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School of Naval Architecture ETSIN
Universidad Politécnica de Madrid
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Abstract—The implementation of boundary conditions is one
of the points where the SPH methodology still has some work
to do. The aim of the present work is to provide an in-depth
analysis of the most representative mirroring techniques used in
SPH to enforce boundary conditions (BC) along solid profiles.
We specifically refer to dummy particles, ghost particles, and
Takeda et al. [1] boundary integrals. A Pouseuille flow has been
used as a example to gradually evaluate the accuracy of the
different implementations. Our goal is to test the behavior of the
second-order differential operator with the proposed boundary
extensions when the smoothing length h and other dicretization
parameters as dx/h tend simultaneously to zero. First, using
a smoothed continuous approximation of the unidirectional
Pouseuille problem, the evolution of the velocity profile has been
studied focusing on the values of the velocity and the viscous
shear at the boundaries, where the exact solution should be
approximated as h decreases. Second, to evaluate the impact
of the discretization of the problem, an Eulerian SPH discrete
version of the former problem has been implemented and similar
results have been monitored. Finally, for the sake of completeness,
a 2D Lagrangian SPH implementation of the problem has
been also studied to compare the consequences of the particle
movement.

I. INTRODUCTION

The SPH simulations in Engineering involve usually solid
boundary conditions (BC) for the velocity field and Dirichlet
and Neumann type BC for other fields as, for instance, the
temperature. In the SPH framework, these conditions are
tackled in a number of ways: by using boundary forces-type
models [2], [3] ; by modifying the structure of the kernel in
the neighborhood of the boundaries [4]; by creating virtual
particles inside the solid boundary domain through mirroring
techniques. This latter approach is the main focus of the
present work. An interesting study for the linear Couette
and Pouseuille flows have been already performed in [5], but

unfortunately the evolution of the kinetic energy was the only
variable monitored in time.

In our case a well know problem as the Pouseuille flow will
be used as a benchmark. The evolution of the velocity profile
and the forces involved in the dynamics of the flow will be
carefully studied.

II. THEORETICAL SETUP.

Before proceeding to the analysis, we briefly recall the
principal results about the consistency of the continuous SPH
formulation without boundaries. The fluid domain is Ω = Rd

and, therefore, its boundary is ∂Ω = ∅.
Let W (x; h) be a function depending on h > 0 defined by

W (x;h) :=
1
hd

W̃
(∣∣∣x

h

∣∣∣
)

, (1)

We also define the function F (r) as

F (r) := −1
r
W̃ ′ (r) , (2)

In the following we denote by u(x) a smooth scalar field
on Rd.

For the approximation for the Laplacian of a function, the
following formula due to Morris et al. [6] and Español et al.
[7] is used:

〈∆u〉M (x) = 2

∫

Rd

(x′ − x) · ∇xW (x′ − x;h)

|x′ − x|2
[
u

(
x′

)− u (x)
]
dx′.

(3)
As proved in [7], it follows:

〈∆u〉M (x) = ∆u (x) +O(h2). (4)
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Fig. 1. Unidirectional vector field

Again, note that no a priori assumptions on the smoothness
of u have to be made in order to define 〈∆u〉M.

III. BOUNDARY CONDITIONS

The most representative mirroring techniques in SPH to im-
pose non-slip boundary conditions are: rows of fixed (bound-
ary velocity) dummy particles (U0M) [8], ghost particles with
antisymmetric mirroring (ASM) [9], [10] and the Takeda et
al. [1] imaginary particles.

For the sake of simplicity, we consider unidirectional ve-
locity fields u (x) defined in the upper-half plane

Rd
+ :=

{
(x′, xd) ∈ Rd : xd > 0

}
,

that are infinitely differentiable and that satisfy a non-slip
boundary condition on

Rd
0 := ∂Rd

+ =
{
(x′, 0) : x′ ∈ Rd−1

}
.

A regular solid surface can be approximated with its tangent
plane in the neighborhood of the fluid particle for h ¿ 1.
In this framework, the tangent plane can be identified with
xd = 0.

This class of velocity fields appear in a number of canonical
problems in different physical contexts as, for instance, unidi-
rectional incompressible fluid flow (Couette, plane Poiseuille,
etc.). Note that heat conduction problems also fit this frame-
work by replacing the velocity with the temperature field.

In general, such a velocity field takes the following form
(see figure (1)):

u (x) := (u (xd) , 0, ..., 0) . (5)

We assume that u (x) satisfies the boundary condition:

u (x′, 0) = (u (0) , 0, ..., 0) = (UB, 0, ..., 0) ,

where UB is the boundary velocity magnitude and, close to
the boundary inside the fluid domain, the component u takes
the form:

u (xd) = UB + a1xd + a2x
2
d + .... (6)

The mirroring techniques we deal with produce an extension
u (x) of the velocity field u (x) to the whole space Rd. Here,

Fig. 2. Constant extension U0M

we analyze the action of the continuous SPH approximation of
the Laplacian operator on these mirrored (extended) velocity
fields. Due to the specific form of the velocity fields, this
corresponds to an extension of the scalar function u (xd),
defined only of the half axis xd ≥ 0, to a function u (xd)
defined on the whole real line R.

The SPH approximations to the Laplacian of u, 〈∆u〉M
are of the same order of differentiability of u.

Finally, we introduce the following h-independent constants
that will appear repeatedly in the rest of the article:

M0 :=
∫

Rd

F (|y|) dy, (7)

M1 :=
∫

Rd
+

ydF (|y|) dy, (8)

Cp :=
∫

Rd

|yd|p W̃ (|y|) dy, (9)

Note that C0 = 1 , M0 = 2 and M1 = 1/
√

π.
Let us consider a general polynomial profile u (x) = UB +

xp
d with p ≥ 1 for the calculations performed in section III.

A. Constant extension (U0M)

Define the constant extension of u as (see Figure 2):

u (x) :=
{

u (x) xd > 0,
UB xd ≤ 0.

This technique is usually referred to as the Dummy Particles
(DP) method. It is simple to implement and has been used, for
instance, by Monaghan [8] for modeling a transient Couette
flow.

Since the function u (x) only depends on xd, we obtain
the following expression for the boundary values of the SPH
Laplacian approximation:

〈∆u〉M (x′, 0) =
2
h2

[∫

Rd
+

u (hyd)F (|y|) dy − UB
M0

2

]
=

=





2M1

h
, for p = 1,

1, for p = 2
hp−2 (p− 1)Cp−2, for p > 2.

, (10)
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Fig. 3. Antisymmetric extension ASM

For details of the derivation of the equation 10, see [11].

B. Antisymmetric extension (ASM)

Next we consider the antisymmetric extension of u defined
as (see Figure 3):

u (x) :=
{

u (x) xd > 0,
2UB − u (x′,−xd) xd ≤ 0.

This is the most widespread method to implement the solid
BC. In the SPH literature it is generally referred to as the
ghost particles (GP) method (e.g. [9], [10], [12]).

The expression for the Laplacian is:

〈∆u〉M (x′, 0) = 0. (11)

We again refer to [11] for a justification of these results.

C. Takeda et al. [1] extension

We define the Takeda et al. [1] extension of a function
u (xd) by:

u (x′d, xd) :=





u (x′d) x′d > 0,

(u (xd)− UB)
x′d
xd

+ UB x′d ≤ 0,

where xd > 0 and x′d ∈ R. Note that this extension procedure
is slightly different from those previously discussed. Indeed,
it associates to each point xd in the fluid domain an extended
field u (x′d, xd) defined for x′d ∈ R and the extension actually
depends on the point xd. Figure 4 provides an illustration of
this procedure.

As done before, let u (xd) = xp
d + UB with p ≥ 1. Clearly,

we have:

u (x′d, xd) :=
{

(x′d)
p + UB x′d > 0,

xp−1
d x′d + UB x′d ≤ 0.

Note that for p = 1, we have u (x′d, xd) = x′d+UB. Concerning
the Laplacian, we obtain:

Fig. 4. Takeda et al. [1] extension

Fig. 5. Velocity field not satisfying the boundary condition UB

〈∆u〉M (x′, 0) = 2hp−2

∫

Rd
+

yp
dF (|y|) dy =

=
{

0 for p = 1,
hp−2 (p− 1) Cp−2 for p > 1,

(12)

D. Flows not satisfying the boundary condition

In this section we shall consider again velocity fields of the
form (5) but we shall not assume that the value of u (xd) as xd

approaches the boundary xd = 0 coincides with the boundary
value UB (see Figure 5). These velocity fields appear as initial
values in a number of viscous flows, as for instance unsteady
Couette flow, plane semi-infinite plate flow or, more generally,
free shear layer flows [13].

Let us denote by VB the value of u (xd) for xd → 0+; we
are assuming that UB 6= VB. One remark should be done:

1) The Takeda et al. [1] extension produces a singular
function, that is not even well-defined at xd = 0. The
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extended field equals in this case

u (x′d, xd) :=





(x′d)
p + VB x′d > 0,

xp−1
d x′d + (VB − UB)

x′d
xd

+ UB x′d ≤ 0,

(13)
which clearly has not a definite value at xd = 0.
Therefore, the Takeda et al. [1] extension does not seem
to be suitable to deal with discontinuous extensions.

The remaining mirroring techniques we have dealt with so
far will produce an extended field u presenting a discontinuity
at xd = 0. Therefore, the behavior of the continuous SPH ap-
proximations of differential operators acting on these extended
fields will present singularities on xd = 0 of higher order than
those already described for the case UB = VB.

As previously discussed, the singularities induced by the
U0M and ASM models are stronger when the field does not
satisfy the boundary condition. We illustrate this by analyzing
the U0M model, the results for the ASM model are rather
similar. Consider the field u (xd) = VB + xp

d for p ≥ 1; u will
denote its extension by UB for xd < 0. The Laplacian gives:

〈∆u〉M (x′, 0) = hp−2pCp−1 +
VB − UB

h2
M0. (14)

We therefore see that the boundary value of the derivative
behaves as 1/h whereas that of the Laplacian is more singular,
behaving as 1/h2.

In conclusion, none of the mirroring techniques discussed
here is suitable to deal directly with velocity fields that do not
satisfy the boundary condition exactly. This difficulties can
be overcome by suitably modifying the velocity field in the
neighborhood of the boundary in order to perform a continuous
matching with the boundary value UB. The exact nature of
these modifications will be the subject of future work.

IV. RESULTS

A time dependant plane Poiseuille flow can be described in
R2 by the mathematical expression, see [13]:

ρ
∂u(x2, t)

∂t
= −∇P + µ∆u(x2, t) (15)

where ρ and µ are the fluid density and viscosity respec-
tively, u is the first component of the unidirectional velocity
field u = (u, 0) and ∇P is a constant pressure gradient that
drives the flow between the two parallel plates towards the
increasing x1 values. The parallel plates will be set at x2 = 0
and x2 = 1 consequently the boundary conditions can be
expressed as:

u(0) = 0
u(1) = 0

The solution to this problem is a superposition of a linear
velocity field (p = 1) plus a quadratic velocity field (p = 2),
this is:
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Fig. 6. Snapshots of ν∆u at the first and the last(stationary stage) time
step.h = 1/15

u(x2) =
−∇P

2µ
x2(1− x2) (16)

The Pouseuille flow is a sufficient paradigmatic example
that presents most of the inconsistencies detected in the
formulation described before when (16) is introduced as initial
condition.

The equivalent expression to the equation (18) for a SPH
particle, where the vertical velocity component is zero, see
[12] is:

dua

dt
= −∇Pa + Πa (17)

where the subscript a refers to the particle that carries
over the considered property and Πa represents the viscous
interaction. The kernel used in the discretized SPH simulations
is the normalized Gaussian kernel with support 3h [14], where
h is the smoothing length.

To quantify the viscous interaction the Morris viscosity
model (MVT) was used [6]. The stopping criteria used to quit
the simulation was:

max
i
{µ∆uk

i −∇P} ≤ 10−1 (18)

where uk
i is the velocity value of the fluid particle i at the time

step k. The steady state is reached when the pressure gradient
is balanced with the viscous force for all fluid particles.

The initial velocity used for the for the fluid particles is
equal to the exact analytical solution u0(x2) = −∇p

2µ x2(1 −
x2), the pressure gradient has been fixed to ∇P = −9.8,
µ = 0.744 and ρ = 1 for all simulations.

V. 1D CONTINUOUS TIME DEPENDANT POUSEUILLE FLOW.

The equation (18) has been discretized in time by an
Euler time scheme, while the Laplacian operator has not
been discretized and the integrals coming from this part have
been accurately calculated by Matlab. The spatial domain
considered is x2 ∈ R. In this context the (continuous) solution
of the Pouseuille flow should be recovered as h tends to zero.
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Fig. 7. Evolution of the velocity at the boundaries for different h values.

At the first time step, when the Laplacian of the initial
condition is calculated with the U0M extension the result
presents a erroneous values in a boundary layer close to the
plates, see the red curve in figure 6. This incorrect tendency
of the viscous force calculated at the boundaries has been
already predicted as 1/h in section II. It has opposite sign to
the expected correct value (order ∇P ), consequently it acts as
a boundary driving force that helps the pressure gradient to
increase the velocity of the particles closest to the boundaries.
Using the results obtained in section II, we can calculate the
slip velocity at the boundary v1

b after the first iteration:

v1
b = ∆t(−∇P + µ∇2(

−∇P

2µ
(x2 − x2

2))) = (19)

∆t(−∇P + (
−∇P

2
(∇2x2 −∇2x2

2))) = (20)

∆t(−∇P + (
−∇P

2
(
2M1

h
− 1))) = (21)

−∆t∇P (
M1

h
+

1
2
) (22)

This velocity perturbs the initial condition (analytic solu-
tion) on the boundary as 1/h. The velocity v1 could be decom-
posed in two parts, a constant profile v1

b plus another profile
v1

nb that satisfies the boundary condition, as v1 = v1
b +v1

nb. The
Laplacian of v1 will have two contributions at the boundary:

µ∇2v1
b = µ∇2v1

b + µ∇2v1
nb = (23)

−µ
M0v

1
b

h2
+ O(

∇P

2
) + O(−∇P

M1

h
) (24)

The momentum equation can be written as:

dvb

dt
= −µ

M0v
1
b

h2
+ O(

∇P

2
) + O(−∇P

M1

h
)−∇P (25)

We can observe in equation (25), that the term −µ
M0v1

b

h2

plus O(∇P
2 ) create a friction force that works against the

pressure gradient −∇P and the third term O(−∇P M1
h ). In

our simulation the driving forces (pressure gradient plus third
term) are bigger than the friction terms, creating a positive
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−50
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−30
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0
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time
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b
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Fig. 8. Evolution of the µ∆2u at the boundaries for different h values. The
asymptotic value tends to ∇P = −9.8 when h → 0

acceleration at the boundary. This acceleration increases the
slip velocity vb, but this effect increases also the first term.
There is an instant t = tn where the equilibrium between
the driving and the friction forces is obtained and the friction
coming from the slip velocity is able to equilibrate the driving
terms. The residual velocity in that instant can be estimated
as:

µ
M0v

n
b

h2
∼ O(

−∇P

2
) + O(−∇P

M1

h
) (26)

then,

vn+1
b ∼ O(h) + O(h2) (27)

Looking at figure 7 we can see the boundary velocity
evolution from the first initial value towards the stationary
value for different values of the smoothing kernel h. This
tendency is basically produced by the presence of the term
−µ

M0v1
b

h2 which creates a large deceleration of the boundary
fluid when h is small enough. Similarly, the evolution of
the viscous force µ∆u at the boundary has been plotted
for different h values, see figure 8. From figure 8 we can
appreciate that all curves start in −∇P

2 ( 2M1
h − 1) and tend to

the value ∇P = −9.8 that balances the pressure gradient and
takes the problem to the stationary state.

The absolute errors in the stationary solution compared
to the exact solution for the whole fluid have been plotted
in figure 9, where we can clearly appreciate that the error
decreases when h tends to zero.

To test the result obtained in the equation (27), the residual
slip velocities have been approximated by a second order
polynomial vslip = ah2 +bh, as we can observe in figure 10 a
second order polynomial fits the computational values obtained
accurately and shows that the residual slip velocity tends to
zero consistently when the smoothing length decreases.

The absolute error of the stationary velocity profile com-
pared to the exact solution is plotted in 9 for different h values.

When a different extension ASM is used in order to impose
the boundary conditions, the Laplacian of the initial condition
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Fig. 9. Absolute error of the stationary velocity field compared with the
analytical solution for different values of the parameter h when the U0M
extension is used.
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Fig. 10. Dependence on h and h2 of the slip boundary velocity.

gives a erroneous zero value close to the boundary, see figure
11. Consequently, at this point, viscous friction does not
equilibrate the pressure gradient and increases the velocity of
the closest particles to the boundaries producing a slip velocity
v1

b .

v1
b = ∆t(−∇P + (

−∇P

2
(∇2x2 −∇2x2

2))) = −∆t∇P (28)

Due to the absence of friction at the boundaries, the initial
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Fig. 11. Snapshots of ν∆u at the first and the last (stationary stage) time
step when the U0M extension is used.h = 1/20
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Fig. 12. Absolute error of the stationary velocity field compared with the
analytical solution when the U0M extension is used.

condition (analytic solution) is locally perturbed. As in the
U0M case, the velocity v1 could be decomposed in two parts,
a constant profile v1

b plus another profile v1
nb that satisfies the

boundary condition, as v1 = v1
b + v1

nb. The Laplacian of such
velocity will have two contributions at the boundary:

µ∇2v1 = µ∇2v1
b + µ∇2v1

nb = −µ
2M0v

1
b

h2
(29)

The resulting momentum equation can be written as:

dv2
b

dt
= −∇P − µ

2M0v
1
b

h2
(30)

The second friction term −µ
M0v1

b

h2 works against the pres-
sure gradient. At the beginning of our simulation the driving
pressure gradient is bigger than the friction term, creating
an acceleration at the boundary. This acceleration increases
the slip velocity vb and consequently the friction term also
grows. There is an instant t = tn where the equilibrium is
obtained and the friction coming from the slip velocity is able
to equilibrate the pressure gradient. The residual boundary
velocity can be calculated as:

µ
2M0v

n
b

h2
= −∇P (31)

Then, the residual slip velocity will be:

vn
b =

−∇P

2M0µ
h2 (32)

The coefficient −∇P
2M0µ in our case is equal to 3.25 which is

equal to the coefficient of the interpolation expression used in
figure 10. This means than the theoretical prediction shown in
equation 32 agrees perfectly with the computational results.

In figure 13 the evolution of the residual boundary velocity
has been plotted. We can observe that the asymptotic final
value is the result of the two opposite forces (viscous friction
−µ

2M0v1
b

h2 and pressure gradient) that work against each other
until they reach the final stationary state. The consistency of
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Fig. 13. Evolution of the velocity at the boundaries for different h values
when the ASM extension is used.
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Fig. 14. Evolution of the µ∆2u at the boundaries for different h values
when the ASM extension is used.

this residual velocity is guaranteed by the fact that its final
value tends to zero when the smoothing length h decreases. A
complementary result is shown in figure 14 where µ times the
Laplacian of the velocity calculated at the boundary is initially
equal to −∇P

2 (2M1
h − 1).

When the Takeda extension is used, just the first time step
can be calculated with this continuous methodology. When
the Laplacian of the initial condition is calculated with the
Takeda extension the result gives a erroneous halved value in a
boundary layer of size h. This wrong friction at the boundaries
does not equilibrate the pressure gradient and consequently the
velocity of the closest particles to the boundaries increases
producing a slip velocity v1

b .

v1
b = ∆t(−∇P + µ∇2(

−∇P

2µ
(x2 − x2

2))) = (33)

∆t(−∇P + (
−∇P

2
(∇2x2 −∇2x2

2))) = (34)

−∆t
∇P

2
(35)

As we know from section II, the existence of a slip velocity
that does not satisfy the boundary condition makes the Takeda
extension produce a singular function, that is not even well-
defined at the boundaries. The extended field has not a definite
value at x2 = 0 and x2 = 1. Therefore, the Takeda extension
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Fig. 15. Snapshots of ν∆u calculated with the 1D Eulerian discrete
approximation at the first and the last(stationary stage) time step using the
U0M extension. h = 1/15 and h/dx = 512/15.

cannot be studied with this continuous algorithm and its study
will be postponed to further discrete approximations.

Finally a re-normalized Takeda extension, see [11], has
also been tested. The viscous friction at the first iteration
is calculated exactly µ∆2u0 = ∇P and consequently the
stationary condition is satisfied un = u0.

VI. 1D DISCRETE APPROXIMATION

In this section, the scheme used to solve the Pouseuille
problem will be a Eulerian approximation where a column of
particles remains in fixed positions. Comparing this procedure
with the one presented in section V, the main difference
consists in the calculation of the Laplacian integrals which will
be calculated as smoothed sums over the neighbor particles.
A column of fluid particles have been distributed along the
interval x2 ∈ (0, 1) and no particle is set either at x2 = 0
nor at x2 = 1. Four rows of particles have been added to
the upper and bottom parts to impose the non-slip boundary
condition, where different velocities are prescribed according
to the different extensions.

Using the U0M extension, the viscous shear calculated at
the first and last time steps has a similar shape compared to
the semi-discrete calculation presented in section V, see figure
15. Analogous results are obtained when the other extension
are used, not shown here.

The global absolute error in the velocity field at the station-
ary state has been plotted when the extension ASM is used
and the consistency of the result is clearly observed, see figure
16.

As we can see in figure 17 the U0M and the ASM extensions
present similar dependence of the residual slip velocity on
the smoothing length h if we compare to the continuous
case studied in section V. This means that in this problem
the substitution of the integrals by sums does not affect the
boundary conditions excessively. It is also important to remark
that when the Takeda extension is used the values of the slip
velocity are more accurate compared to the other extensions
(ASM and U0M), and as the others present a consistent
tendency where the slip velocity tends to zero with h.
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Fig. 16. Absolute error of the stationary velocity field compared with the
analytical solution when the ASM approximation has been used.
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Fig. 17. Dependence on h and h2 of the slip boundary velocity.

VII. 2D LAGRANGIAN DISCRETE APPROXIMATION

As SPH is well known as a Lagrangian numerical method,
we tried to extend our previous ideas to this context where
only the flow incompressibility and unidirectionality have been
used as dominant hypothesis. In this section, the scheme used
to solve the Pouseuille problem will follow a classical 2D
Lagrangian SPH approximation. Comparing this procedure
with the former one, in this case fluid particles fill a 2D
domain (x1, x2) ∈ [0, 1]x[0, 1] and move every time step. A
periodic boundary condition is used for the inflow and outflow
boundaries.

The equation (18) has been discretized in space according
to the standard SPH formulation and in time by a second
order Leap-Frog scheme [16]. The ratio between h and dx
has been fixed for all simulations in this section h/dx = 2.
The selection of the time step has been based on the viscous
diffusion and acceleration terms [16]. Two error sources will
be present in the following calculations [15]: first, due to
the use of a kernel smoothing function and second, coming
from the evaluation of integrals as finite sums. For the U0M
and ASM extensions the boundary conditions are imposed
after every predictor and corrector loop, while in the Takeda
extension the boundary conditions are imposed locally in the
viscous force calculation part.

In figure 17 we can appreciate how the U0M extension

shows a similar tendency as in the previous implementations
but the residual slip velocity has been increased by the La-
grangian movement of the particles, when the ASM extension
is used this increment is almost neglegible, but the Takeda
extension shows a unexpected large residual velocity that is
still under interpretation.

VIII. CONCLUSION

The mechanism by which the non slip boundary conditions
are implemented in a SPH code has been deeply understood.
This paper shows how an apparently inconsistent shear force
calculated at the initial step can be finally balanced by another
boundary force that appears when slip velocities are present
at the boundary. This convergent process allows an accurate
solution of the Poiseuille problem when the smoothing length
h and the ratio dx/h both tend to zero.
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