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Abstract. Service contracts offer a way to define the desired behavioural
compliance of a composition of services, characterised by the fulfilment of
all requirements (e.g. service requests) by obligations (e.g. service offers).
Depending on their granularity, requirements may vary according to their
criticality and contain real-time aspects (e.g. service expiration time).
Synthesis of safe orchestrations, the standard method to refine spurious
compositions into compliant ones, is of paramount importance. Ideally,
safe orchestrations solve competition among matching requests/offers,
respecting criticalities and time constraints, in the best possible way.
The contribution of this paper is (i) the introduction of timed service con-
tract automata, a novel formalisation of service contracts with (ii) real-
time constraints and (iii) service requests with varying levels of criticality,
and a means to compute their (iv) composition and (v) safe orchestration.
Orchestration is based on the synthesis of the most permissive controller
from supervisory control theory, computed using the concept of zones
from timed games. An intuitive example illustrates the contribution.

1 Introduction

Service computing is concerned with the creation, publication, discovery and
orchestration of services [1]. A typical application is an orchestration of services
created and published by different organisations that are dynamically discovered.
In the recent Service Computing Manifesto [2], service design is listed as one of
the four emerging research challenges in service computing for the next 10 years.

Formal models of service contracts are surveyed in [3]. These offer specifica-
tion frameworks to formalise the externally observable behaviour of services in
terms of obligations (i.e. offers) and requirements (i.e. requests) to be matched.
Contracts that are fulfilled characterise agreement among services as an orches-
tration (i.e. composition) based on the satisfaction of all requirements through
obligations. Orchestrations must be able to dynamically adapt to the discovery
of new services, to service updates and to services that are no longer available [4].

In this paper, we include notions of time in one such model, viz. (service) con-
tract automata [5]. Such an automaton represents either a single service (called



a principal) or a multi-party composition of services. The goal of each principal
is to reach an accepting (final) state by matching its requests with corresponding
offers of other principals. The underlying composition mechanism is orchestra-
tion. Service interactions are implicitly controlled by an orchestrator synthesised
from the principals, which directs them in such a way that only finite executions
in agreement actually happen. The (verifiable) notion of agreement characterises
safe executions of services (i.e. all requests are matched by corresponding offers).

In [6], service contract automata were equipped with modalities distinguish-
ing necessary and permitted requests to mimick the uncontrollable and control-
lable actions, respectively, as known from Supervisory Control Theory (SCT) [7].

Contribution. We introduce timed service contract automata (TSCA) by en-
dowing service contract automata with real-time constraints. TSCA also allow
to specify different types of necessary requests, called urgent , greedy and lazy,
with decreasing levels of criticality as in [8], which are key aspects to ensure that
certain necessary requests must always be satisfied (e.g. in each possible context)
while others must eventually be satisfied (e.g. in specific contexts). To handle
this in a synthesis algorithm for TSCA, a notion of semi-controllability is used,
which encompasses both the notion of controllability and that of uncontrollabil-
ity as used in classical synthesis algorithms from SCT. Our synthesis algorithm
mixes and extends techniques from SCT with notions from timed games [9, 10].

A TSCA orchestration thus solves multi-party competitions on service actions
and on the associated timing constraints, a natural scenario in service computing.
Moreover, TSCA offer a lot of flexibility in the design of service systems through
different levels of critical requests and, in particular, by allowing to indicate
those service offers and requests that can possibly be (temporarily) ignored in
an orchestration to avoid it becoming unsafe. This neatly delimits the fragments
(i.e. executions) of service compositions allowed in safe orchestrations (cf. Fig. 4
discussed in Sect. 4). By changing the timing constraints or criticality levels,
designers can fine-tune such fragments according to their specific needs.

We summarise our contribution: (i) we introduce TSCA, a new formalisation
of service contracts with (ii) real-time constraints and (iii) service requests with
varying criticality levels, and a means to compute TSCA (iv) composition and
(v) safe orchestration. We are not aware of other formalisms for service contracts
or component-based software engineering with native support for these features.
We illustrate its functioning with a TSCA model of a Hotel reservation system.

Related Work. Formalisms for service contracts and session types are surveyed
in [11]: all of them lack an explicit notion of time and different levels of criticality.

Component-based formalisms like Interface automata [12] and (timed) (I/O)
automata [13–15] cannot model contracts that compete for the same service offer
or request, a key feature of TSCA, and also do not allow different criticality levels.
Modal I/O automata [16] distinguish may and must modalities, thus admitting
some actions to be more critical than others, but the other differences remain.
The accidentally homonym contract automata of [17] were introduced to model
generic natural language legal contracts between two parties: they are not compo-
sitional and do not focus on synthesising orchestrations of services in agreement.



Finally, the synthesis algorithm for TSCA (introduced in Sect. 3) resembles
a timed game, but differs from classical timed game algorithms [9, 10]: it solves
both reachability and safety problems, and a TSCA might be such that all
‘bad’ configurations are unreachable (i.e. it is safe), while at the same time no
final configuration is reachable (i.e. the resulting orchestration is empty). TSCA
strategies are defined as relations: the orchestration is the maximal winning
strategy, which is computable since only finite traces are allowed [18] and all
services terminate by definition. The orchestrator enforces only fair executions.

2 Modelling Real-time Service Contracts

Contract automata were introduced to describe and compose service contracts [5].
A contract automaton represents the behaviour of a set of principals (possibly a
singleton) which can either request, offer or match services (a match is a pair of
complementary request-offer services) or remain idle. The number of principals
in a contract automaton is called its rank. The states and actions labelling the
transitions of a contract automaton (of rank n) are vectors (of rank n) over the
states of its principals and over the actions that each performs, respectively.

Notation. The complement of a finite set S is denoted by S; the empty set by
∅. For a vector v = (e1, . . . , en) of rank n ≥ 1, denoted by rv, its ith element is
denoted v(i), 1 ≤ i ≤ rv. Concatenation of m vectors vi is denoted by v1 · · ·vm.

The set of basic actions of a contract automaton is defined as Σ = R∪O∪{•},
where R = {a, b, . . .} is the set of requests, O = {a, b, . . .} is the set of offers,
R ∩O = ∅, and • 6∈ R ∪O is a distinguished element representing an idle move.
We define the involution co(·) : Σ 7→ Σ s.t. co(R) = O, co(O) = R and co(•) = •.

We stipulate that in an action vector a over Σ there is either a single offer
or a single request, or a single pair of request-offer that matches, i.e. there exist
i, j such that a(i) is an offer and a(j) is the complementary request or vice versa;
all the other entries of a contain the symbol • (meaning that the corresponding
principals remain idle). Let •m denote a vector (•, . . . , •) of rank m.

Definition 1 (Actions). Let a be an action vector over Σ. Let n1, n2, n3 ≥ 0.
If a = •n1α•n2 , then a is a request (action) on α if α ∈ R, whereas a is an

offer (action) on α if α ∈ O.
If a = •n1α •n2 co(α)•n3 , then a is a match (action) on α, with α ∈ R ∪ O.
Actions a and b are complementary, denoted by a1b, iff the following holds:

(i) ∃α∈R∪O s.t.a is either a request or offer on α; (ii)a is an offer on α implies
b is a request on co(α); (iii) a is a request on α implies b is an offer on co(α).

In [6], the contract automata of [5] were equipped with action variability via
necessary (2) and permitted (3) modalities that can be used to classify requests
(and matches), while all offers are by definition permitted. Permitted requests
and offers reflect optional behaviour and can thus be discarded in compositions.

Table 1: Classification of (basic) actions of timed service contract automata
permitted permitted necessary requests
offers requests lazy greedy urgent
a a3 a2` a2g a2u



2.1 Timed Service Contract Automata

In this paper, the set of necessary requests of the service contract automata of [6]
is partitioned in urgent, greedy and lazy requests as in [8]. These must be matched
to reach agreement, thus adding a layer of ‘timed’ variability: a means to specify
‘when’ certain (service) requests must be matched in a composition (contract).
Table 1 depicts the different types of actions considered in this paper.

We borrow notation concerning clocks from [10]. Let X be a finite set of real-
valued variables called clocks. Let C(X) denote the set of constraints ϕ generated
by the grammar ϕ ::= x ∼ k | x− y ∼ k | ϕ∧ ϕ, where k ∈ Z, x, y ∈ X and ∼ ∈
{<,≤,=, >,≥}. Let B(X) denote the subset of C(X) that uses only rectangular
constraints of the form x ∼ k. For simplicity, we consider only such constraints.
A valuation of the variables in X is a mapping X 7→ R≥0. Let 0 denote the
valuation that assigns 0 to each clock. For Y ⊆ X, let v[Y ] denote the valuation
assigning 0 for any x ∈ Y and v(x) for any x ∈ X \ Y . Let v + δ for δ ∈ R≥0
denote the valuation s.t. for all x ∈ X, (v + δ)(x) = v(x) + δ. For g ∈ C(X)
and v ∈ RX≥0, we write v |= g if v satisfies g and [g] denotes the set of valuations
{v ∈ RX≥0 | v |= g }. A zone Z is a subset of RX≥0 s.t. [g] = Z for some g ∈ C(X).

Definition 2 (TSCA). A timed service contract automaton A (TSCA for
short) of rank n ≥ 1 is a tuple 〈Q, q0, A3, A2u , A2g , A2` , Ao, X, T, F 〉, in which

– Q = Q1 × · · · ×Qn is the product of finite sets of states
– q0 ∈ Q is the initial state
– A3, A2u , A2g , A2` ⊆ R are (pairwise disjoint) sets of permitted, urgent,
greedy and lazy requests, respectively, and we denote the set of requests by
Ar = A3 ∪A2, where A2 = A2u ∪A2g ∪A2`

– Ao ⊆ O is the finite set of offers
– X is a finite set of real-valued clocks
– T ⊆ Q×B(X)×A×2X ×Q, where A = (Ar ∪Ao∪{•})n, is the set of tran-
sitions partitioned into permitted transitions T3 and necessary transitions
T2 with T = T3 ∪ T2 s.t., given t = (q, g,a, Y, q′) ∈ T , the following holds:
- a is either a request or an offer or a match
- ∀i ∈ 1 . . . n : a(i) = • implies q(i) = q′(i)
- t ∈ T3 iff a is either a request or a match on a ∈ A3 or an offer on
a ∈ Ao; otherwise t ∈ T2

– F ⊆ Q is the set of final states

A principal TSCA (or just principal) has rank 1 and Ar ∩ co(Ao) = ∅.

For brevity, unless stated differently, in the sequel we assume a fixed TSCA
A = 〈QA, q0A , A

3
A, A

2u

A , A
2g

A , A2`

A , A
o
A, XA, TA, FA〉 of rank n. Subscript A may

be omitted when no confusion can arise. Moreover, if not stated otherwise, each
operation op(Ar) (e.g. union) is intended to be performed homomorphically on
op(A3), op(A2), op(A2u), op(A2g ) and op(A2`). Finally, abusing notation, we
may write T3∪2 as shorthand for T3∪T2 and likewise for other transition sets,
and we may write a transition t as a request, offer or match, if its label is such.



qH0 qH1 qH2

y ≥ 50
discount
y ← 0

room
y ← 0

y ≥ 5
card3
y ← 0

y ≥ 5
receipt
y ← 0

y ≥ 4
cash3
y ← 0

(a) Hotel

qD0 qD1

qD2qD3

discount2`

card
receipt3

(b) DiscountClient

Fig. 1: TSCA: (a) hotel booking system; (b) discount client
Pictorially, offer actions are overlined while request actions are not. Moreover,

permitted actions label dotted transitions and are suffixed by 3, whereas urgent,
greedy and lazy necessary actions label red, orange and green transitions and
are suffixed by 2u, 2g and 2`, respectively (cf. Table 1).4

Example 1. Fig. 1 shows two TSCA. The one in Fig. 1a depicts a hotel booking
system offering two room types (normal and discount) and requests payment
from clients. The discount room is only available upon waiting at least 50 time
units (t.u. for short). Then the hotel requests payment, either in cash (which
takes at least 4 t.u.) or by card (at least 5 t.u.). In the latter case only, the hotel
offers a receipt after at least 5 t.u. The TSCA in Fig. 1b depicts a hotel client,
who requests a discount room, offers to pay by card and requests a receipt.

2.2 Semantics

A TSCA recognises a trace language over actions and their modalities. Let A
be a TSCA and let # ∈ {3,2u,2g,2`}. From now on we use # as placeholder
for necessary (2) and permitted (3) transitions. A configuration of a TSCA is
a tuple (w, q, v)∈(A∪ {#})∗×Q×RX≥0 consisting of a recognised trace, a state
and a valuation of clocks. Recognised traces are such that from a configuration
(w, q, v), a TSCA either lets time progress or performs a discrete step to reach a
new configuration. This is formally defined by the transition relation→ by which
a step (w, q, v) a#−−→(w′, q′, v′) is fired iff w = a# w′ and (q, g,a, Y, q′) ∈ T#,
where v |= g and v′ = v[Y ] or else, for some δ≥0, we have (w, q, v) δ−→(w, q, v′) if
v′ = v + δ. Time progress δ is a silent action in languages recognised by TSCA.

The semantics of a TSCA A is a labelled transition system TSA = (C, c0,→),
where C=(A∪{#})∗×Q×RX≥0 is the set of configurations, c0=(w, q0,0) is the
initial configuration, for some w∈(A ∪ {#})∗, and the set of transition labels is
(A{#}) ∪ R≥0. A run of A is a sequence of alternating time and discrete tran-
sitions in TSA. Note that the traces recognised by TSCA languages are finite.

By an abuse of notation, modalities can be attached to basic actions or to
their action vector (e.g. (a2`, a) ≡ (a, a)2`). We may write (q, v) whenever w is
immaterial, (q, v) a#−−→ whenever (q′, v′) is immaterial and (w, q, v)→ (w′, q′, v′)
whenever a# or δ are immaterial. Let →∗ denote the reflexive and transitive
closure of →. The language of A is L (A) = {w | (w, q0,0)−→∗(ε, q, v), q ∈ F }.
4 In this paper, there are no examples of greedy necessary actions.



Behavioural analysis is based on exploring a (finite) simulation graph, whose
nodes are symbolic configurations, defined as pairs (q, Z), where q ∈ Q and Z
is a zone of RX≥0. Let C ⊆ C be a set of configurations and let a ∈ A. Then we
define the a-successor of X by PostA,a(C) = { c′ | ∃ c ∈ C : c a◦−→c′ } and the
a-predecessor PredA,a(C) = { c | ∃ c′ ∈ C : c a◦−→c′ }. We moreover define the
match/offer predecessor as moPredA(C) =

⋃
amatch or offer PredA,a(C).

The timed successors and timed predecessors of C are defined by C↗ =
{ (q, v+ δ) | (q, v) ∈ C, δ ∈ R≥0 } and C↙ = { (q, v− δ) | (q, v) ∈ C, δ ∈ R≥0 },
respectively. Let→ be the transition relation defined on symbolic configurations
by (q, Z) a#−−→(q′, Z ′) if (q, g,a, Y, q′) ∈ T# and Z ′ = ((Z ∩ [g])[Y ])↗.

2.3 Composition

A set of TSCA is composable iff their sets of clocks are pairwise disjoint.

Definition 3 (Composable TSCA). A set {Ai | i ∈ 1 . . . n } of TSCA is said
to be composable iff ∀Xi, Xj , i 6= j : Xi ∩Xj = ∅.

The operands of the composition operator are either principals or composite
services. Intuitively, a composition interleaves the actions of all operands, with
only one restriction: if two operands are ready to execute two complementary
actions, then only their match is allowed wheras their interleaving is prevented.
The formal definition precedes an intuitive explanation. Recall from Definition 2
that the set of actions is A ⊆ (Ar∪Ao∪{•})m. Also recall that we set # ∈ {3,2}.

Definition 4 (Composition). Let Ai be composable TSCA of rank ri, i ∈
1 . . . n. The composition

⊗
i∈1...nAi is the TSCA A of rankm=

∑
i∈1...n ri, where

– Q = Q1 × · · · ×Qn, with q0 = q01 · · · q0n
– Ar =

⋃
i∈1...nA

r
i , Ao =

⋃
i∈1...nA

o
i , X =

⋃
i∈1...nXi

– T# ⊆ Q × B(X) × A × 2X × Q s.t. (q, g,a, Y, q′) ∈ T# iff, when q =
q1 · · · qn ∈ Q, either case (1) or case (2) holds:
1. ∃ i, j, 1 ≤ i < j ≤ n, s.t. (qi, gi,ai, Yi, q′i) ∈ T

#
i ,

(qj , gj ,aj , Yj , q
′
j) ∈ T

#∪3
j , ai 1 aj holds, and

a = •uai •v aj•z,with u = r1 + · · ·+ ri−1, v = ri+1 + · · ·+ rj−1,
z = rj+1 + · · ·+ rn, |a| = m, g = gi ∧ gj , Y = Yi ∪ Yj ,
and q′ = q1 · · · qi−1 q′i qi+1 · · · qj−1 q′j qj+1 · · · qn

ork, k′ ∈ {i, j}, k 6= k′, g = gk ∧ ¬gk′ , Y = Yk,
a = •uak•v,with u = r1 + · · ·+ rk−1, v = rk+1 + · · ·+ rn, |a| = m,
and q′ = q1 · · · qi−1 q′i qi+1 · · · qn

2. ∃ i, 1≤ i≤n, s.t. (qi, gi,ai, Yi, q′i)∈T
#
i and ∀j 6= i, 1≤j≤n,

s.t. (qj , gj ,aj , Yj , q′j) ∈ T
#∪3
j , ai 1 aj does not hold, and{

a = •uai•v,with u = r1 + · · ·+ ri−1, v = ri+1 + · · ·+ rn, |a| = m,
g = gi, Y = Yi, and q′ = q1 · · · qi−1 q′i qi+1 · · · qn

– F = { q1 · · · qn ∈ Q | qi ∈ Fi, i ∈ 1 . . . n }
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Fig. 2: Excerpt of composition Hotel⊗DiscountClient of the two TSCA in Fig. 1
The composition of (untimed) contract automata has been carefully revisited in
Definition 4. Case (1) generates match transitions starting from complementary
actions of two operands’ transitions, say ai1aj . If (qj , gj ,aj , Yj , q′j) ∈ T2, then
the resulting match transition is marked necessary (i.e. (q, g,a, Y, q′)∈ T2), with
g=gi ∧ gj the conjunction of the guards. If both ai and aj are permitted, then
so is their resulting match transition t. All principals not involved in t remain
idle. In case ai1aj as before, but only one guard (i.e. either gi or gj) is satisfied,
then only the interleaving is possible and guard g = gk ∧¬gk′ requires the guard
of principal k (either gi or gj) to be satisfied and that of principal k′ 6= k not.

Case (2) generates all interleaved transitions if no complementary actions can
be executed from the composed source state (i.e. q). Now one operand executes
its transition t = (qi, gi,ai, Yi, q

′
i) and all others remain idle: only the guard

of principal i must be satisfied. The resulting transition is marked necessary
(permitted) only if t is necessary (permitted, respectively). Note that condition
ai1aj excludes pre-existing match transitions of the operands to generate new
matches.

Example 2. Fig. 2 shows excerpts of the TSCA composition of the hotel and
client TSCA of Fig. 1. The more relevant part is depicted, viz. whose semantics
is an orchestration (from initial to final state). Note that request discount2` can
either be matched with the offer discount if y ≥ 50 or not matched if y < 50.

2.4 Controllability

We now discuss the different types of actions of TSCA (cf. Table 1) in light of
the orchestration synthesis algorithm we will present in Sect. 3. To begin with,
we define dangling configurations, i.e. those that are either not reachable or
from which no final state can be reached (i.e. not successful). The orchestration
synthesis will be specified as a safety game, in which reachability of final states is
satisfied through the dangling predicate. The definition makes use of a set C of
‘bad’ configurations that are not to be traversed. Recall that A is a fixed TSCA.

Definition 5 (Dangling configuration). Let A, C ⊆ C and c = (q, v) ∈ C.
We say that c is reachable in A given C, denoted as c ∈ ReachableA(C), iff

(q0,0)
w−→∗c without traversing configurations (qr, vr) ∈ C

We say that c is successful in A given C, denoted as c ∈ SuccessfulA(C), iff
c w−→∗(qf , v′) ∈ F without traversing configurations (qr, vr) ∈ C



The set of dangling configurations in A given C is defined as DanglingA(C) =
ReachableA(C) ∩ SuccessfulA(C)

In the sequel, abusing notation, we simply say that a state q ∈ Q is dangling
(in A given C), denoted by q ∈ DanglingA(C), iff (q, v) ∈ DanglingA(C) for all
possible evaluations v. Moreover, we set Dangling(A) = DanglingA(∅).

Orchestration synthesis for (service) contract automata resembles that of
the most permissive controller from SCT; in fact, [6] provided a correspondence
between controllable/uncontrollable actions from SCT and permitted/necessary
requests of contract automata. Intuitively, the aim of SCT is to synthesise a most
permissive controller enforcing ‘good’ computations, i.e. runs reaching a final
state without traversing any given forbidden state. To do so, SCT distinguishes
controllable events (those the controller can disable) from uncontrollable events
(those always enabled). Ideally, actions ruining a so-called safe orchestration
of service contracts (a notion formally defined in Sect. 3, resembling a most
permissive controller) should be removed by the synthesis algorithm. However,
this can only be done for actions that are controllable in the orchestration.

We now characterise when a TSCA action (and the transition it labels) is
(un)controllable. We also define ‘when’ a necessary request can be matched,
stemming from the composition of TSCA (interleavings in Definition 4). Indeed,
in TSCA it is possible to require that a necessary action (either a request or a
match) must be matched in every possible configuration of the orchestration. It
is also possible to require that a necessary action must be matched in at least
one configuration from which it is fired. In the latter situation, it is possible
to safely remove those requests (or matches) from the orchestration, as long as
they appear as part of a match in some other transition of the orchestration.
Such necessary actions are called semi-controllable, basically a controllable action
becomes uncontrollable in case all possible matches are removed, but not vice
versa. Table 2 summarises the controllability of requests and matches of TSCA.

Recall that all offers are permitted. All permitted actions (offers, requests
and matches) are fully controllable. Necessary actions (urgent , greedy and lazy
requests) have an increasing degree of (semi-)controllability. An urgent request
must be matched in every possible state in which it can be executed. Accordingly,
urgent requests and urgent matches are uncontrollable. A greedy request can be
disabled by the controller as long as it is matched elsewhere; once it is matched,
it can no longer be disabled. In this case, greedy requests are semi-controllable
while greedy matches are uncontrollable. Finally, a lazy action only requires to
be matched: its matches are controllable in the orchestration, provided at least
one match is available (i.e. lazy requests and lazy matches are semi-controllable).

Table 2: Controllability of request actions and match actions
action requests matches

urgent 2u uncontrollable uncontrollable
greedy 2g semi-controllable uncontrollable
lazy 2` semi-controllable semi-controllable

permitted 3 controllable controllable



In the rest of this section, we characterise semi-controllability of transitions
(cf. Definition 6). Since we deal with real-time systems, this notion is defined on
configurations. Note from Table 2 that permitted actions are always controllable,
while urgent actions are always uncontrollable.

A semi-controllable transition t is either a (greedy or lazy) request or a lazy
match, and it is controllable in TSCA A given C if there exists a (greedy or lazy)
match transition t′ in A, which is reachable given C, and in both t and t′ the
same principal, in the same local state, does the same request, and additionally
the target configuration is successful given C. Otherwise, t is uncontrollable.

Definition 6 (Semi-controllable transition). Let A be a TSCA, let C ⊆ C
and let t = (q1, g1,a1, Y1, q

′
1) be a transition of A. Then t is semi-controllable

if it is a request on a ∈ A2g ∪A2` or a match on a ∈ A2` .
At the same time, t is either controllable or uncontrollable in A given C.
We say that t is controllable in A given C if ∃ t′ = (q2, g2,a2, Y2, q

′
2) ∈ T2,

s.t. a2 is a match, ∃ v s.t. (q2, v) ∈ ReachableA(C), (q′2, v′) ∈ PostA,a2
((q2, v)

↗),
(q′2, v

′) ∈ SuccessfulA(C), q1(i) = q2(i) and a1(i) = a2(i) ∈ R ∩ (A2g ∪ A2`);
otherwise t is uncontrollable in A given C.

In Definition 6, it does not suffice to require q2 or q′2 to be in DanglingA(C):
it could be the case that q′2 is only reachable from a trace not passing through
transition t′, while q2 only reaches a final configuration through a trace not
traversing t′. Hence, we need to require that for some v, (q2, v) is reachable, and
(q′2, v

′) is a (timed) successor of (q2, v) that reaches a final configuration.

Example 3. In Fig. 2, all transitions are permitted, except for the lazy discount
actions. The transition (•, discount)2` is thus a controllable lazy request, as the
same request of DiscountClient is matched in the transition (discount , discount)2`.
In the resulting orchestration (cf. Sect. 4) this will be the only match available
for such a necessary action.

We call a transition uncontrollable if one of the above cases holds (i.e. urgent or
greedy match, uncontrollable greedy or lazy request or uncontrollable lazy match).

3 Orchestration Synthesis

In this section, we define synthesis of safe orchestrations of TSCA, considering
both timing constraints and service requests with different levels of criticality. We
carefully adapt the synthesis algorithm for (modal) service contract automata
defined in [6], which was based on the synthesis of the most permissive controller
from SCT. To respect the timing constraints, the synthesis algorithm of TSCA
presented below is computed using the notion of zones from timed games [9, 10].

The algorithm we will propose differs from the ones presented in [9, 10] by
combining two separate games, viz. reachability games and safety games. Indeed,
as said before, the orchestration synthesis of TSCA is based on the synthesis
of the most permissive controller from SCT, which ensures that (i) forbidden
states are never traversed (a.k.a. a safety game) and (ii) marked states must be



reachable (a.k.a. a reachability game). In the TSCA framework, marked states
are the final states of the composition of contracts, whereas bad states are those
states that spoil an agreement among contracts (cf. Definitions 7 and 9 below).

We recall (modal) agreement and safety on languages of service contract au-
tomata [6]. Intuitively, a trace is in agreement if it is a concatenation of matches,
offers and their modalities, while a TSCA is safe if all traces of its language are
in agreement, and it admits agreement if at least one of its traces is.

Definition 7 (Agreement, safety). Let A be a TSCA. A trace accepted by A
is in agreement if it belongs to the set

A={w∈(Σn#)∗ | ∀i s.t. w(i)=a#, a is a match or an offer, n>1 }

A is safe if L (A) ⊆ A; else unsafe. If L (A)∩A 6= ∅, then A admits agreement.

Basically, an orchestration of TSCA enables the largest sub-portion of a com-
position of TSCA that is safe. Given the timed setting, the orchestration must
consider clock evaluations for each contract. Hence, the underlying transition
system of a TSCA is inspected by the synthesis algorithm. The orchestration
will be rendered as a strategy on this transition system such that only traces in
agreement are enforced. We start by introducing the notion of strategy on TSCA
and that of a well-formed strategy: a strategy avoiding dangling configurations.

Definition 8 (Strategy). Let A be a TSCA. A strategy f is a relation defined
as f : (Σn{#} ∪ RX≥0)∗ × (Σn{#} ∪ RX≥0) mapping traces to actions or delays
s.t. given (q0,0)

w−→∗(q, v), then (q, v) λ−→(q′, v′), for some λ ∈ f(w), (q′, v′) ∈ C.
Furthermore, f is well-formed given C ⊆ C if never (q′, v′) ∈ DanglingA(C).

The language recognised by A following the strategy f is denoted by Lf (A) and
fC denotes the strategy allowing to traverse all and only configurations in C.

We discuss further differences compared to timed games. A TSCA game can
be seen as a 2-player game. A controller (i.e. orchestrator) fires controllable tran-
sitions to enforce agreement among contracts. An opponent fires uncontrollable
transitions to drive the orchestrator to some ‘bad’ configuration, from which an
agreement can no longer be enforced (cf. Definition 9). The opponent has prece-
dence over the orchestrator, as long as its uncontrollable transitions are enabled
(i.e. satisfied clock guards). Finally, fairness of TSCA guarantees that a final
state is eventually reached, as traces recognised by TSCA languages are finite.

In timed games, strategies cannot prevent uncontrollable transitions from
being fired. This follows from the notion of outcome of a strategy, which is used to
characterise winning strategies. In TSCA, winning strategies are defined as those
avoiding ‘bad’ configurations while at the same time enforcing agreement among
contracts. Next we will formally define bad configurations, i.e. configurations in
uncontrollable disagreement. Basically, a configuration is in uncontrollable dis-
agreement if the orchestrator cannot prevent a request of a principal from being
fired without a corresponding offer (i.e. no match). In such configurations, the
controller loses: the orchestration is unsafe. Note that the opponent can only win
by reaching one such configuration. Indeed, unfair traces are ruled out in TSCA.



Definition 9 (Configuration in uncontrollable disagreement). Let A be
a TSCA and let C ⊆ C. A transition t = q a−→ ∈ TA is forced in a configuration
(q, v) given C iff (q, v) a−→ and (i) t is uncontrollable in A given C or (ii) q 6∈ F
and no other t′ = q a′−→ ∈ TA is s.t. (q, v) δ−→(q, v′) a′−→ for some delay δ.

A configuration (q, v1) 6∈ DanglingA(C) is in uncontrollable disagreement in
A given C iff (q, v1)

w−→∗(q1, v2) s.t. only timed or forced transitions are enabled
and either (i) w 6∈ A or (ii) some configuration in C was traversed or (iii) @w′∈
A s.t. (q1, v2)

w′−→∗(qf , v3) with qf ∈ FA without traversing configurations in C.

A safe orchestration of TSCA can be interpreted as a winning strategy in
terms of timed games, and it is defined below. Basically, a winning strategy en-
forces agreement among contracts: no bad configurations will ever be traversed.

Definition 10 (Winning strategy). Let A be a TSCA, f be a strategy given
C ⊆ C and U its set of configurations in uncontrollable disagreement in A given
C. Then f is a winning strategy given C if it is well-formed given C, it never
traverses configurations in U and Lf (A) ⊆ A. A winning strategy f given C is
maximal if there is no winning strategy f ′ given C s.t. Lf (A) ⊆ Lf ′(A).

Before defining the synthesis of a safe orchestration, we introduce some useful
notions. Given a set of configurations C ⊆ C of a TSCA A, the uncontrollable
predecessor predicate uPredA(C) is defined as all configurations from which some
configuration in C is reachable by firing an uncontrollable transition. Formally:

uPredA(C) = { c | ∃c′ ∈ C, c a2−−→c′ uncontrollable in A given C }

We borrow the notion of safe timed predecessor of a set C1 ⊆ C with respect
to a set C2 ⊆ C from [10]. Intuitively, a configuration c is in PredA,t(C1, C2) if
from c it is possible to reach a configuration c′ ∈ C1 by time elapsing and the
trace from c to c′ avoids configurations in C2. Formally:

PredA,t(C1, C2) = { c ∈ C | ∃ δ∈R≥0 s.t. c δ−→c′, c′∈C1 and PostA,[0,δ](c)⊆C2 },

where PostA,[0,δ](c) = { c′ ∈ C | ∃ t ∈ [0, δ] s.t. c t−→c′ } and C2 = C \ C2

We can now specify the synthesis of a safe orchestration of TSCA. Let Â denote
the TSCA obtained from A by replacing TA with TÂ = { t = q a◦−→ | t ∈ TA and
(# 6= 3 ∨ a not request) }, i.e. all permitted requests are pruned from A.

Definition 11 (Safe orchestration synthesis). Let A be a TSCA and let
φ : 2C → 2C be a monotone function on the cpo (2C,⊆) s.t. φ(Ci−1) = Ci, where
C0 = { c | c ∈ C, c a2−−→, a uncontrollable request in Â given ∅ } and

Ci = PredÂ,t(Ci−1 ∪ uPredÂ(Ci−1),moPredÂ(Ci−1)) ∪DanglingÂ(Ci−1) ∪ Ci−1

Finally, let C∗ = sup({φn(C0) | n∈N }) be the least fixed point of φ. Then the
safe orchestration of A is the strategy:

f∗ =

{
⊥ if (q0,0) ∈ C∗

fC
∗

otherwise



This definition is such that whenever the initial configuration belongs to C∗, then
the orchestration is empty : no strategy exists to enforce agreement among con-
tracts while avoiding configurations in uncontrollable disagreement. Otherwise,
C∗ identifies a winning strategy characterising a safe orchestration of contracts.
This strategy allows as many transitions as possible without traversing configu-
rations in C∗. The controller can avoid principals reaching bad configurations in
C∗, while guaranteeing all requirements to be satisfied. C∗ moreover identifies
the maximal winning strategy, i.e. f∗ allows all controllable match/offer transi-
tions to configurations not in C∗ (recall f∗ is not a function). Note that f∗ is
computable due to finiteness of the symbolic configurations and monotonicity of
the fixed-point computation [10]: it is the maximal well-formed winning strategy.

Theorem 1 (Maximal winning strategy). Let A be a TSCA and f∗ be the
strategy computed through Definition 11. If f∗ = ⊥, then there exists no well-
formed winning strategy f given C∗. Otherwise, f∗ is the maximal well-formed
winning strategy in A given C∗.

Example 4. Recall the composition Hotel⊗DiscountClient in Fig. 2. We can apply
the synthesis algorithm to compute its safe orchestration f∗. In f∗, the request
transition (•, discount2`) is removed because it is controllable (cf. Example 3).
The language recognised by f∗ is the singleton Lf∗(Hotel ⊗ DiscountClient) =
{(discount, discount)2`(card, card)3(receipt, receipt)3}.

In [10] (Theorem 4) the computation of PredA,t is reduced to the following
basic operations on zones: PredA,t(C1, C2) = (C↙1 \ C

↙
2 ) ∪ ((C1 ∩ C↙2 ) \ C2)

↙.
Similarly, we now provide procedures for computing the newly introduced sets
moPredA, uPredA and DanglingA using basic operations on zones. Together these
provide an effective procedure for computing C∗ (hence a safe orchestration). The
set moPredA can be computed from PredA by only considering discrete steps
that are not requests. Conversely, both uPredA and DanglingA require visiting
the symbolic configurations of A, and can be computed as follows.

Theorem 2 (Compute dangling configuration). Let A be a TSCA, C ⊆ C
and φ be as in Definition 11 s.t. φ(Ci−1) = Ci and C∗ = sup({φn(C0) | n ∈ N }).
1. The reachable configurations in A given C are computed as ReachableA(C) =

C∗, where C0 = (q0,0)
↗ \C↗ and Ci =

⋃
a(PostA,a(Ci−1)↗ \C↗) ∪Ci−1

2. The successful configurations in A given C are computed as SuccessfulA(C)=
C∗, where C0 = { (qf , v) | qf ∈ FA and v ∈ RXA≥0 } \ C and Ci =
PredA,t(Ci−1 ∪ (PredA(Ci−1) \ C), C) ∪ Ci−1

3. The dangling configurations in A given C are computed as DanglingA(C) =
SuccessfulA(C ∪ ReachableA(C))

Note that the dangling configurations are efficiently computed by combining a
forward exploration (i.e. reachable configurations) with a backward exploration
(i.e. successful configurations): it is then possible to ignore unreachable suc-
cessful configurations. We thus determined an effective procedure to compute
DanglingA(C) that uses basic operations on zones. Finally, we define a proce-
dure for computing the set of uncontrollable predecessors using Theorem 2.



Lemma 1 (Compute uncontrollable predecessors). Let A be a TSCA and
C ⊆ C. Then the set of uncontrollable predecessors of C in A is computed as

uPredA(C) = { c ∈ C | ∃c′ ∈ C : c a2−−→c′ ∈ uncA(C) },

where uncA(C) = { (q, v) a2−−→ | (q, v) ∈ C ∧ (a urgent ∨ a greedy match ∨
(@(q2, v) ∈ ReachableA(C), (q′2, v′) ∈ SuccessfulA(C).(q′2, v′) ∈ PostA,a′(q2, v)

↗

∧ a(i) = a′(i) = a ∈ R ∧ a′match ∧ q(i) = q2(i))) }

With our results, safe TSCA orchestrations can be implemented using libraries
for timed games [19, 20] with primitive zone operations (i.e. ∪, ∩, \, ↗ and ↙).

4 Running Example Revisted

We continue our running example with a PriviledgedClient, depicted in Fig. 3a,
optionally asking for a discount room via a permitted request, but after 8 t.u.
(in its initial state) urgently requests a normal room. In orchestration f∗ of
composition (Hotel⊗DiscountClient)⊗ PriviledgedClient, the discount request of
DiscountClient could be matched before one of the requests of PriviledgedClient.
But, this interaction is prevented in f∗. Let a = (discount, discount, •)2`,
b = (•, •, room)2u, t1 = ((qH0, qD0, qP0), y ≥ 50,a, y ← 0, (qH1, qD1, qP0))
and t2 = ((qH1, qD1, qP0), x ≥ 8, b,∅, (qH1, qD1, qP1)). Now t1 is not enabled by
f∗ or else we can reach a configuration c2 in uncontrollable disagreement via
c0

δ = 50−−−−→c1 a−→c2 δ = 0−−−→c2 b−→. In c2, the uncontrollable transition t2 is enabled, but
urgent request b is not matched, thus violating agreement. The first transition en-
abled in f∗ is ((qH0, qD0, qP0), x ≥ 8, (room, •, room)2u, y ← 0, (qH1, qD0, qP1)).

Thus, PriviledgedClient interacts with Hotel prior to DiscountClient, who is
served successively. This is only possible as both lazy request (•, discount)2` and
lazy match (discount , discount)2` of Hotel⊗DiscountClient are semi-controllable
and are delayed in the orchestration of (Hotel⊗DiscountClient)⊗PriviledgedClient.

Next consider the TSCA of Figs. 3b–d, variants of the previous contracts:
BusinessClientU requests urgently a room within 5 t.u., BusinessClientL requests
lazily a room within 8 t.u, while Hotel2 offers only a normal room (no discount).

qP0 qP1 qP2 qP3

discount

x ≥ 8

room2u

card
x← 0

x ≤ 7
receipt3

(a) PriviledgedClient

qU0 qU1 qU2 qU3

xU ≤ 5
room2u

card
xU ← 0

xU ≤ 7
receipt3

cash

(b) BusinessClientU

qL0 qL1 qL2 qL3

xL ≤ 8
room2`

card
xL ← 0

xL ≤ 7
receipt3

cash

(c) BusinessClientL

qH0 qH1 qH2

room
y ← 0

y ≥ 5
card3

y ← 0
y ≥ 5
receipt
y ← 0

y ≥ 7
cash3
y ← 0

(d) Hotel2

Fig. 3: TSCA: (a) priviledged, (b) urgent (c) lazy business clients, (d) hotel2



First look at the (Hotel2 ⊗ BusinessClientL) ⊗ BusinessClientU orchestration.
It is empty (i.e. no agreement). In the initial state of Hotel2 ⊗ BusinessClientL,
the room offer is available only after 8 t.u., otherwise it is matched by Business-
ClientL’s lazy room request. As BusinessClientU’s urgent room request must be
matched within 5 t.u., it cannot be matched prior to BusinessClientL’s lazy room
request: a violation, so the initial configuration is in uncontrollable disagreement.

Next look at (Hotel2⊗ BusinessClientU)⊗ BusinessClientL’s orchestration f∗.
Part of the behaviour allowed by f∗ is depicted in Fig. 4 in the fragment
marked with X (in this figure, a transition is fired as soon as it is enabled).
Now BusinessClientU performs the transaction with the hotel first. In case of
card payments, the minimum time required to reach state q = (qH0, qU3, qL0)
is 5+5=10 t.u., with clocks evaluation v = (y = 0, xU = 5, xL = 10). In (q, v)
(the top leftmost configuration in Fig. 4), the (lazy) necessary room request of
BusinessClientL can no longer be satisfied as it should have been matched within
8 t.u., so violating agreement. Thus f∗ forbids card payments of BusinessClientU.
Note that also the two previous configurations (contained in the fragment marked
with � in Fig. 4) are forbidden in f∗, as they are in uncontrollable disagreement.

If, however, BusinessClientU pays cash, then the minimum time required to
reach state q is 7 t.u., with clocks evaluation v′ = (y = 0, xU = 7, xL = 7).
Indeed, in configuration (q, v′) (the central rightmost configuration in the frag-
ment marked with X in Fig. 4) the lazy room request of BusinessClientL can be
matched by the room offer of Hotel2, and successively the orchestration enables
this client to pay either by cash or by card. Therefore, to satisfy BusinessClientL’s
lazy room request, in the resulting safe orchestration BusinessClientU is only al-
lowed to pay with cash.

�

X

qH0 y=0
qU0 xU= 0
qL0 xL= 0

qH1 y=0
qU1 xU= 0
qL0 xL= 0

qH1 y=5
qU1 xU= 5
qL0 xL= 5

qH1 y=7
qU1 xU= 7
qL0 xL= 7

qH2 y=0
qU2 xU= 0
qL0 xL= 5

qH2 y=5
qU2 xU= 5
qL0 xL= 10

qH0 y=0
qU3 xU= 5
qL0 xL= 10

qH2 y=0
qU3 xU= 12
qL2 xL= 0

qH1 y=5
qU3 xU= 12
qL1 xL= 12

qH1 y=0
qU3 xU= 7
qL1 xL= 7

qH1 y=7
qU3 xU= 14
qL1 xL= 14

qH0 y=0
qU3 xU= 7
qL0 xL= 7

qH2 y=5
qU3 xU= 17
qL2 xL= 5

qH0 y=0
qU3 xU= 17
qL3 xL= 5

qH0 y=0
qU3 xU= 14
qL3 xL= 14

(room, room, •)2u δ = 5 δ = 2

(card , card, •)3

δ = 5(receipt , receipt, •)3

(cash, cash, •)3

δ = 5(cash, •, cash)3

(room, •, room)2`(card , •, card)3

δ = 5

δ = 2

(receipt , •, receipt)3

Fig. 4: Excerpt of TS (Hotel2⊗BusinessClientU)⊗BusinessClientL, whose fragment marked
with X is allowed in the safe orchestration whereas the one marked with � is not



5 Conclusions and Future Work

We have presented TSCA, a new formalism for specifying service contracts with
real-time constraints, and for synthesising their safe orchestration in the presence
of service requests with different levels of criticality (viz. urgent, greedy and lazy).

We plan to implement the theory in a prototype, extending tools for con-
tract automata [21–23] and reusing libraries from timed games for operations on
zones [19, 20], to which orchestration synthesis has been reduced (cf. Theorem 2).
We would also like to equip the formalism with weighted actions, e.g. to specify
the prices of hotel rooms or how much clients are willing to pay for their room.
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