H), thus
avoiding confusion about which LTS we are dealing with.

6.1 Relating the stuttering and the non-stuttering semantics

In this section we take a closer look at the formal relationship between the stuttering semantics
and the non-stuttering one.

Theorem 6.1
For oll HAs H = (F,E,p), e € E and C € Confy the following holds:

alelrir2/z

al/{r2}

el.e2,r1,r2/ ZC ru{al}

Figure 15: An implementation of the HA of Fig. 2

alele2r2/
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U =endz: U ((z={e1} = U)+ (z & {{e1}} = 9))
U :==r30z: Uz ={a1} = Us

+

r=Y=>U,

+

z ¢ {{a1},X} =9
Us == api;  x U ((x ={r2} = Us) + (x & {{r2}} = 9))
Uy =1, W;6

Figure 16: A test case generated from the running example

Us :=ri; Az : U ((x = {a1} = Us)+(z & {{a1}} = 9))

Figure 17: Another test case generated from the running example

i) VC' € Confy, € € Op. (€ <5 it ¢ <55 )

i) (3C' € Conty, & € Op.C L5 ¢y it ¢ “B5 ¢ o
Thus the two semantics generate the same step-transitions, except for stuttering, i.e. when
the machine does not accept the current event e in the current state. This refusal is modeled
(a) implicitly in the non-stuttering semantics by not generating a step-transition at all and (b)
explicitly in the stuttering semantics by producing ¥ as output action in the step-transition. The
original semantics, whose step-relation is recalled in Def. 3.3, simply generates step-transitions
with the empty set as a label when stuttering. It is important to point out that in the stuttering
semantics, the absence of reaction on a given input e generates stuttering—and is represented
by ¥—only if e € E. If e € E then no transition at all is generated, in a similar way as in the
non-stuttering semantics. For this reason, in this paper, the definition of a HA always includes
the explicit specification of the input set E, specially when we compare different HAs on the basis
of testing/conformance relations, as in the following sections. The following is a useful corollary
to Theorem 6.1:

Corollary 6.1
For oll HAs H = (F,E, p), C,C' € Confy,v € (E x Op)*: C - C'iff ¢ —5 X' o

We close this section with a lemma relating the languages of LTS(H) and *LTS(H), where we use
the following operator (_\-), where v \X is equal to v where all occurrences of ¥ are removed.

Definition 6.1 (y\X)
For v € (E x *@p) we define v\X as follows

€ ify=c¢€
Y\E=< Y\X if v = (e,%)y, for some e € E,y € (E x *Op)*
(&)Y \T) ify= (e, &)Y, for some e € E,E € Op,7 € (E x*Op)*

Lemma 6.1
For HA H = (F,E, p), all C,C' € Confy, v € (E x *OF), the following holds:
i) X —5x X' implies C AL
i) v € lanELTS(H) implies v\% € (lan ®LTS(H)) N (lan LTS(H))
i) (lan LTS(H)) C (lan SLTS(H)) o
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Figure 18: Example 6.1

E={ab} E'={ab}

al
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ala
()] <%: ala bbb ar)
ala e
ala
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b
ablz ala bib
by aa % T Dabx
a abx as

Figure 19: Example 6.2

6.2 Testing Preorders and the Conformance Relation

The following two lemmas show that, under proper conditions, the Conformance Relation is
stronger than the MAY and MUST preorders.

Lemma 6.2
For all HAs H on E and H' on E' C E the following holds: *LTS(H') C_, *LTS(H) implies
LTS(H') S LTS(H) o

Lemma 6.3

For all HAs H and H' on E the following holds:

ELTS(H') C,, *LTS(H) implies LTS(H) T LTS(H") o
MUST

Notice that Lemma 6.2 holds also for incomplete implementations (E' C E), but it requires the

specification not be partial w.r.t. the implementation, which would imply E C E’. The condition

E' C E is indeed essential, as shown by the following example.

Example 6.1 Let E = {a} C {a,b} = E', with H (resp. H') as in Fig. 18 (I) (resp. (I’)),
LTS(H) (resp. LTS(H')) as in Fig. 18 (II) (resp. (II’)) and *LTS(H) (resp. ELTS(H')) as in
Fig. 18 (II) (resp. (III’)). Clearly *LTS(H') C., *LTS(H), but LTS(H') 5 LTS(H) does not
hold since (a,a)(b,b) € lan LTS(H') \ lan LTS(H) (see Theorem 4.1 (a)).

Notice furthermore that in Lemma 6.2 the implication is strictly one way as shown by the following
example.
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Figure 20: Example 6.4

Example 6.2 Let E = E' = {a,b} with H (resp. H') as in Fig. 19 (I) (resp. (I’)), LTS(H)
(resp. LTS(H')) as in Fig. 19 (II) (resp. (II')) and ELTS(H) (resp. *LTS(H')) as in Fig.
19 (III) (resp. (III’)). We have LTS(H') T , LTS(H) but ELTS(H') Z., “LTS(H) since

OUT®LTS(H') (a,a)(a,=) b = {b} Z {£} = OUT *LTS(H) (a,a)(a, =) b.

Notice that in Lemma 6.3 we require that both H and H' have the same input set E. The
following examples show that for H on FE and H' on E' neither E C E' alone nor E' C E alone
is enough:

Example 6.3 Let H and H' as in Example 6.1. It is easy to see that LTS(H) &

_ LTS(H")
does not hold since (a,a)(b,b) € lan LTS(H')\ lan LTS(H) (see Corollary B.1).

MUS

Example 6.4 Let E = {a,b} D {a} = E' with H (resp. H') as in Fig. 20 (I) (resp. (I’)),
LTS(H) (resp. LTS(H')) as in Fig. 20 (II) (resp. (II’)) and *LTS(H) (resp. *LTS(H')) as in
Fig. 20 (II) (resp. (IIT’)). Clearly *LTS(H') C., *LTS(H), but LTS(H) & vep LTS(H') does
not hold since AS LTS(H') e = {{(a,a)}} and AS LTS(H) € = {{(a,a), (b, b)}fﬂuﬁn’ch implies
mfs(c (ASLTS(H') €))/C mfs(c (ASLTS(H) ¢)).

Notice furthermore that in Lemma 6.3 the implication is strictly one way as shown by the following

Example 6.5 Let H and H' as in Example 6.2. We have LTS(H) &
have seen that *LTS(H') Z., “LTS(H).

» LTS(H") but we we

MUS

The following examples show that there is no containment relation between the testing preorder
L and (the reverse of) the C_, relation:

Example 6.6 Let E = E' = {a,b} with H (resp. H') as in Fig. 21 (I) (resp. (I’)), LTS(H)
(resp. LTS(H')) as in Fig. 21 (II) (resp. (II’)) and *LTS(H) (resp. *LTS(H')) as in Fig.
21 (III) (resp. (III)). We have LTS(H) & LTS(H') since LTS(H) 5~ LTS(H') (actually
lan LTS(H) = lan LTS(H')) and LTS(H) = LTS(H') but *LTS(H") Z., "LTS(H) since

~S;MUST

OUTSLTS(H') (a,a)(a,=) b = {b} Z {£} = OUT “LTS(H) (a,a)(a, =) b.

Example 6.7 Let E = E' = {a,b} with H (resp. H') as in Fig. 22 (I) (resp. (I’)), LTS(H)
(resp. LTS(H')) as in Fig. 22 (IT) (resp. (II’)) and “LTS(H) (resp. “LTS(H')) as in Fig. 22
(ITI) (resp. (IIT’)). We have *LTS(H') C., *LTS(H) but LTS(H) T LTS(H') does not hold since

—cCo

LTS(H) EMAY LTS(H') does not hold: (a,a)(b,b) € lan LTS(H) \ lan LTS(H').
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Figure 21: Example 6.6
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Figure 22: Example 6.7

30



(1)
N bib D

oa . da _ bib oa . ala
(1 b/b b/b ()
ala ala
ala ala b/b °
bz ax b/s
ala b/b ala
(i) aa abiz ala ablz )y
b/b b/b
bz @ ablz by a2 abl
A s a’z/i? b THabiz
s

Figure 23: Example 6.8

Finally, the following two examples show that testing equivalence over the non-stuttering seman-
tics is not strong enough for detecting LTS’s capability of refusing to react and, consequently,
for discriminating among them on such basis (Example 6.8). This in turn implies that testing
equivalence does not enjoy substitutivity properties with respect to C_, (Example 6.9).

Example 6.8 Let E = E' = {a,b} with H (resp. H') as in Fig. 23 (I) (resp. (I’)), LTS(H)
(resp. LTS(H')) as in Fig. 23 (II) (resp. (II’)) and *LTS(H) (resp. *LTS(H')) as in Fig.
23 (III) (resp. (III’)). We have LTS(H) =~ LTS(H') but (a,a)(b,X)(a,a)(b,b) is an element of
lan *LTS(H)\lan *LTS(H') and (a,a)(b,%)(a,a)(b,X) is an element of lan L TS(H')\ lan *L TS(H)

Example 6.9 Toke H and H' as in Example 6.8 and let H" = H. From Ezrample 6.8 we know
that LTS(H") = LTS(H') and trivially *LTS(H") C_, *LTS(H). On the other hand *LTS(H')
ELTS(H) since OUT *LTS(H') (a,a)(b,X)(a,a) b= {X} € {b} = OUT ELTS(H) (a,a)(b,%)(a,a) b.
Similarly, we have that LTS(H) T, “LTS(H")—trivially—but *LTS(H) Z., LTS(H') since
OUTELTS(H) (a,a)(b,%)(a,a) b= {b} Z {£} = OUT *LTS(H') (a,a)(b,%)(a,a) b.

The above examples show that (testing equivalence based on) the non-stuttering semantics is
not adequate for conformance testing in the sense that one cannot replace (testing) equivalent LTSs
still preserving conformance. More specifically, equivalent implementations are not conformant
with the same specification. Similarly, the same implementation turns out not to be conformant
to equivalent specifications. Such inadequacy comes from the fact that (the experimenters testing
those LTSs generated according to) the non-stuttering semantics are unable to detect absence
of reaction and to take proper actions when this happens. Due to the non-stuttering semantics,
experimental systems can only deadlock in such situations.

In order to be adequate, the semantics must explicitly deal with stuttering, so that experi-
menters can detect absence of reaction and behave accordingly. This intuitive consideration is
supported by Lemmas 6.4 and 6.5 below:

Lemma 6.4
For all HAs H on E and H' on E' the following holds:

i) "LTS(H) ©  “LTS(H') implies “LTS(H) C., “LTS(H')

MA
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Figure 24: Example 6.11

ii) "LTS(H) C,, "LTS(H') and E C E' implies "LTS(H) §_  “LTS(H') o

Lemma 6.5
For all HAs H on E and H' on E' the following holds:
LTS(H) S PLTS(H') implies *LTS(H') C, *LTS(H) o

Us

Notice that in Lemma 6.5 the implication is strictly one way as shown by the following

Example 6.10 Let H and H' as in Example 6.1. We know from that example that *LTS(H') C_,
ELTS(H). On the other hand it is easy to see that *LTS(H) T ELTS(H') does not hold, since

~;MUST

(lan®LTS(H')) € (lan®LTS(H)) and this would violate Corollary B.1.

Finally notice that in general *LTS(H) C_, *LTS(H') does not imply “LTS(H) EMUST ALTS(H),
as shown by the following

Example 6.11 Let E = E' = {a,b}, with H (resp. H') as in Fig. 24 (I) (resp. (I’)) and
ELTS(H) (resp. “LTS(H')) as in Fig. 24 (II) (resp. (II’)). Clearly *LTS(H) C., *LTS(H'), but it
is easy to see that *L TS(H) EMUST ELTS(H') does not hold, since (lan*LTS(H')) € (lan*LTS(H))
and this would violate Corollary B.1.

This last remark shows that in the stuttering semantics, the testing preorder is strictly stronger
than the conformace relation.

The following theorem establishes the adequacy of the testing relations based on the stuttering
semantics for the conformance relation. On an intuitive level, it is worth pointing out that point
(iii) of the theorem essentially states that if an implementation is “less non-deterministic” than one
conforming to a specification, then it also conforms to the specification. Similarly, point (vi) says
that if a specification is “more non-deterministic” than one to which an implementation conforms,
than the implementation will also conform to this specification.

Theorem 6.2
For all HAs H on E, H' on E' and H" on E", with E' C E, the following holds:
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i) "LTS(H")C  “LTS(H') APLTS(H') C., LTS(H) implies "LTS(H") C., *LTS(H)

i) SLTS(H' _SLTS(H") A*LTS(H') C, *LTS(H) implies *LTS(H") C,, “LTS(H)

MUS

5L TS(H") ASLTS(H') C,, *LTS(H) implies ZLTS(H") C,, *LTS(H)

v) SLTS(H') C,, SLTS(H) AELTS(H") C

~MUST

ELTS(H) implies L TS(H') C ., *LTS(H")

(

(
i) “LTS(H'

(

(

(H'

)5
)5
iv) SLTS(H') C,, "LTS(H) ASLTS(H) ©_ SLTS(H") implies "LTS(H') C,, “LTS(H")
)E
) E

JELTS(H) AELTS(H") C LTS(H) implies SLTS(H') T, SLTS(H") o

A useful corollary of the above theorem states the substitutivity properties of < with respect to
C

co”

Corollary 6.2
For all HAs H on E, H' on E' and H" on E", with E' C E the following holds:

i) ZLTS(H') < SLTS(H") ASLTS(H') C_, *LTS(H) implies LTS(H") C_, “LTS(H)
i) SLTS(H') C,, SLTS(H) ASLTS(H") < SLTS(H) implies SLTS(H') C,, ELTS(H") o

We close this section with the following three propositions relating the non-stuttering semantics
and the stuttering one via the testing relations in the way one would expect:

Proposition 6.1

For all HAs H on E and H' on E' the following holds:

SLTS(H)C  SLTS(H') implies LTS(H) S LTS(H') o
MAY MAY

Proposition 6.2
For all HAs H, H' on E the following holds:

ELTS(H) & Srvse ELTS(H') implies LTS(H) T S ose LTS(H') O
Proposition 6.3

For all HAs H, H' on E the following holds:

ELTS(H) T *LTS(H') implies LTS(H) T LTS(H") &

Notice again that the above implications are strictly one way, as can be seen from Example 6.8,
using Theorem 4.1 (a)and Corollary B.1.

7 Conclusions

The main contribution of the present paper is a theoretical framework for testing theory and
verification as well as test case generation in a conformance testing setting. We presented a
testing theory for UML Statecharts (UMLSCs) with an algorithm for automatic verification of
testing equivalence—based on a formal “non-stuttering” semantics—and a conformance relation
for UMLSCs as well as an algorithm for test case generation—based on a formal “stuttering” se-
mantics. The automatic verification algorithm has been proved correct and the test case generation
algorithm was proved complete. Both proofs are presented in this paper. The formal relation-
ships between the stuttering and non-stuttering semantics were investigated and all related proofs
provided. In particular, we proved that the non-stuttering semantics for the testing preorders is
not a good choice when also conformance is an issue. In fact we showed that the conformance
relation for UMLSDs is strictly stronger than the reverse of the MUST preorder based on the non-
stuttering semantics, and then also stronger than the associated MAY preorder. Moreover, the
testing preorder and the conformance relation are incomparable; neither one is stronger than the
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other nor vice-versa. Furthermore, no substitutivity property holds: replacing an implementation
conforming to a specification with a testing equivalent implementation may break conformance;
symmetrically, an implementation conforming to a specification is not guaranteed to conform also
to another, testing equivalent, specification. On the basis of the above negative results, we adopted
a stuttering semantics also for the general testing theory. This amounts to giving experimenters
the power of recognizing absence of system reaction, i.e. stuttering and behaving accordingly. We
showed that, in this case, the MAY (resp. MUST) preorder is stronger than C_, (resp. inverse
of C.,)- As a consequence, one can replace testing equivalent specifications and implementations
still preserving their conformance relation. More specifically, if an implementation is “less non-
deterministic” than one conforming to a specification, then it also conforms to the specification.
Similarly, if a specification is “more non-deterministic” than one to which an implementation
conforms, then the implementation will also conform to this specification. This is an important
result in the framework of a system development approach in which e.g. implementations are
replaced with equivalent or “more-deterministic” ones in a stepwise manner, still maintaining the
conformance relation with their specifications.

Our work represents also a contribution to the field of research on relating state-based and
behavioral specification. In particular, in [6] it is argued that behavioral relations, and in particular
testing preorders, may form the basis for studying notions like sub-typing/sub-classes. This can
be applied also to UML.

With respect to the testing equivalence verification algorithm, the determinization phase of the
testing equivalence verification algorithm may take exponential time, but this should not surprise
the reader because it has been proved that the verification of testing equivalence is a PSPACE-
complete problem [4]. Other equivalences are easier to verify but they may be too strong, like
e.g. bisimulation equivalence itself which distinguishes machines also on the basis of their internal
structure and not only on the basis of their interaction with the external environment. Anyway,
the fact that the semantics generate finite LTSs over i/o-pairs allows us to to perform bisimulation
equivalence verification directly on such LTSs, should this turn up useful.

In order to use the test generation algorithm in practice proper test selection strategies are
needed which will be subject of future work. Some work on test selection in a formal test derivation
framework is already present in the literature (see, e.g. [7, 2, 12]), and in particular random test
case selection seems to be a promising option. In fact it nicely fits with the structure of our
algorithm; what is needed is to replace non-deterministic choices with random, coin-flipping, ones.
Moreover, random test selection is receiving more and more attention due to the high coverage
that it can provide, using efficient automated tools. Another promising line of research is the use
of model-checking techniques for enhancing automatic test case generation, which we are currently
investigating [10]. Closely related to the above research lines is the area of efficient implementation
of test generation and selection algorithms. There are already tools available to that purpose, e.g.
AutoFocus [37] and TGV /AGEDIS [39], and one of the next steps will be an investigation on the
possibility of providing a connection between our work and such tools.

In the present paper we made no assumption on how test cases are “implemented”, i.e. on
their actual presentation. They might be represented again as UMLSCs or as UML Sequence
Diagrams or just as code in a proper programming language. This last possibility could allow for
the implementation of test runs using proper automatic tools, to be integrated with the test case
generation tools, which is our ultimate goal.

Another line of future research deals with the extension of the results presented in the present
paper to UML specifications consisting of collections of UMLSCs interacting via queues [15], which
brings to distributed testing. The use of a test language like the one proposed in the present paper,
which is easy to extend in order to allow control communication between the experimenters to
take place, greatly facilitates the task of specifying complex distributed test cases and developing
a suitable extension of testing theory to the distributed case.

A further useful extension is the introduction of data values and variables in UMLSCs. We
have already a semantics definition for such an extension, fully developed in the context of the
the PRIDE project [20]. Of course (infinite) data sets pose further problems in the test selection
procedures.
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The results addressed in the present paper have been originally proposed in [25, 26, 16], al-
though in isolation, while in the present paper they have been dealt with in a uniform framework
and notation. Moreover all proofs, which were omitted in the above mentioned papers, are pro-
vided in the present paper.

A Hierarchical Automata

The first step of our approach is a purely syntactical one and consists in translating UMLSCs into
what is usually called HAs. HAs can be seen as an abstract syntaz for UMLSCs in the sense that
they abstract from the purely syntactical/graphical details and describe only the essential aspects
of the statechart. They are composed of simple sequential automata related by a refinement
function. A state is mapped via the refinement function into the set of (parallel) automata which
refine it. The translation from UMLSCs to HAs has been dealt with in [24]. In the sequel we will
be concerned only with HAs. In this section we recall the notion of HAs as defined in [32, 24].

A.1 Basic definitions and Semantics
The first notion is that of a (sequential) automaton

Definition A.1 (Sequential Automata)

A sequential automaton A is a 4-tuple (04,5%,\a,04) where o4 is a finite set of states with s €
oA the initial state, A4 is a finite set of transition labels, with A\yNos = 0 and 64 C o4 X Aa X024
is the transition relation. o

In the context of HAs, the labels in A4 have a particular structure. For transition ¢ we require
its label to be a 5-tuple (sr, ev, g, ac, td), where sr is the source restriction, ev is the trigger event,
g is the guard, ac is the actions list and td is the target determinator. In the sequel we use the
following functions SRC, TGT, SR, EV, G, AC, T D, defined in the obvious way; for transition
t = (s,(sr,ev,g,ac,td),s'), SRC t = s, TGT t = s',)SRt = sr,EV t = ev,G t = g,AC t =
ac,TD t = td. Their meaning is described in [24]. Hierarchical Automata are defined as follows:

Definition A.2 (Hierarchical Automata)

A HA H is a tuple (F, E, p), where F is a finite set of sequential automata with mutually disjoint
sets of states, i.e. YA1,As € F. 04, Noa, = 0 and E is a finite set of events; the refinement
function p : |J AcFTA P 2F imposes a tree structure to F, i.e. (i) there exists a unique root
automaton Aot € F such that Aot & |JTng p, (i) every non-root automaton has exactly one
ancestor state: |Jrng p = F \ {Aroot} and VA € F\{A,o0t}. T1s € UA,eF\{A} oar- A€ (ps) and
(iii) there are no cycles: VS C Uycpoa- 35 € S. SNUyeps04 = 0. o

We say that a state s for which p s = () holds is a basic state.

The notion of conflict between transitions needs to be extended in order to deal with state
hierarchy. When transitions ¢ and ¢’ are in conflict we write t#t'. The complete formal definition
of conflict for HAs can be found in [24, 15] where also the notion of priority for (conflicting)
transitions is defined. Intuitively transitions coming from deeper states have higher priority. For
the purposes of the present paper it is sufficient to say that priorities form a partial order. We let
7t denote the priority of transition ¢ and #nt C 7t' mean that ¢ has lower priority than (the same
priority as) t'. In the sequel we will be concerned only with HAs.

In the sequel we implicitly make reference to a generic HA H = (F, E, p). Moreover, we also
assume implicitly that each transition of each sequential automaton in F' is uniquely identified by
its label. This can always be obtained by adding unique identifiers to labels whenever necessary.
The following definition characterizes a couple of useful functions:

Definition A.3
For A € F the automata and transitions under A are defined respectively as

AuAd={A}U (UA'E(UseaA (p45)) (Aud)), TrA =U ey ada- °
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In the remainder of this section we will deal with the UML semantics of HAs.
A configuration denotes a global state of a HA, composed of local states of component sequential
automata:

Definition A.4 (Configurations)
A configuration of H is a set C C |J cp0a such that (i) 318 € 04,,.,- 5 € C and (ii) Vs, A. s €
ChNAeps=T1s'e A. s eC. o

The set of all configurations of H is denoted by Conf g, while C;, denotes its initial configuration,
namely the configuration composed only by initial states.

The operational semantics of a HA is defined as a LTS, where the states are the configuration/
input-queue pairs of the associated UMLSC and the transitions are characterized by the step-
relation. Each transition of the LTS is labeled by the set of (unique identifiers of the) transitions
of the associated UMLSC which have been fired in the step.

While in classical statecharts the external environment is modeled by a set, in the definition of
UML statecharts, the nature of the input-queue of a statechart is not specified; in particular, the
management policy of such a queue is not defined. In our overall approach to UMLSCs semantics
definition, we choose not to fix any particular semantics, such as set, or multi-set or FIFO-queue
etc., but to model the input queue in a policy-independent way, freely using a notion of abstract
data types. In the following we assume that for set D, ©p denotes the class of all structures
of a certain kind (like FIFO queues, or multi-sets, or sets) over D and we assume to have basic
operations for manipulating such structures. In particular, for D,D’, etc. in ©p, and d € D,
(Add D d) denotes the structure obtained by adding d to structure D. Similarly, (Join D D)
denotes the structure obtained by merging D with D'. The predicate is_joinj_; D; T states that T
is a possible join of Dy ... D, and it is a way for expressing non-deterministic merge of D; ... Dj.
The predicate (Sel D d D') states that D' is the structure resulting from selecting d from D; of
course, the selection policy depends on the choice for the particular semantics. We assume that
if D is the empty structure, denoted by (), then (Sel D d D') yields FALSE for all d and D'.
Finally, given sequence r € D*, (new r) is the structure containing the elements of r (again, the
existence and nature of any relation among the elements of (new r) depends on the semantics of
the particular structure).

Definition A.5 (Operational semantics)

The operational semantics of an HA H = (F, E, p) is the LTS over 2 Tru (Confprx0Og, (Cin, &), —)
where (1) Conf g X OF is the set of statuses, (i) (Cin,&0) € Confr x OF is the initial status, with

Cin the configuration composed only of initial states of automata in F and & the given initial input

queue, (iii)) — C (Confy x Of) X o TrH (Confy x OF) is the step-transition relation defined

below. o

As usual, we write (C,&) £ (C',&") for (C,€),L,(C',E")) € —. Any such transition denotes the
result of firing a maximal set £ of non-conflicting transitions of the sequential automata of H
which respect priorities. Relation — is the smallest relation which satisfies the rule below:

Definition A.6 (Transition Deduction System)
(SelEe&)

H10:(C{e)) £ (C,E)
(C,&) £ (C', (JoinE"EN))

[e]

In the above rule we make use of an auxiliary relation, namely A 1 P :: (C,€) -5 (C',£"). Such a
relation, which is defined by the deduction system proposed in [24] and recalled in Fig. 25, models
labeled transitions of the semantics of HA A under specific constraints P related to transition
priority. £ is the set containing the transitions of the sequential automata of A which are selected
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Progress Rule Stuttering Rule

{8} =CNoyg
te LE4CE pas=10
A e PUEsCE. ntCwt Vte LE4CE.3t' € P.nt C wt!
AT P:: (C,f,’)ﬂ)(DEST t,new(ACt)) AT P:(CE)-D (s} ()

Composition Rule

{s}=Cnoa
pas={A,..., A} #0
(/\;LzlAjT(PULEACE) (= (C],E))/\lspln & T

(Uji £, =0) = (t € LEsCE. 3¢ € P.mt T )
ATPz(C,E) =t {s}ulUj= G 1)

where

i) LEACE =4 {t€da | {(SRCt)} U(SRt)CC N(EVt)eEN(CE) = (GH)};
(C,€) = (Gt) formalizes that guard (G t) is true of (C, &)
ii) E4C¢& =45 UA’E(AU 4) LE4s CE

iil) (DEST t) =g {s|3s' € (IT'D¢). (TGT t) < s < s'}

iv) < is the state-nesting partial order and C is the priority partial order based on the
priority mapping m: 7t C 7t' means that the priority of ¢ is smaller than or equal to
that of ¢'.

Figure 25: Core Semantics of UML Hierarchical Automata

to fire when the current configuration (resp. input) is C (resp. &) and the firing of which brings
to configuration (resp. output events) C' (resp. &£').

Several proofs we give in this section are carried out by induction either on the length d of
the derivation for proving A 1 P :: (C,£) -~ (C',£') [33] or on the structure of the subset of F
affected by C. With respect to structural induction, let Fi be the set {4 € F |CNoa # 0}. It is
easy to define a relation on F¢ such that X is related to Y iff s € CNoy and X € (pys). Notice
that since C is a configuration, for each A in F¢ there is a unique state s € o4 NC. The transitive
and reflexive closure of such a relation is a well-founded partial order, since antisymmetry is a
consequence of property (iii) in the definition of HAs; the bottom elements are those X such that
pox = 0 [30].

The following lemma gives some insights on the core semantics.

Lemma A.1
For all HA H = (F,E,p),A € F,P C (TrH),E € Og,C € Confy, s.t. 54 NC # 0 the following
holds:

i) 3L C (Tr H),C' € Confy, &' € Op. A1 P :: (C,E) £ (C',E)
i) At P (C,E)-L (C',E") and C € Conf 4 implies C' =C and &' = ()
iii) At P (C,E) L (C,() implies AL #0,C' € Confy,E' € Op. A1 P == (C,£) £+ (C,E") ©
Proof

Parti -
By induction on the structure of F¢.

Base case (Uxe,, ., X = 0):
IfVie LE4C 5 dt' € P. 7t C wt' then the Stuttering Rule can be applied immediately to prove
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the assert. If instead 3t € LE4 C £. At' € P. w t C 7 t' then the Progress Rule can be applied
immediately to prove the assert.

Induction step (Ux¢,, ,, X # 0):

Ifdte LEACE. At' € PUEA C E. wt C «t' then the Progress Rule can be applied immediately to
prove the assert. Suppose then that Vt € LE4 C £. 3t' € PUE4 C €. nt C «t'. By the Induction
Hypothesis we know that A; 1 PU (LEA C &) :: (C,&) =45 (C;,&;) for j = 1,...,n where pas =
{44,..., Ay} with {s} = CNo4, so that we can apply the Composition Rule for getting the assert.
To that purpose we must be sure that also the fourth premise of the Composition Rule is fulfilled,
which we show in the sequel. From the hypothesis Vt € LE4 C £. I €e PUE, C £. ot C =t/
using set theory, Lemma A.2 below, and noting that d4 is finite, we can first of all conclude

VteLEAcg.at'ePu(U EAjCE).WtIZwt’ (1)

j=1l...n

Moreover, if |J L; =0, by Lemma A.3 below we get also

j=l..n
Vte LEy; CE.3t' e PULEACE.wt Cnt' (II)

Since all sets involved are finite, by combining (I) and (II) above together we get, from set theory,
the fourth premise of the Composition Rule.

Part ii -
By derivation induction.

Base case (d = 1):
In this case only the Stuttering Rule could have been applied. Moreover C € Confy and {s} =
04 NC implies C = {s}.

Induction step (d > 1):
In this case the Composition Rule must have been applied in the last step of the derivation.

L=10
= {Def. of Composition Rule}

Njzi,..n A TPULEACE : (C,€) N1

=1,. R

= {C € Confa,s € CNoy, Def. A4 implies C = {s} U (szl,m,ncj) with C; € Conf 4;;
Lemma A.4 below}
et As 1 PULEACE 5 (C;,€) B (C), &)
= {Induction Hypothesis}
Nj=1,.nCi =C{ NEF =)
= {Def. of Composition Rule}
C'=CAE =)
Part iii -
By derivation induction.

Base case (d = 1):
In this case only the Stuttering Rule could have been applied, which trivially proves the assert.

Induction step (d > 1):
In this case only the Composition Rule could have been applied in the last step of the derivation.
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In this case, £ = () implies A; 1 (PULE4 C £) = (C,E)l)(cj,é’j) for j = 1,...,n, which,

for the Induction Hypothesis brings to AL; # 0. A; + (PULEs C &) == (C,E) Ly for
j = 1,...,n. Thus the Composition Rule cannot be applied in any other way for producing
a transition A 1 P :: (C,&) % (C',&') with £ # 0. O

In the above proof we used the following lemmas:

Lemma A.2

For oll HAH = (F,E,p),A€ F,€£ € Og,C € Confy where c4NC = {s} and pas = {A1,...,An}
the following holds: Ex C € = LE C €U (Ujy,..., Ba, C€) o
Proof

By induction on the structure of F¢.

Base case (Uxe,, », X =0):
Trivially E4 CE = LEACEifpys=10

Induction step (Uxe,, -, X # 9):
EsCE

{Def. of E4}
Uxe@uaLEa CE
{Def. of Au }

UA'e{A}u(UA,, Au A”) LEs CE

€(paca)
= {Def. of o4 and pas}
) LEs CE

ceey

= {s' € 04 with ' # s and A" € p,s' implies LE4 C £ = 0}

UA'e{A}u(U . Au 4;) LEy CE

i=1,...,

{Set Theory}

LE4CEU (Ujer,. o Unechu 2, LEa CE)

= {Def. of E4}

LEACEU (Ujm, . Ba; CE) 0
Lemma A.3
For oll HA H = (F,E,p),A€ F,P C TrH,E € Og,C € Confy the following holds:
A1 P (CE) L impliesVte EoCE. 3t € P.wt C wt! o
Proof

By derivation induction.

Base case (d = 1):
In this case only the Stuttering Rule could have been applied and the assert follows trivially.
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Induction step (d > 1):
In this case the Composition Rule must have been applied in the last step of the derivation. Since
Uj=1..n £ =0, we know

Vtie LE4CE. ' e P.atCwt’ (I)
by the fourth premise of the Composition Rule, and

Vt€ Eq; CE.F' € PULEACE. mtCat' (IT)

for j =1,...,n because of the Induction Hypothesis. By using Lemma A.2 and I and IT above we
get the assert. m|
Lemma A.4

For all HA H = (F,E,p),A€ F,P C (TrH),£ € Op,C € Confy, s.t. cAoNC # 0, the following
&

holds: if AT P :: (C, l),C'GCoan and C' CC then At P : (C’,S)l) O
Proof

We proceed derivation induction.

Base case (d = 1):

If the derivation has length 1, then only the Stuttering Rule could have been applied. Moreover
C' € Confy, C' CC and {s} = 04 NC implies, in this case, C' = {s}. Thus the assert follows.
Induction step (d > 1):

In this case the Composition Rule must have been applied in the last step of the derivation, which,

together with C' € Confs and C' C C, implies C' = {s} U (U,_y,..,, C}) where €} € Confa; for
j=1,...,n. Weknow, A;_; ,A; 1 PULE4 CE = (C,E) —% and obviously C} C C. So,

by Induction Hypothesis, we get A; + PULE4 C & = (C},€) N Moreover, we note that
Vte LE4CE. 3t € P.nt C wt' AC' C C implies Vit € LE, C' £. 3t' € P. wt C wt'. Thus, by

applying the Composition Rule we get A+ P :: (C',€) 2, that is, the assert. |

B Detailed Proofs

B.1 Proofs related to Sect. 4

Proof of Proposition 4.1

AL.LAD A (C,E) 5 (C', (join E" E'))
& {Def. of £ (see Def. 3.3)}
JecE,L#0. H10:(C,{e}) L3 (C',E)A(Sel Ee &M
& {Def. 4.2, Def. of Queue(F)}
Jec E.c L&) 0 A Queue(E) = AX.Queue(join £" X)
& {Def. 3.5, Queue(F) does not perform silent moves}
(Queue(€) || C) ~ (Queue(join E" &) || C") m
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>

Em((il,ul) A (zn,un) : L*, (i,u) : L)
W +
(i Az 2w =1 W +
r=u =>7; WV +
(i Ae.x £ up = ;W +
T = Uy =

W +
(in; A\x. £ up = ;W +
T =uy,=>7;W+
GG ex #Au=1; W+
rT=u=4
)

Figure 26: Definition of Ex((i1,u1) ... (in, un), (i,u))

Proof of Theorem 4.1

In order to prove Theorem 4.1, we first need some auxiliary notions and results. First of all,

it is convenient to define the experimenter YV which always experiences success, i.e. W = W 4.
We now define a particular class of experimenters. The first kind of such experimenters is that
of those which can fail only if the LTS they are experimenting with, after having performed the
input/output sequence v = (i1, u1)(i2,u3) ... (in,un), will react with output u on input i. The
definition of such an experimenter Ex(vy, (4,u)) is given in Fig.26. The second kind of experimenters
of interest is that of those which can fail only if the LTS under test, after having performed the
input/output sequence <y as before cannot accept any input from finite set I = {i{,...4},}. The
definition of such an experimenter Ex(v,I) is given in Fig.27. We let EX denote the set of all
the experimenters of the kind Exz(v, (i,u)) or Ez(vy,I). Moreover, in the sequel, for A C L we let
(IN A) denote the set {i | (i,u) € A}.

Finally, a third kind of experimenters is used, Exz(vy), which succeeds only if the system under
test can perform «, for v = (i1,u1) ... (4n, un). The definition for Ez(y) shown in Fig.28.

The proof of Theorem 4.1 follows:
Part a)
We first show that if S EMAY S' then S <<j4y S'. Suppose S <<y &' does not hold; then
we can set up the following derivation,

S <<umay S§'=FALSE

= {Def. of <<pav }
lan S € lan &'

= {Set theory}
IyelanS.y¢lan S

= {Def. of Ex(y), Def. 3.7}
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Ea((iv,u1) ... (in, up) : L*, {if,. .. il } : 2L1) &

W +
(i e £u =1 W+
T=u =>7; W+
(i; Ax.x £ ug = ;W +
T = Uz =

W+
(ln; AT # Up = T3 W +
x = up =0 Az W)
+

+
(if; Az W)

Figure 27: Definition of Ex((i1,u1) ... (in,un), {i},...}})

T € Result(Ez(Y),S) A T & Result(Ez(y),S")

thus concluding that S& S’ does not hold.
Now we show that if S <<p.y &' then S EMAY S'. Suppose T € Result(7T,S) for some
experimenter 7, so that there must be a computation starting from vy, || sin leading to success

and there must be a finite prefix of the computation, say
Vin || Sin~ ...ux || 8

which leads to success. Such a prefix gives rise to a derivation s, -1+ s, on the side of S, for
vy = (i1,u1) .- (in,un), and to a sequence of transitions v; £45 O;, for j = 0...k — 1 such that
either p; = i; and vj41 = (O; u;), for some i with 1 < i <mn, or y; = 7 and v;31 = O;. Notice
that the derivation on the side of the experimenter involves a sequence ' which is equal to v up
to 7 moves. We know that lan S C lan &' since § <<yay 8’550 also 8’ can perform s{, 1> s’ for
some s', and thus can be composed with the derivation we had for 7. And since this experimenter
reported success somewhere in such a derivation, also this time it will do so. If the sequence we
built is not maximal, we can extend it with further derivations starting from vy || s'. In any case

we found a successful computation for 7 || S’. This proves S EMAY S'.
Part b)
The implication S & S' =S <<yusr S follows from Lemma B.2 below. The converse can

be proved as fOHOWS.MSUlflngSG S <<uvsr S and L & Result(7,S). Let us consider an arbitrary
computation starting from 7 || S":

Vin || 81y ~ ..o || 8. (1)

There are two possibilities: either the above sequence is finite, or it is infinite. Let us first consider
the case in which it is finite and stops at vy, || s'. We must show that for some ,0 < i < k, v; €
Success. This computation gives rise to two derivations: one on the side of &', s, —1» s, for some
~ € L*, and one on the side of the experimenter, starting with vy,, ending with vg, and involving
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T = U, =>W
)

Figure 28: Definition of Ex((i1,u1) ... (in, un))

~" which is equal to v up to occurrences of 7. Now, (S s’ €) € (AS &' v) and then there exists
T € mfs(c (AS S’ «)) with T C (S s’ €). Moreover, since mfs(c (AS S' 7)) CcC mfs(c (AS S 7))
we can find Z' € mfs(c (AS S v)) such that Z' C T. Thus we get Z' C (S s'e). Now there are
three cases for Z':

i) Z' € AS § . In this case there exists a s such that si, s and Z' = (Sse€) C (S s’ ¢€). So
v, || s cannot be extended and therefore the derivation s;, —+ s can be combined with the above
mentioned derivation for 7 involving 4/, in order to give a computation vi, || Sin ~ ... vy || s for
T || S. Since L & Result(T,S), there must be 4,0 < ¢ < k, such that v; € Success.

ii) Z' € ¢ (AS S 4) \ AS S . In this case there exists s such that s, = s and (Sse) € ASS y
with (S s €) C Z'. Thus we have that (S s €) C (S s’ €). Then a similar reasoning as in case i) can
be applied.

iii) Z' € (mfs (c (AS S ¥))) \ ¢ (AS S 7). In this case, there exists a set K in ¢ (AS S ) such
that Z' € mfs{K}. Moreover there exists a s such that s;; 1> s and S s e € AS S v, such that
S se C K. We know that Z' C S s' e. We know also that vy || s’ cannot be extended, and that
IN (S s €) C INZ' because of the definition of mfs. All this together brings to the fact that
vk || s cannot be extended. Then a similar reasoning as in case i) can be applied.

Let us now consider the case in which the computation is infinite. Also in this case the computa-
tion gives rise to two derivations, which may be infinite: one on the side of &', si, -1+, for some
v, and one on the side of the experimenter, starting with vi,, involving v/ which is equal to v up
to occurrences of 7. Both v and 4’ may be infinite sequences. Suppose now that for every natural
number n there exists m > n such that the m-th element of +' is different from 7. This means
that for each finite prefix 4 of v there exists s’ such that (S s’ €) € AS 8’ 4 and so there exists
T e mfs(c (ASS' 7)) with T C (S S’ €). But then, since mfs(c (AS S’ 7)) cC mfs(c (AS S 7)),
we can find Y € mfs(c (AS S 7)) with Y C T.This means that AS S 4 is non-empty and then
there exists s such that sj, —+ s. But then, since the above holds for every finite prefix of vy, we
get also s; —» and we can build an infinite computation by composing the derivation with the
above derivation on the side of the experimenter involving 4. Since L ¢ Result(7,S), there will
be a v; € Success for some i. So the computation (1) above is successful. A similar reasoning
applies also to the case in which there exists n such that the m-th element of 4’ is 7 for all m > n.
Both in the case the successful state v; occurs in the silent suffix of 7' and in the case in which it
occurs before such a suffix we can build a successful computation proceeding as above. Thus we
conclude that in all cases | ¢ Result(7,S’), and so S & S'.

~;MUST

Part ¢)
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Obviously follows from parts a) and b). m|

The above proof used Lemma B.2 below, which in turn uses the the following lemma, which
shows the relationship between EiﬁST and the languages of the relevant LTSs. Lemma B.2
shows that EX is sufficiently expressive for the MUST preorders.

Lemma B.1 For all finite LTSs S, S’ over L = Ly x Ly the following holds: S CEX g implies

~;MUST

lanS' C lan S o

Proof
If v = €, then trivially v € lan S. Suppose v = 'z € lan §' \ lan S; then we can produce the

following derivation
Yz &lan S

= {Def. of experimenter Ex(vy',z)}
1 ¢ Result(Ez(v', z),S)

=  {SC"* o

~MUST

1 ¢ Result(Ez(v', z),S")
= {Def. of experimenter Ex(vy',z)}
Yz dlan S’

which is a contradiction, since we assumed « € lan §'. |

Lemma B.2
For all finite LTSs S, 8' over L=L; x Ly if ST X S then S <<puse S o

~;MUST

Proof

Let us assume S = (S, sin, L, =) and S = (S',s!,,L, =) for L = Ly x Ly. From the definition
of <<pyusr we know we must show that mfs(c (AS S’ v)) CcC mfs(c (AS S v)). Note that we
only need to consider sequences v which are in lan &', because if v & lan S’ then AS &' v = 0,
and thus mfs(c (AS S’ 7)) = 0, and then the relation CC trivially holds. So, consider v € lanS’.
From Lemma B.1 we know that v € lanS and thus AS S v # 0 and mfs(c (AS S 7)) # 0. Now
we can continue the proof by deriving a contradiction if we assume that mfs(c (AS 8’ 7)) CC
mfs(c (AS S v))does not hold. Under this assumption, by the definition of CC and considering
that both m fs(c (AS S 7)) and mfs(c (AS &' 7)) are non-empty, we can assume that there exists
aset R e mfs(c (ASS' 7)) such that Z € R for all Z € mfs(c (AS S v)).

Now we first show that in each set Z € mfs(c (AS S 7)) we can choose an element (i,u) in such
a way that it is not only different from all elements in the set R, but also such that the input
part i is different from all input parts of elements in R. We show this by contradiction: for any
Z € mfs(c (AS S v))we assume that it is impossible to choose such an element and we reach a
contradiction. For ease of notation, let mfs(c (AS S s)) be the set {Z1,..., Z;}.

So, now suppose that Z; differs from R only by elements that differ only in their output part, that
isIN Z; C INR A 3(i,u) € Z;. (i,u) € R.

Because of the definitions of m fs and ¢, for each Z; one of the following cases applies:

i) Z; e ASSy
ii) Ziec(ASSy)\AS S~
iii) Z; emfs (c (ASS 7)) \c (ASSy)
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Case i) Suppose Z; € AS S .
We first show that Jxicas s, K' € UgeAs s, K- For ASS vy = 0 or if AS S’ v = {0} this is

trivial. For AS &’ 7y containing a non-empty set we can derive:
z€Ugreps s o K

= {Set theory}
AK' e ASS' .z € K’

= {Def. of lan and of AS}
~z € lan &’

= {SC"X &' Lemma B.1}

~MUST

yx € lan S
= {Def. of AS}
dK e ASSvy.ze K

= {Set theory}

weUKGASS'yK

Now we can show that we can find in ¢ (AS S v) a set T that extends Z; with exactly those elements
in R which have the same input part as those in Z;. We can do this because T is an intermediate
set between Z;—which is in AS § y—and Ugag g ., K—which is an element of ¢ (AS S v)—and
which contains all elements that are in R since we showed g, cAg s, K' € Ugeps s, K- For-
mally, T = Z; U{(i,u) | i € INZ; A (i,u) € R}.

It is now easy to see that the set Z = {(i,u) | ¢ € INZ; A (i,u) € R} is an element of
mfs(c (AS S 7). Infact Z C T € ¢ (AS S v); moreover Z is functional, since Z C R, and
it is maximal. This last fact can be proven by contradiction: suppose there exists an element
(i,u) € T\ Z; then by definition of Z, since IN T' = IN Z, there exists «' such that (i,u') € Z
and since Z is functional we get u = u'. So, in the end we found Z € mfs(c (AS S 7)) with
7 C R. This contradicts our original assumption that there exists R € mfs(c (AS &' 7)) such
that Z € R for all Z € mfs(c (AS S 7)).

Case ii) Suppose Z; € ¢ (AS S v)\AS S v and such that IN Z; C IN R. In this case the reasoning
is the same as in Case i).

Case iii) Suppose Z; € mfs (¢ (AS S 7)) \ ¢ (AS S 7). In that case, by definition of mfs, we
know that there exists a set K € ¢ (AS S ) such that IN Z; = IN K and then IN K CIN R.
For K we can setup a reasoning like in case ii) leading to the fact that there will exist a set in
mfs (c (AS S 7)) which is a subset of R which is in contradiction with the assumptions, and thus
such an Z; cannot exist.

This ends the proof for each of the cases for Z; and shows that in all sets Z € mfs (¢ (AS S 7))
we can choose an element, with an input part different from all those of elements of R. And
because we can find such an element in every such Z we can also find it in each set A € AS S ~.
In fact, let A’ be a set in ¢ (AS S 7). If it is functional then A’ = Z for some Z as above. If it
is not functional then it includes some functional set Z as above. In particular this holds for all
Ae€eASSn.

Now let’s choose in each Z; € mfs (c (AS S 7)) one element z; such that the input part of z; is
not in INR. Let’s call X the set of input parts of all this elements z;, that is X = {i | (i,u) €
{z1,...,2,}} = {i1,...,ir}. Clearly, L & Result(Ez(y,X),S) because for each A € AS S v there
exists an element (i,u) with ¢ € X as shown before. On the other hand, as we will show below,

1 € Result(Ez(v, X),S') which contradicts the hypothesis S CEX g

~YMUST
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Ex({i1,...,ik}) = (i Az W) + ..o+ (ig; Az W)

Figure 29: Definition of Ex(X)

What we have to show is that there exists a state s’ of S’ which can be reached by s, by performing
~ such that the following computation, where Exz(X) is shown in Fig.29, is unsuccessful:

Ex(v, X) || sig ~ ...~ Bz(X) || 8’

Recall that v € lanS’. So, the fact that the above computation is unsuccessful means that there
exists s’ such that IN(Ss' e)n X = 0.

There are three possibilities:

i) R € AS &' v which means that there exists an s’ such that (S s’ ¢) = R € AS S’ 7. And we
know that (IN R)n X = 0.

ii) R € ¢ (AS &' v) \ AS &' v. By definition of closure, this implies that there exists an s’ such
that (S s’ €) € ASS' vand (S s’ €) C R. So, IN(S s' €) C IN R, but again we know that
(INR)NX =0.

iii) R € mfs(c (AS &' 7))\ (c (AS & v) UAS &' 7). This means that there exists a set
K € ¢ (AS &' v) such that R € mfs{K}. By definition of closure, this implies that there exists
an s’ such that (Ss'€) € ASS' v and (S s'e) C K. So, IN(S s’ €) CIN K. Since R is a maximal
functional subset of K we know that IN K = IN R, so again (S s’ ¢) C R with IN RN X = {).
This proves the lemma. |

The following is an obvious corollary of Lemma B.1

Corollary B.1 For all finite LTSs S, S’ over L = Ly x Ly the following holds: S EMUST S
implies lanS' C lan S

Proof of Theorem 4.2

Teaa S <raa TranS'
& {Def. of <paa}
lan (Teaa S) = lan (Teaa S') AVy € lan(Teaa S)- ASpan (Traa S') ¥ € ASpan (Tean S) v
& {Def. of Tran}
lanS =lan S'AVy € lan S. mfs(c (ASS' 7)) C mfs(c (AS S 7))
& {Lemma B.3 below ; Notice that lan S = lan &’ implies UzE(AS s T = UzE(AS sy ¥ }
lanS=lanS'AVy € lanS. mfs(c (AS S v)) cCmfs(c (AS S 7))
& {y€lanS =lan S" iff ASS v =AS &' v = 0 from the def. of AS}
lan S = lan 8’ AVy € L*. mfs(c (AS S' v)) cC mfs(c (AS S 7))
& {Def. of <<pypsr ; Theo .4.1 (b)and Corollary B.1}
lan S Clan S'AVy e L*. mfs(c (AS S'v)) cC mfs(c (AS S 7))
& {Def. of <<pay , <<musr, << }

S << & O
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In the proof above the following lemma have been used.

Lemma B.3
For X,Y finite sets of finite subsets of L such that J,c.xz = Uyeyy the following holds:
mfs(c X) cCmfs(cY) iff mfs(c X) Cmfs(cY) O

Proof

The proof consists of two parts, one for each implication.
i) <-part: trivial.
ii) =-part uses Lemma B.4 below

z emfs(c X)

= {Def. of CC}
Jyemfs(cY). yCux
= {Def. of mfs}
JzecY yemfs{z}AyCxz
= {Lemma B.4 below}
(xUz)ecY Az emfs{zUz}
= {Def. of mfs}

zemfs(cY) O

Lemma B.4 For X,Y finite sets of finite sets over L such that |J,.x * = Uyeyy the following
holds: zecY Ayemfs{z}AyCaz=>azUzecY Az emfs{zUz} <&

Proof

First we prove that x Uz € ¢ Y. We know that z € ¢ Y and obviously z C x U z. Moreover, from
the definition of closure we know that (U,cy y) € ¢ Y. So:

2 C Upex v

= {By hypothesis |J,cx v = Upecy @}
zCUpeyw

=> {z€cY}
rCUpeywAzECY

= {z€cY = 2 C U,y w by def. of closure}
rU2C Uyeyw

= {zCzUz}
2C(xzU2)A(2U2) CUpeyw

= {Def. of ¢ }
zUzecY

Now we prove that z € mfs{z U z}. The proof is by derivation of a contradiction. For finite set
w over L, we let func w denote the predicate V(i1,u1), (i2, u2) € w. i1 = i2 = u1 = uz. Suppose
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zgmfs{zUz}
zgmfs{zUz}
= {Def. of mfs; x is functional}
dkCzxUz xCkA funck
= {Set theory}
Ja€ez\z.a€k
= {y € mfs{z} Az Nz =y see note below; Set theory}
yCkNz

= {k N z is functional since k is functional; kN z C z}
y & mfs{z}

The fact that we derive that y is not in mfs{z} is in contradiction with the assumptions. So we
proved z € mfs{z U z}. Note that in the one but last step in the proof above we used y = z N z.
The reason is that y C z and y € mfs{z} by hypothesis and this last fact implies y C z. Thus
y C N z. Moreover, z is functional so also N z must be functional and of course z Nz C 2. But
y € mfs{z} so it cannot be y C (z N z). O

B.2 Proofs related to Sect. 5

Proof of Lemma 5.1

Part i -
Follows directly from Lemma A.1 (i)

Part ii -
¢ o

= {Second rule of Def. 5.3}

H10:(C{e}) B (C,8)
= {Lemma A.1 (ii)}

c=C
Part iii -
By contradiction. Suppose there exist C' € Confg and £ € O such that C i/;gg C' while also
C e_/>22 C. By the first rule of Def. 5.3, C i/fg C' would imply H 1 § :: (C,{e})%(C’,é’)
for some £ # . But from C e—/>22 C, by the second rule of Def. 5.3, we would also have
H410:(C {e})-L (C", &), which, using Lemma A.1 (i) and (iii), would lead to AL # 0. H 1
0:(C,{e}) £, which is a contradiction. O

Proof of Proposition 5.1

We first consider the direct implication.

(€, &) =5 (C', (Join E" £))
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= {Def. of =N (see Def. 3.3)}
Jec E.HT0:(C {e}) £ (C',EYN(Sel Ee £

There are two cases: £ # () and £ = 0.
Casel1-L#£(

= {First rule of Def. 5.3, Def. of ¥Queue(F)}

Je € E.C L5 5! A

YQueue(E) 5 AX.X # ¥ = ZQueue(Join £ X) + X = ¥ = ZQueue(E")
= {Def. 3.5,Def. of ZQueue(F), ' € O}

(2Queue(€) || C) ~ (XQueue(Join E" E") || C")

Case2-L=10

= {Lemma A.1ii)}
JeecE.H1D:(C{e}) L (C,EVANSelEE")NE =)
= {Second rule of Def. 5.3, Def. of ¥Queue(F)}
Jee E.CE,5C'NE = () A
YQueue(£) = AX.X # ¥ = TQueue(Join £ X) 4+ X = ¥ = YQueue(E”)
= {Def. 3.5,Def. of EQueue(F)}
(SQuete(£) [| C) ~ (SQueue(") || C') A E" = )
= {€'={)=> Join&" &) =¢&"}
(2Queue(€) || C) ~ (XQueue(Join E" &) || C')
Now we consider the reverse implication.
(2Queue(€) || C) ~ (XQueue(Join E" E") || C')
= {Def. 3.5,Def. of XQueue(F)}
Je € E,u €%0p.C-L%5C' A (Sel £ e E") A
YQueue(€) - AX.X # ¥ = YQueue(Join £ X) + X = ¥ = %Queue(E")
There are two cases: X # X and X = X.
Casel - X #%

= {First rule of Def. 5.3}
JecE,L#0,E €Op. HT0::(C,{e}) £ (C',EYN(Sel Ee £

= {Def. of £ (see Def. 3.3)}
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L. (C,€) =5 (C', (Join £" £"))

Case2-X =X

= {Second rule of Def. 5.3}
Jec B, cOp. H10:(C{e}) L (C,E)VASelEe&")
= {Def. of =5 (see Def. 3.3)}

L. (C,E) =5 (€', (Join E" £)) O

Proof of Lemma 5.2
ye(lanS) ANie Ly ANueOUT S ~i

= {Lemma B.5}
v(i,u) € (lan §')
= {(lan &") C (lan S) by hypothesis}
~v(i,u) € (lan S)
= {Lemma B.5}
uw€OUT S~vi O

Proof of Lemma 5.3
By contradiction; suppose that there exists v € (lan 8') \ (lan S). Let 7 the longest prefix of
such that ¥ € (lan S); such a prefix exists since at least € € (lan S) by definition. Let us assume
v = ¥(i,u)y' for some i € L,u € Ly;,y" € (L} x L;)*. We can now derive the following:

¥(i,u) € (lan S")

= {Lemma B.5}
ueOUT S 714

= {7 € (lan S) by assumption; i € L) by assumption; L) C Ly and 8" C_; S by hypothesis}
u€OUT S7vi

= {Lemma B.5}
¥(i,u) € (lan S)

which is a contradiction since ¥(i,u) is a prefix of . O
The above proofs used the following lemma:

Lemma B.5
For S finite LTS over Ly x Ly,i € Ly,u € Ly and v € (L; X Ly)* the following holds:
u € (OUT S i) iff y(i,u) € (Jlan S) <o

Proof
u € (OUT sv1)
& {Def. of OUT}
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3s'. (s > s') As (i
& {Def. of "Y1
ERAPRICIN
& {Def. of lan}

~(i,u) € (lan s) O

Proof of Theorem 5.1

Let S = A TS(H) and L = Ly x Ly. We proceed separately in the proof of soundness and
exhaustiveness.

Part 1: - soundness

Suppose there exists test case Y € TDy z (lan S) and implementation S’ over L' = L} x Ly,
such that &' C., S and V U S’ = fail. Using Lemma B.6 with lan S for 7, we know that this
would imply that there exists v € (lan' S), i € Ly and u € Lj; such that w € OUT &' 7 ¢ and
u & OUT" (lan 8) 7 4. But then, by Lemma B.12, we get also u € OUT S v ¢ which contradicts
S'C,S.

Part 2: - exhaustiveness

Suppose &' ., S, for implementation 8" over L' = L} x Lj;. This means that there exist
v € (lan8),i € Ly, u € Ly, such that u € OUT &' v i\OUT S 4. Moreover, OUT* (lan S) v i # 0
because S is input enabled and OUT* (lan 8) v 4 = OUT S v i by Lemma B.12. Thus we can
apply Lemma B.7 with lan S for F to get the assert. m|

Lemma B.6

Let L = Ly x Ly and L' = L} x Ly;. For all F C L*, tmplementation S' = (S',s),,L',—),
U € TDr 1 F, unsuccessful computation n € Comp(U,S') there exist v € F, i € Ly, u € Ly; such
that 1 runs over v(i,u) and u € (OUT s, v i)\ (OUT" F v 1) O

Proof

By induction on the structure of I/
Base case (U = 7; W;9):
There is no unsuccessful computation in Comp(7; W;4§,S’) so the assert is trivially proven.

Induction step: (U =i;Az...):

We can assume by the Induction Hypothesis that there exists i such that i € L;NL}, OUT* Fei =
{uy...ur} #0 and U = 4; T with

7T = )\.%':LIU. r=u = U
+
+
T =ur = Uy
+

& {ug,...,ux} = 0

where U; € TDp  (F after® (i,u;)) for j = 1,...,k. So every (unsuccessful) computation
n € Comp(U,S") must have the form

n=U| sy~ (Ta)|ls'~...
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for some @ € L; and s’ such that s, G4 o Notice that such @ and s' exist since S' is input
enabled over L' and ¢ € L. We distinguish two cases:

Case 1: 4 ¢ OUT* Fei

For every such 4 ¢ OUT" F € ¢ and s’ such that si G%) o there is only the unsuccessful
computation

m=U| s~ (@] )
since in this case Za = &, by definition of /. Thus the assert is proven with v =€, i =i, u = @:
@ € (OUT &' €1), since s/, S s',and a € OUT* Fei
Case 2: 4 € OUT" Fei
For every 7 as above we know that its continuation

nQZ(fﬂ)Hs"\»

is an unsuccessful computation in Comp(Y, s') where i = I 4 are elements of TD, ;- (Fafter* (i, a))
and s’ input enabled over L'. Thus, for every & and s’ as above we can apply the Induction
Hypothesis with F after* (i,4@),s',U and find 5 € F after* (i,@), i € Ly and u € L}, such that 7,
runs over ¥(i,u) and u € OUT s' 74 but u € OUT" (F after* (i,a)) 7 1.

We now observe that

e (i,@)y € F, by def. of after*, since ¥ € F after* (i, @),
e 7 runs over (i,%)¥(i,u), sincen =U || ' ~ n2, U SN 7,8, @) s, = @ and 1, runs over
(i, u),

e u € OUT &' (i,0)% i, by Lemma B.9, since s, G o and u e OUT s' 71
o u & OUT* F (i,4)7 i, by Lemma B.14, since u is not an element of OUT* (F after* (i,4)) 7 i

which proves the assert with v = (4,%)% and i and u as above.

Lemma B.7

Let L=Lrx Ly and L' = L) x L;. For all F C L*,i € Ly, v € F such that OUT* F v i # 0,
implementation S' = (S', s}, L',—), and u € Ly; such that uw € (OUT S’ v i) \ (OUT" F ~ i),
there exists U € TDy, r+ F such that VU S' = fail O

Proof

We proceed by induction on 7.

Base case (y = €):

By hypothesis we know that i € Ly and OUT* F € i # 0; moreover i € L} by Lemma B.5 since
(OUT &' vi) # 0 and S’ is an LTS labeled over L'. Thus the following test case U belongs to
TDr,pr F: U = i; T with

I = Xe:Lj;. z=u => U
+
+
T =ur = Uy
+

a:g_f{ul,...,uk} = 0
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where {uq,...,up} = OUT" F € i and U is an element of TDy, 1+ (F after” (i,u;)) for j =1,... k.

Moreover Zu = &, since by hypothesis u ¢ OUT* F € i, and s}, G4 o for some o , since
u € OUT s/, € i. Thus we can build the following unsuccessful computation

U] sin~ (Tu) || &'
which makes V U S’ = fail hold.

Induction step (y = (4, %)%):
We know that

e i € Ly, since (i,u)y € F C L* by hypothesis,

e i € L}, by Lemma B.11, since OUT &' (i,u)¥ i # @ by hypothesis,

e OUT" Fei # 0, by Lemma B.13, since OUT* F (i,u)%y i # 0, by hypothesis.
Thus the following test case U belongs to TDy + F: U = i;Z with

I = Mo:Ljj. z=u => U
+
+
rT=ur = U
+

z & {u1,...,up} = 0

where {u1,...,ur} = OUT* F € i and UY; is an element of TDy, 1+ (F after® (3,u;)) for j = 1,..., k.
We observe now that

e 4 € OUT* F €4, by Lemma B.13, since OUT* F (i,u)¥ i # 0 by hypothesis,
e j € F after* (i,u), by definition of after*, since (i, %)y € F by hypothesis,
e OUT™ (F after* (i,@)) ¥ i # 0,by Lemma B.14, since OUT* F (i,u)7 i # 0 by hypothesis.

Thus, using the Induction Hypothesis, we know that for every s’ such that s{, ﬂ; s" and u element
of OUT s' 7i\ OUT" (F after*(i,a)) 7 i, there exists U element of
TDy 1 (F after® (i,u)) such that V i s' = fail, which means that there exists an unsuccessful

computation B
Ul s~ ...

But this in turn implies that for every such (i,4) and every u € OUT &' (i,u)¥ i\OUT* F (i,u)7 i
there is an unsuccessful computation

Ul siy~UL s~ ...
in Comp(U,S'). This last fact follows from the fact that OUT &' (i,@)¥y i = |J @w  OUT s 714,
sl:sl s’

by Lemma B.9, and OUT* (F after* (i,4)) ¥ ¢ = OUT* F (i,@)¥y i, by Lemma B.14. So,
VUS = fail. m|

General properties of operators used in the above proofs

The following lemmas follow from the relevant definitions. The detailed proofs are provided in
[14].
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Lemma B.8 For all LTS (S,s4,L,—), s € S, v,7 € L* the following holds: s after yy' =

Us':sim' s' after ' &
Lemma B.9 For all LTS (S, 8in, L1 X Ly,—), s € S, v,v' € (L1 x Ly)*, i € Ly the following
holds: OUT svy'i=U,,  ~,, OUT s v"i O
Lemma B.10 For all LTS (S, sin, Lix Ly, —), Z1,7Z2 C S, i € Ly the following holds: out (Z;U
Zg) = (out YAl Z) U (out 7o Z) o
Lemma B.11 For all LTS S = (S, Sin, L1 X Ly,—), s € S, 1 € L; C X for some X , u € Ly,
v € (L; X Ly)* and i € X the following holds: OUT s (i,u)yi #0 =i € Ly O
Lemma B.12 For all LTS S = (S, 8in, L1 X Ly,—), v € (lan S), i € Ly the following holds:
OUT" (lan8) vi = OUT sy, v i O
Lemma B.13 For all F C (L; x Ly)* 4,9 € Ly, u € Ly, v € (Lr X Ly)* the following holds:
ouT" F (i,u)yi' #0=>ue OUT Fei <o
Lemma B.14

For all F C (Lr x Ly)*, v,v' € (L1 X Ly)*, i € Lt the following holds: QUT* (F after" v) v' i =
ouT" F~v"i o

Lemma B.15 Forall F C (L;yxLy)*, v,7" € (LyxLy)*, the following holds: (F after* ) after* v =
F after” vv' <o

B.3 Proofs related to Sect. 6

Proof of Theorem 6.1

Part i -
cLe

< {Def. 4.2}
ICA0. H10:(C,{e}) £ (C,E)
& {Rule (1) of Def. 5.3}

c Lo

Part ii -
A" € Conty, € € Op.C L5 ¢
& {Def. 4.2; Logics}
AL C Tr H,C' € Confy,E € Op. H1 0 :: (C,{e}) £ (C', &)
\%
3C' € Confy, & € Op. H1 0 :: (C, {e}) L (', €)
& {Lemma A.1 (i) and (ii)}
H10:(C{e}) B (C,0)
= {Rule (2) of Def. 5.3}
= {Rule (2) of Def. 5.3; Lemma A.1 (ii)}
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cBc O

Proof of Lemma 6.1

Part i -

Suppose *C —5x, *C'. Without loss of generality assume v = agfoa1fi .. . apnfBy with a; € (E x
Op)*, B; € (Ex{X})* fori = 0,...,n. In particular, this means that there exist *Cy,*Cy, ..., Cpi1

such that
z:C() = EC, Ecn+1 = ECI
%o -85, %0, By T, Ny L st T, s Ye, o BT,

Notice that *C; 5—312 *C; i.e., the configuration does not change by performing 3; 1, due to Lemma
5.1(il). Thus, from the above sequence of transitions we easily get the following one:

EC(] ﬂz EC]_ _a}z P a_";é Ecn ﬂz Ecn+]_

But then, noting that v\¥ = apaq ...a, € (E x Op)* and using Corollary 6.1, we get easily
c B
Part ii -
Let LTS(H) = (Confg,Cin, — ) and *LTS(H) = (Conf g, *Cin, — x)
v € (lan 2LTS(H))

= {Def. of lan}
' i —Hy 3T
= {Part (i) of this lemma}
3. (G 25 1)
= {Corollary 6.1; y\X € (E x Og)*}
30" (Cn 25 ') A (i 235 7C1)
= {Def. of lan; Logics}
v\ € (lan LTS(H)) N (lan ®LTS(H))
Part iii -

Directly follows from Corollary 6.1. O

Proof of Lemma 6.2

We prove lan LTS(H') C lan LTS(H), that is LTS(H') <<wmay LTS(H), which, due to Theorem
4.1 is equivalent to LTS(H') T LTS(H).

v € lan LTS(H')

= {Lemma 6.1 (iii)}
v € lan BLTS(H')

=  {Lemma 5.3; LTS(H') C_, LTS(H) and E' C E by hypothesis}
v € lan BLTS(H)

MA

= {Lemma 6.1 (ii); v € lan LTS(H') implies v\X =~}
v € lan LTS(H) m|
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Proof of Lemma 6.3
We let LTS(H) = (Confy, Cin, — ), LTS(H') = (Confy:,C! , — ), LTS(H) = (Confy,*Cin, — x),
and 2:LrI‘S(.Hl) = (COIlle,z‘Ciln, —)E).

We proceed by contradiction. Suppose >LTS(H') C., *LTS(H) that is there is an experimenter
U such that L ¢ Result(U,LTS(H)) and L € Result(U,LTS(H')). Let n =U || C{, ~ ... be an

unsuccessful computation in Comp(U,LTS(H')). We distinguish two cases according to 7.

Case 1: 7 is finite
W.lg. let us assume n = U || C}, ~ ... ~ U, || C' and there exist no Uy,41 || C" such that
Uy, || C' ~» Upny1 || C". In this case we have a derivation C,, — C’ on the side of LTS(H'), with
v=1(e1,&1)...(ex, &) € (E x Og)*, and a sequence of transitions U; iy Oj,forj=1...n-1,
such that either p; = e; and Ujy1 = (O; &;), for some ¢ with 1 <4 <k, or p; =7 and U1 = O;.
Notice that the derivation on the side of the experimenter involves a sequence ' which is equal
to v up to 7 moves.

First of all, notice that it cannot be i,, — since otherwise 7 could not be a computation, not
being maximal. There are two other possibilities left® :

Case 1.1: Ve € E. U, <=7 € ©5.C' /5

By Lemma 6.2° we know that v € lan LTS(H) since 7y € lan LTS(H'), by definition of lan LTS(H')
and *LTS(H') C., LTS(H) by hypothesis. Moreover, by Lemma 6.1 (iii), we also know that
v € lan ®LTS(H). Thus, again by *LTS(H') C_, *LTS(H), we get

OUT *LTS(H') v e C OUT *LTS(H) vy e (2)

since v € lan LTS(H) and e € E°.

Moreover, by hypothesis we know that there is no £ such that C’ ﬁ), so, by Theorem 6.1,
we also know that *C’ e_/)zz- Moreover, *C —5x X', by Corollary 6.1, since C/, — €' and
v € (E x Og)*. By definition of OUT, we get ¥ € OUT *LTS(H') v e so, using relation (2) above
we can conclude ¥ € OUT *LTS(H) 7 e. But then, again by definition of OUT, we derive that
there exists C such that *Ci, —»y, *C and *C e—/gz), and again by Theorem 6.1 and its corollary we

get C is) for no £ € O and Ci, —4 C. This means that we can build the following computation
U || Cin ~ ..Uy || C, which is an unsuccessful computation since  above was so. This contradicts
1 ¢ Result(U,LTS(H))

Case 1.2: U, = fornoec E

By Lemma 6.2 we know that ~ € lan LTS(H) since v € lan LTS(H') and *LTS(H') C_, *LTS(H).
This means, by definition of lan LTS(H), that Ci, 4 C for some C. But then we can build the
following computation U || Cin ~ ...U, || C, which is an unsuccessful computation since 1 above
was so. This contradicts L ¢ Result(U,LTS(H))

Case 2: n is infinite
Also in this case the computation gives rise to one derivation on the side of LTS(H'), C!, -+ and to

a sequence of transitions U; 4, O; on the side of U, which involves infinite string 7' € (Ex 0g)*,
which is equal to v up to 7 moves. We distinguish two cases:

8Notice that E C E’ is necessary otherwise considering only cases 1.1 and 1.2. would not be enough. In
’
particular, it could be the case that U, —— for some e’ € E\ E’ (notice that in this case U should be over EU E')
7
=
and U, /- for all e € E’. This would mean that n would be maximal but we could not infer *Cj;, L/m and in

fact it could very well be XC;p, ﬂ)‘gg for some &' € O and this extra step could bring to success so we would not
reach contradiction.

9Here we need E' C E.

10Notice that we can say e € E because E = E’. Otherwise the hypothesis would be e € E’ and here we would
need again E' C E.
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Case 2.1: Vn > 0. 3m > n. the m-th element of 4’ is not 7
From the operational semantics rules of experimental systems (Def. 3.5) we get that also + is
infinite. For each finite prefix ¥ of v, by Lemma 6.2 we get 4 € lan LTS(H) since *LTS(H') C_,

“LTS(H) by hypothesis. By definition of lan LTS(H) this means Ci, —». Thus we can build
infinite computation U || Cin ~ ..., using, in each step j exactly the same U; appearing in 1 and
the same prefix of v on which 7 is running up to step j. Notice also that there can be more than
one successive steps using the same prefix 4 due to the fact that U; -5 may hold. In conclusion,
also in this case we reach a contradiction since the computation we can build involves the same
U;, for j > 0, occurring in 7, which is unsuccessful.

Case 2.2: In > 0. Vm > n. the m-th element of 7' is 7
In this case <y is finite and by Lemma 6.2 we get Cin . Therefore we can build an unsuccessful
computation U || Cin ~ ... as in Case 2.1 reaching a contradiction. O

Proof of Lemma 6.4

"LTS(H) 5, LTS(H')

& {Theorem 4.1}

ATS(H) <<wmay LTS(H')
& {Def. 4.6}

lan ®LTS(H) C lan *LTS(H")
= {Lemma 5.2}
&= {Lemma 5.3; E C E'}

SLTS(H) C,, LTS(H') O

Proof of Lemma 6.5

ATS(H) T,
= {Corollary B.1}
lan >LTS(H') C lan *LTS(H)

= {Lemma 5.2}

SLTS(H') C,, SLTS(H) O

SLTS(H')

Proof of Theorem 6.2

Part i -
ATS(H") S PLTS(H') APLTS(H') E,, "LTS(H)
& {Theorem 4.1 (a)}
lan ®LTS(H") C lan 2LTS(H') A®LTS(H') C_, *LTS(H)
= {Lemma 5.3; E' C E}
lan ®LTS(H") C lan ®LTS(H') A lan *LTS(H') C lan 3L TS(H)

57



= {Set Theory}

lan ®LTS(H") C lan L TS(H)
= {Lemma 5.2}

SLTS(H") C,, *LTS(H)

Part ii -
ATSH') L~ ALTS(H") ALTS(H') C,, *LTS(H)
= {Corollary B.1}
lan *LTS(H") C lan ®LTS(H') AXLTS(H') C,, *LTS(H)
= {Lemma 5.3; E' C E}
lan *LTS(H") C lan ®LTS(H') A lan *LTS(H') C lan L TS(H)
= {Set Theory}
lan "LTS(H") C lan *LTS(H)
= {Lemma 5.2}
YL TS(H") C,, LTS(H)

Part iii -

Directly follows from Part (ii) and the fact that L is stronger than

Part iv -

"LTS(H') C,, "LTS(H) ALTS(H) T “LTS(H")
= {Lemma 5.3, E' C E}

lan "LTS(H') C lan *LTS(H) A®LTS(H) 5 *LTS(H")
= {Theorem 4.1 (a)}

lan SLTS(H') C lan "LTS(H) A lan "LTS(H) C lan SLTS(H")
= {Set Theory}

lan "LTS(H') C lan "LTS(H")
= {Lemma 5.2}

ATS(H') C., *LTS(H")

Part v -
A TS(H')C,, LTS(H) AELTS(H") E

~MUST

SLTS(H)
= {Lemma 5.3; E' C E}
lan SLTS(H') C lan SLTS(H) A SLTS(H") C

~YMUST

SLTS(H)
= {Corollary B.1}
lan *LTS(H') C lan "LTS(H) A lan *LTS(H) C lan “LTS(H")
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= {Set Theory}

lan ®LTS(H') C lan 2LTS(H")
= {Lemma 5.2}

SLTS(H') C,, *LTS(H")

Part vi -

Directly follows from Part (v) and the fact that & is stronger than EMUST by Def. 4.3. O

Proof of Proposition 6.1
SLTS(H)C_ PLTS(H')

& {Theorem 4.1}
A TS(H) <<aay LTS(H')

& {Def. 4.6}
lan "LTS(H) C lan "LTS(H')

= {lan LTS(H) C lan *LTS(H) by Lemma 6.1 (iii)}
lan LTS(H) C lan ®LTS(H')

= {(lan LTS(H)) \X = lan LTS(H); Lemma 6.1 (ii)}
lan LTS(H) C lan LTS(H")

& {Def. 46}
LTS(H) <<wmay LTS(H')

& {Theorem 4.1}
LTS(H) C LTS(H') O

Proof of Proposition 6.2
SLTS(H) T PLTS(H')

= {Corollary B.1}
lan >LTS(H') C lan *LTS(H)
= {Lemma 5.2}
SLTS(H') C,, *LTS(H)
=  {Lemma 6.3'}
LTS(H)E _ LTS(H') O

~YMUST

Proof of Proposition 6.3
The proposition directly follows from Propositions 6.1 and 6.2. |

1 The use of Lemma 6.3 requires E = E’
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