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Abstract. In this work, we employ recent deep learning techniques for time-series forecasting to 
inspect and detect anomalies in the large dataset recorded during a long-term monitoring campaign 
conducted on the San Frediano bell tower in Lucca. We frame the problem as an unsupervised 
anomaly detection task and train a Temporal Fusion Transformer to learn the normal dynamics of 
the structure. We then detect the anomalies by looking at the differences between the predicted 
and observed frequencies.  
Introduction 
Heritage structures are threatened worldwide by aging, material deterioration, environmental 
actions, and extreme meteorological events due to climate changes, and therefore they need 
maintenance and restoration. Structural health monitoring (SHM) provides a relatively 
inexpensive tool for promptly assessing the structural conditions, planning, and controlling 
maintenance interventions. 

The availability of high-sensitive instrumentation and extensive data sets from long-term 
monitoring protocols opened new issues about data analysis, particularly regarding the 
implementation of automatic anomaly detection and early warning procedures. In this data-driven 
context, exploiting artificial intelligence (AI) represents a significant opportunity. Machine 
learning (ML) algorithms originated from the broader domain of AI and have recently had a 
significant diffusion, with applications in many research and industrial areas. ML covers a wide 
range of algorithms that recognize patterns and build regression models for large multi-source 
heterogeneous datasets: this approach naturally fits with data collected by SHM systems [1]. 

Bridges’ construction and maintenance represent the classical application fields for automated 
vibration monitoring. Many papers regarding algorithms for operational modal analysis and 
damage detection in the domain of ML are available in the literature [2], [3], [4]. The application 
of ML to the preservation of architectural heritage is relatively recent [5].  

In recent years, Deep Learning (DL) techniques have become the state-of-the-art for processing 
sequential data, like text or audio. The recent astonishing advancements in this field brought 
important innovations also in the context of time-series processing, obtaining interesting results in 
time-series forecasting, classification, and anomaly detection [6, 7]. The key to the success of DL 
in these tasks can be attributed to some neural architectures, such as the Recurrent Neural Networks 
or the recently introduced Transformer Networks [8]. Despite the fast and pervasive development 
of DL techniques for time-series processing, relatively few works [9, 10] tried to apply this 
promising technology to monitor heritage structures and find possible anomalies. 

In this paper, we propose to use a recently developed Transformer Network [11] to reveal 
possible anomalies from the data recorded by the high-sensitive instrumentation installed on 
heritage structures. We analyze the San Frediano bell tower in Lucca [12], subject to a long-term 
vibration monitoring campaign from October 2015 to November 2017. The Transformer network 
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is trained to predict the main natural frequencies of the tower starting from some environmental 
data and the frequencies observed in the very recent past. Anomalous events are then found by 
comparing how much the actual frequencies deviate from the predicted ones. The data analysis 
shows promising results, highlighting anomalous events like the Amatrice earthquake that 
happened on 24 Aug 2016 or the Santa Croce celebrations on 13 Sep 2016. 
Description of the algorithm 
The proposed approach belongs to a set of techniques that pertain to the domain of unsupervised 
anomaly detection. Specifically, a network is trained to understand the normality patterns present 
in some data and then, at inference time, the more significant deviations from the learned normality 
patterns are considered anomalies. In order to learn the concept of normality during the training 
process, the network is usually trained to predict one or more samples in the future, given 
observations from the recent past. In this way, the network learns to approximate the normal 
dynamics of the system under observation. In this work, we use a state-of-the-art deep neural 
network for learning the structure’s dynamics directly from data. This network is called Temporal 
Fusion Transformer (TFT) [11]. In the following two paragraphs, we discuss how the TFT can 
predict the structure dynamics while characterizing its uncertainty and how this output can be used 
for anomaly detection. 

The Temporal Fusion Transformer. In heritage structure monitoring, data are usually composed 
of post-processed sensor measurements from the monitored structure, plus some environmental 
data, like temperature, wind speed, rain, or humidity. The core part of the algorithm is constituted 
by the network, which predicts the structure’s dynamic evolution, given the sensor and 
environmental data from the recent past. In this study, we use TFT [11], one of the state-of-the-art 
Transformer Networks for time-series forecasting. Apart from using state-of-the-art attentive 
modules for processing time-series, the TFT can also estimate the uncertainty of the prediction. 
This output is fundamental during the anomaly detection phase: we can quickly know whenever 
the observed actual values fall inside the predicted confidence interval and, if not, easily quantify 
the deviation from these margins. In the light of this, the system that we develop can be formalized 
as follows: 

𝑋𝑋𝑇𝑇+1  =  𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑇𝑇;  𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑇𝑇),  (1) 

where xt is a vector encoding the values measured from the instrumentation in the structure at time 
t, ut is a vector encoding the environmental (external) factors like temperature, wind speed, rain, 
or humidity at time t, while the output XT+1 is a random variable encoding the predicted sensor 
data at time T+1. The model characterizes this output random variable by predicting its mean value 
and 1, 10, 25, 50, 75, 90, 99 percentiles. The training procedure can be treated as a regression 
problem, where the objective consists of estimating the parameters of the TFT model given some 
training data. In TFT, the optimization is performed using a quantile loss, which estimates the 
aleatoric uncertainty of the data. More details in the original TFT paper [11]. 

Anomaly Detection. Once the TFT has been trained on some non-anomalous data, it should 
have learned the normal dynamics of the given system to some extent. Therefore, it should be able 
to predict the next system state while also quantifying the uncertainty of this prediction. At this 
point, we can search for anomalous events in a time interval never seen from the network at training 
time. Given the aleatoric prediction XT+1 and the actual observed state xT+1, we can define the state 
xT+1 as anomalous if it is an outlier with respect to the estimated distribution of the random variable 
XT+1. More formally, we can define xT+1 as an outlier – or an anomalous sample – by checking if 
the following condition is NOT satisfied: 
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𝜋𝜋100−𝑝𝑝 (𝑋𝑋𝑇𝑇+1) ≤ 𝑥𝑥𝑇𝑇+1 ≤ 𝜋𝜋𝑝𝑝 (𝑋𝑋𝑇𝑇+1),  (2) 

where 𝜋𝜋p (X) represents the p-percentile of the random variable X. In our experiments, we use p = 
99. This procedure is repeated over a sliding window having width T over the whole observation 
period so that we can predict the presence of anomalies at each timestep t given the sensor and 
environmental data from the timesteps {t-1, t-2, …, t-T-1}. 
Case study: The San Frediano bell tower 
The San Frediano bell tower in the historic center of Lucca has been subjected to a long-term 
vibration monitoring campaign from October 2015 to November 2017 [12]. Data from the first 
year of monitoring (28 Oct 2015 – 13 Aug 2016) are used in the paper to train and validate the 
TFT model. They were measured by four seismic stations placed alongside the tower’s height, 
each equipped with a tri-axial velocimeter and a 24-bit digitizer of the SARA Electronic 
Instruments firm. Data were sampled at 100 Hz and continuously acquired over the monitoring 
period. The training dataset was built by processing data via the covariance-driven Stochastic 
Subspace Identification technique to extract the first five natural frequencies from the tower’s 
response. We organized data in hourly packages; therefore, the training set consisted of hourly 
samples of the five frequencies. Together with the frequencies, we considered other environmental 
variables in the model: air temperature, rainfall and air humidity, wind speed (average and peak 
values), and wind direction. Furthermore, we conditioned the model on the temporal fingerprints 
of the observations to better capture periodical patterns at different time scales. Specifically, we 
conditioned the model on the hour (1-24), the day (1-30), and the month (1-12).  

We run the trained model on a time interval not used during the training phase. Specifically, we 
considered the period from 19 Aug 2016 to 16 Oct 2016, with a window width T = 96 hours (4 
days). The results of the analysis are shown in Fig. 1 and Fig.2, reporting the predictions of the 
model and the observed frequencies. Every prediction is accompanied by the estimated 
uncertainty, represented by the area between the 1st and 99th percentiles at every prediction 
timestep. Vertical bars show the time locations when at least one of the frequencies violates the 
condition expressed in Eq. 2. The color intensity of these lines depends on how much the actual 
observed value falls outside the estimated uncertainty margins. The final color intensity (yellow 
low - red high) is obtained by summing the anomaly contributions from each frequency, using the 
inverse of the frequency as a weight, to attenuate the contribution from higher frequencies. Fig. 1 
highlights two major anomalous events, on 24 Aug and 13 Sep 2016. The former event corresponds 
to the Amatrice earthquake that struck central Italy with a 6.0 magnitude and, despite the distance 
of 400 km between Amatrice and Lucca, was clearly detected by the sensors installed on the tower 
and induced vibrations in the same order of magnitude as those caused by the bells’ swinging. The 
latter anomaly corresponds to the Santa Croce celebrations and relates to the presence of many 
people moving in the town and affecting the tower’s vibrations. The algorithm can also detect the 
vibrations induced by the swinging bells. This anomaly involves the second frequency (related to 
the swinging direction) and corresponds to the main religious ceremonies held in the Cathedral, 
particularly on Saturday afternoon and Sunday morning. 

 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 581-586  https://doi.org/10.21741/9781644902431-94 

 

 
584 

 
 
Figure 1: First five predicted and experimental (observed) frequencies, in the period 19 Aug 

2016 - 14 Sep 2016. 

 
Figure 2: First five predicted and experimental (observed) frequencies, in the period 19 Sep 

2016 - 16 Oct 2016. 
 
The anomalous events detected by the TFT procedure are better emphasized in Fig. 3, reporting 
the observed and predicted values of the first two frequencies from 20 to 26 August 2016, together 
with the confidence interval evaluated by the algorithm and reported in a dashed line. The 
anomalies caused by the swinging bells on Saturday (20 Aug, h 17:00) and Sunday (21 Aug, h 
10:00 and h 12:00) and by the Amatrice earthquake (24 Aug, h 3:00) are highlighted in the figure; 
the first two affect mainly the second frequency of the tower, while the effects of the earthquake 
are evident in the whole dynamic response of the structure. 
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Figure 3: First two predicted and experimental (observed) frequencies, 20-26 Aug 2016.  
Conclusions 
In this paper, we explored the potential of state-of-the-art attentive deep neural networks for 
monitoring heritage structures and spotting possible anomalies. We employed the Temporal 
Fusion Transformer to learn the normal dynamics of the structure. The tower’s dynamic behavior 
was encoded as its first five natural frequencies, extracted through the covariance-driven 
Stochastic Subspace Identification technique. The predicted distributions of the frequencies were 
then used to spot outliers in the test data. This preliminary work showed promising results in the 
case study of the San Frediano bell tower in Lucca, where we were able to correctly identify some 
important events, like the Amatrice earthquake and the Santa Croce celebrations.  

Further investigations are necessary to confirm the good performance and reliability of the 
adopted method. A comparison between the anomaly detection techniques used in the literature 
and the TFT model will be carried out in a future work, where the performance of the Transformer 
network will be tested on artificial damage scenarios. Furthermore, it would be interesting to 
characterize the found anomalies by inspecting and clustering the hidden representations learned 
by the model. This characterization would be helpful, for example, for distinguishing a celebration 
event happening near the tower from an unexpected structural failure. 
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