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ABSTRACT Contacts between people are the main drivers of contagious respiratory infections. For this
reason, limiting and tracking contacts is a key strategy for controlling the COVID-19 epidemic. Digital
contact tracing has been proposed as an automated solution to scale up traditional contact tracing. However,
the required penetration of contact tracing apps within a population to achieve a desired target in controlling
the epidemic is currently under discussion within the research community. In order to understand the effects
of digital contact tracing, several mathematical models have been studied. In this article, we propose a novel
compartmental SEIR model with which it is possible, differently from the models in the related literature,
to derive closed-form conditions regarding the control of the epidemic. These conditions are a function of
the penetration of contact tracing applications and testing efficiency. Closed-form conditions are crucial for
the understandability of models, and thus for decision makers (including digital contact tracing designers) to
correctly assess the dependencies within the epidemic. Feeding COVID-19 data to our model, we find that
digital contact tracing alone can rarely tame the epidemic: for unrestrained COVID-19, this would require
a testing turnaround of around 1 day and app uptake above 80% of the population, which are very difficult
to achieve in practice. However, digital contact tracing can still be effective if complemented with other
mitigation strategies, such as social distancing and mask-wearing.

INDEX TERMS COVID-19, analytical models, digital contact tracing, testing efficiency, SEIR model,
closed-form solutions, app uptake, epidemic controllability.

I. INTRODUCTION
Since April 2020, the WHO has been recommending two
main and complementary strategies to curb the COVID-19
epidemic: social distancing on the one end, test, trace, treat
(the famous 3 T’s) on the other. As for any respiratory viral
infection, the sooner we are able to ‘‘remove’’ contagious
people from interacting with others, the sooner the epidemic
will be restrained. Indeed, if, on average, each infected person
infects less than one susceptible person, rather than, for
example, two or three, the epidemic will die naturally [1].
Of course, for this to be effective, all three T’s must be
carried out swiftly. Contact tracing without testing is impos-
sible: first, you have to know that a person is potentially
contagious before being able to track down their contacts.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

Similarly, tracing must be completed as quickly and as
thoroughly as possible: the longer it takes to identify past
contacts, the longer the time a potentially contagious person
spends unknowingly infecting other people. Then, conta-
gious people must be immediately isolated, and treated if
necessary.

Contact tracing can be performed manually or digitally.
Manual contact tracing involves reconstructing the history
of past contacts with the infected person in the days before
being detected as contagious. This is typically done through
interviews with the infected person. Manual contact tracing
suffers from twomain problems: i) it is labor-intensive, hence
it struggles to keep up when the number of daily new cases
is high, and ii) the contagious person might not be able to
recall precisely their past contacts (simply because they forget
some or because some chance contacts with strangers are not
noticed in the first place). Digital contact tracing, performed
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by means of smartphone apps that – typically via Bluetooth –
automatically detect and register contacts, have the potential
to overcome the two limitations of manual contact tracing
described above. The research community has already iden-
tified convincing solutions that provide reasonable trade-offs
between privacy and tracing accuracy [2], [3], [4], [5].
Specifically, decentralized Bluetooth-based contact tracing
has emerged as the solution of choice and privacy-preserving
apps based on this approach have been deployed1 in many
countries [6], [7]. Recent research proposals involve lever-
aging blockchains and IoT for a more efficient and privacy-
preserving tracking [8]. The vast majority of deployed apps
leverage the Exposure Notification protocol, jointly rolled
out by Apple and Google in Spring 2020. However, digital
contact tracing comes with its own problems. The main one
is that, for it to be effective, a significant percentage of the
population must have the app installed [9]. Bumping up this
percentage may not be as easy as it seems [10]. For example,
people with old smartphones (typically not supporting Blue-
tooth Low Energy or for which an updated operating system
is not available) cannot enjoy the tracking functionality. Fear
of government intrusion into privacy turns off other potential
participants.

Due to the limitations discussed above, the percentage
of people with an installed and fully-functioning contact
tracing app will be far from 100%. Thus, key questions are,
among others: how large should this percentage be for digital
contact tracing to be effective in containing the epidemic?
How does this percentage depend on the contact patterns
between people? How does it depend on the implementation
of other mitigation measures (such as social distancing and
mask-wearing)? Digital contact tracing has yet to be properly
evaluated as a public health measure through a large-scale
assessment [11]. Thus, the answers to the above questions
must then necessarily come from mathematical models and
simulations. The network of people with the contact tracing
app installed is just another instance of a mobile social net-
work [12]: people interact with each other socially and these
interactions are mirrored in the anonymous data collected
from the contact tracking app. Thus, by taking advantage
of the properties of this mobile social network, we will
investigate the above questions.

Ferretti et al. [9] adapted a model introduced by
Fraser et al. [1] (and based on the popular Von Foerster
equation) in order to tackle the same research problem. How-
ever, the model in [9] can only be solved numerically, and
hence it is unable to yield a closed-form condition under
which the epidemic can be controlled based on the charac-
teristics of the digital contact tracing in place. In this article,
to complement the model in [9], our goal is to propose a
deterministic compartmental model for digital contact tracing
that provides closed-form conditions for the control of an
epidemic. Closed-form control conditions are crucial for the
understandability of models and are instrumental for decision
makers and computer scientists working on digital contact
tracing.

1For an extensive list: https://en.wikipedia.org/wiki/COVID-19_apps.

The contributions of this paper are the following:

• To complement the model in [9], we propose a deter-
ministic compartmental model for digital contact trac-
ing. The advantage of this modeling approach is that
closed-form solutions can be obtained, and hence ana-
lytical conditions on the control of the epidemic can
be derived. Vice versa, the Von Foerster equation on
which [9] is based, is more accurate than simple com-
partmental models, but can only be solved numerically.

• Alongside the compartmental model, we also introduce
a standalone model that captures how the testing delay
affects the efficacy of the detection of infected people,
depending on the duration of the latent window (the
period during which an infected person is not yet con-
tagious) and the contagious window (during which the
infected person is contagious but has yet to develop
symptoms). This model is general, and can be solved in
closed form for some common distributions describing
these time intervals.

• We apply the model to realistic COVID-19 epidemic
scenarios, showing that, even with high penetration
of digital contact tracing, the control of the epidemic
is extremely difficult without additional mitigation
strategies.

The rest of the paper is organized as follows.
In Sections II-III, we overview the main results in the related
literature regarding COVID-19 modeling and we summarise
the properties of the disease itself that are important from
the modeling standpoint. Our deterministic compartmental
model is presented in Section IV, together with the model on
the efficacy of detection of infected persons. The proposed
model is then applied to a set of realistic epidemiological
scenarios in Section V. Finally, Section VI concludes the
paper.

II. A BRIEF OVERVIEW ON COVID-19
From the modeling standpoint, a crucial aspect is to under-
stand when infected people become contagious. For any
viral disease, the typical timeline is the following. Following
contact with a contagious person, an individual may become
infected. However, they do not become contagious imme-
diately: there is a latent period during which the person is
infected but not yet contagious (i.e., the virus is replicating
but its quantity is not yet enough to infect another person).
Another important stage is the incubation period, which goes
from the infection time to the time when the person starts
developing symptoms. The latent period may be shorter than
the incubation period: this means that an infected person
becomes contagious before developing symptoms. Clearly,
this makes controlling the spread of the disease harder, since
the contagious person who has not developed any symptoms
is not aware of their contagiousness. Despite being the subject
of hot debates in the initial phases of the COVID-19 epidemic,
it is now clear that asymptomatic and pre-symptomatic car-
riers play a major role in the spread of the SARS-CoV-2
virus [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27].
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SARS-CoV-2 is an airborne2 virus, i.e., it travels through
the air. The typical transmission pathway occurs when a con-
tagious person talks, sneezes, or coughs, producing infectious
droplets that are inhaled by people in close proximity. Less
frequently, these droplets may fall on the surfaces in close
proximity and then contribute to transmitting the disease
when the contaminated surface is touched by a susceptible
person and then this person touches his/her face (eyes, mouth,
etc.). The latter transmission pathway is known as environ-
mental transmission. It is not known to play a major role
in the COVID-19 epidemic,3 hence we will not consider it
in the modeling. A third transmission pathway is that of
aerosol [28], [29], [30], [31]: when a contagious person talks,
sneezes, or coughs they also produce some smaller droplets
(known as aerosol) that evaporate faster than they fall on
the ground [32]. This means that with aerosol transmission,
the dry virus lingers in the air for a considerable time and
travels long distances. The bad news is that common face
masks (such as surgical and cloth ones) are not well equipped
to contain such small droplets. Thus, aerosol transmission
is much more challenging than droplet transmission, which
can be easily contained by relying on widespread social
distancing and lower-grade mask-wearing. However, model-
wise, they can both be captured by appropriately tuning the
probability of infection upon contact.

III. MODELS OF EPIDEMICS
There are two main modeling approaches in the related liter-
ature: mathematical models and agent-based models. Math-
ematical models of epidemics typically lay out a system of
Ordinary Differential Equations (ODE)/Partial Differential
Equations (PDE) that describes how the number of sus-
ceptibles, infected, etc., varies over time. Sometimes these
systems can be solved in closed form and provide very useful
trends describing what-if scenarios. Otherwise, numerical
solutions can be obtained. Due to their nature, these mod-
els are based on several simplifying initial assumptions to
make the mathematical representation of the phenomenon
tractable. On the opposite side of the modeling spectrum,
there are agent-based models. Agent-based models are com-
putational models where agents (corresponding to people)
interact, in simulation, according to some predefined rules,
which can be arbitrarily complex [33], [34], [35], [36], [37],
[38], [39]. They are conceptually very similar to the models
used in transportation simulation. They recreate synthetic
populations in terms of demographics, traffic flows, etc., and
then an epidemic is simulated. Recently, machine learning
approaches have gained popularity. Tomy et al. [40] exploit
Graph Neural Networks (GNN) to solve the problem of infer-
ring the state of the entire population by observing just a few
individuals. GNN have also been used to forecast pandemic
evolution [41], [42], [43], for the temporal reconstruction of
epidemic spreading [44], and for identifying patient-zero in
an epidemic [45]. More traditional approaches have also been

2We use the layman’s definition of airborne here. Technical use implies
only transmission through aerosol.

3https://www.ecdc.europa.eu/en/covid-19/latest-evidence/transmission

used, e.g., in [46], for epidemic forecasting. Since neither
agent-based nor machine learning approaches are the focus
of this work, we will not discuss them further.

By far, the most used mathematical model is the classical
SIR model and its many variations [47]. In the basic version,
people are divided into three compartments (denoted with
S, I, R, hence the name of the model). In S, people are
susceptible to the disease, i.e., they can become infected upon
contact with an infectious person. Infectious people are in
compartment I. After a certain time spent in compartment I,
infected people recover and move to compartment R. Transi-
tions between compartments are then modeled as follows:

dS
dt
= −βI

dI
dt
= βI − γ I

dR
dt
= γ I .

Parameters β and γ describe the rate at which susceptibles
become infected and infected recover. The SIR model can
be described by a system of ordinary differential equations
that can be solved in a closed form. This representation of
an epidemic is referred to as deterministic, because the above
equations are an approximation, holding for very large popu-
lations, of the stochastic version4 of the SIR model [47]. The
simple SIR model has been extended in several directions,
adding the exposed compartment (where people infected but
not yet contagious reside), which we also use in this work,
and many more (see [47] for a general discussion and [48] for
an application to COVID-19). It has also been used to study
the two-pathogen case [49], when two pathogens insist on the
same population (we do not consider this case in our work).

The deterministic compartmental models discussed above
are based on the simple assumption that the time spent in
each compartment can be reasonably approximated with an
exponential random variable (the Markovian assumption).
When this is not the case, other types of models must be
considered. An important class of non-Markovian models are
those based on the McKendrick-VonFoerster equation, which
incorporates a so-called age structure to the model [47]. Orig-
inally, this model was designed to capture births and deaths
in the dynamics of population growth in cellular biology:
offspring are generated at a young age, and death occurs
typically at an old age. Hence, keeping track of the population

4Stochastic SIR models have been extensively studied in the complex
system community, as they are amenable to capture the effect of network
topology. At the beginning of a disease outbreak, individual variability (such
as whether a node is a ‘‘hub’’ in the contact network) plays a major role
in determining whether an epidemic will occur or not, and deterministic
models (which treat all nodes as equal) are not an appropriate choice. In fact,
deterministic models assume a fully-mixed population, meaning that an
infected individual has the same probability of infecting any susceptible
node in the network. This assumption is needed to write down the ODE
system, but it is only considered reasonable once an epidemic has started,
and several nodes are already contributing to it. Our model, similarly to
other ODE-base models, should be used when a disease has already achieved
its epidemic phase, in which accurately capturing the outbreak stage is no
longer important while having tools for studying the controllability becomes
essential. Please refer to [47], and reference therein, for a detailed discussion.
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FIGURE 1. How people move across SEIR compartments. In red are the
arcs associated with containment measures: quarantine of exposed
people plus isolation of those infected and contagious. α denotes the
fraction of the digitally tracked population.

age over time was essential to predict the evolution of the
population size. When applied to epidemiology, age is seen
from the point of view of infection, i.e., it corresponds to the
time since the individual became infected. And the birth rate
at infection age τ becomes the rate at which a person infected
τ days ago produces offspring, i.e., newly infected people.
Thus, the infection rate is no longer constant over time and
depends on the current age profile of the population.

Finally, a related active area of study for COVID-19 is
the correct estimation of the parameters that describe the
dynamics of infection [50], [51], [52], [53], [54], [55]. This
is important both for purely mathematical models and for
agent-based models, because a correct estimation of the epi-
demic parameters allows researchers to correctly set up their
assumptions and simulations.

IV. FACTORING IN DIGITAL CONTACT TRACING
The McKendrick-VonFoerster model introduced in Sec. III
has been used in [9], a seminal paper dedicated to evaluating
the efficacy of contact tracing for COVID-19. The model
by Ferretti et al. [9] is based on the one proposed in [1],
with parameter values customized to the COVID-19 setting.
Thismodel is the de-facto reference for digital contact-tracing
effectiveness estimation and the vast majority of forecasts,
coming both fromwithin the scientific communities and news
outlets, have been based on its results. By its own nature, the
McKendrick-VonFoerster model can only be solved numer-
ically. Hence, it is unable to yield a closed-form condition
under which the epidemic can be controlled based on the
characteristics of the digital contact tracing in place. Thus,
in this work, we complement the results of Ferretti et al. [9]
showing how a simpler model, whose control condition is
solvable in closed form, can be obtained. The notation we
use in the paper is summarized in Table 1 at the end of the
section.

We start with a simplified version of the model, presented
in Figure 1, for illustrative purposes. As usual for determin-
istic compartmental models, we start with a population of
constant size N , i.e., the sum of people in all states must add
up to N . When looking at a large population, the short-term
variation in its size is small and can be neglected. The goal
of the model is to capture how infection spreads through the
population and to assess whether the spread can be stopped

or not by means of digital contact tracing and the resulting
quarantine of contacts. We assume that the epidemic is faster
than the long-term dynamics of births and deaths in the
population, so we ignore the latter. People can be in one
of four states: S (susceptible), E (exposed), I (infectious),
R (removed). Since people can be either tracked (with a
contact tracing app) or untracked, we duplicate these states
to account for this difference (thus, each state is marked with
subscript T or U for tracked and untracked, respectively).
We do not need to duplicate the removed state because people
in R do not contribute to the epidemic anymore. While
we use the common letters S, E, I, R to denote the states,
we slightly adjust the default meaning of the states to take
into account asymptomatic and presymptomatic transmis-
sion. In this model, then, exposed means infected but not yet
contagious, while infectious means infected and contagious
but with no symptoms (this includes the pre-symptomatic
and the asymptomatic phase of the disease). The removed
state includes all infected (whether contagious or not) that
have been isolated and/or have recovered. In this simplified
model, a person is isolated either because she is infected and
has been tracked by the contact tracing app or because she is
contagious and has started developing symptoms. We do not
include a dedicated state where people are both contagious
and symptomatic because it is reasonable to assume that
people with symptoms will isolate themselves (and therefore
join the removed state).

The fraction of tracked people is indicated by α, where α
represents the percentage of the population that subscribed
to the considered contact tracing app. Thus, at time t = 0,
we have αN people in state ST (corresponding to people that
are susceptible and tracked) and (1− α)N people in SU (sus-
ceptible but not tracked). From the susceptible state, people
can only move to the exposed state.5 Recall that ‘‘exposed’’,
in this case, means infected but not yet contagious. Therefore,
the time spent in the exposed state corresponds, without con-
tainment measures in place, to the latent period of the disease.
However, there is a crucial difference between untracked
and tracked exposed: tracked exposed will be notified by
health authorities about their previous contact with a tracked
contagious person and they will be isolated, i.e., they will
move to the removed state. The same happens for tracked
infectious. Removed people are isolated, and hence cannot
infect anyone. This is the crucial contribution of contact
tracing. Below, we summarize how the transitions from each
state can be modeled.
SU → EU The rate at which people leave the SU state is

given by the effective contact rate β (rate at which
there is an encounter between an S and an I and this
encounter generates an infection) times the number of
possible encounters between people in SU and those in I

5Technically, also some susceptibles can be removed (i.e., asked to isolate)
due to, e.g., a faulty detection from the contact tracing app or because the
app detected a contact that did not generate an infection. In practice, these
notified people will take a test in a matter of days and the test will come
up negative, joining again the S compartment. Thus, since SEIR models are
based on the assumption S ∼ N , withN large, this removal can be effectively
ignored.
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(we don’t care whether the encounter is with a tracked
or untracked infected).

ST → ET The same holds true for the rate at which tracked
susceptibles leave ST , with the appropriate change from
U to T of S’s subscript with respect to the previous case.

EU → IU Untracked exposed (people in EU state) stay there
until they become contagious, and this happens at a rate
ε.

ET → IT Instead, tracked exposedwill either become conta-
gious and move to state IT (this happens with the rate ε)
or be warned of having had contact with an infected and
told to self-isolate (this happens with rate θ , discussed
in detail in Sec. IV-A).

IU → R Untracked contagious (IU ) are isolated when they
begin to develop symptoms, and this happens at a rate
γ .

IT → R Instead, tracked contagious (IT ) can be either iso-
lated when they start developing symptoms (similarly
to the untracked case) or be informed that they have
had contact with an infected and told to self-isolate (this
happens with rate ψ , discussed in detail in Sec. IV-A).

The key point in being able to add the effect of contact
tracing to the SEIR equations is to adequately model the
red transitions in Figure 1. The rates θ and ψ capture how
effective digital contact tracing is in removing infected peo-
ple, and factor in testing delay as well as epidemic features
(latent period, contagious period, etc.). We will discuss this
aspect in Section IV-A and provide a methodology to derive
θ and ψ . For now, let us assume that we can assign proper
values to all the parameters of the model. In Theorem 1
below, we discuss how to solve the model and how to assess
whether the epidemic can be controlled or not depending on
the efficacy of contact tracing. The proof of the theorem can
be found in Appendix.
Theorem 1: The epidemic described by the SEIR model in

Figure 1 can be controlled when the following condition is
true:

C1: α −
(
1+

γ

θ + ψ

)(
1−

γ

β

)
> 0. (1)

Remark: The closed-form condition in Theorem 1 could
not have been obtained with the model used by Ferretti et al.
in [9], which can only be solved numerically. Closed-form
conditions are crucial for the understandability of models,
and thus for decisionmakers (including digital contact tracing
designers) to correctly assess the dependencies within the
epidemic. Note also that the complexity of this solution
isO(1), hence it does not depend on the size of the population
like, e.g., for agent-basedmodels. Thus,C1 provides an easily
interpretable and fast answer to the controllability problem,
albeit approximate.
To illustrate the intuition behind condition C1 in Theo-

rem 1, let us consider two ideal cases separately: i) instan-
taneous tracing (θ + ψ → ∞) and ii) perfect app uptake
(α = 1). These correspond to the two dimensions of digital
contact tracing: how good we are at detecting infections of
the tracked people and how many people we are able to
track. When tracing is instantaneous (corresponding to the

first case above), the threshold onα (derived fromEquation 1)
converges to 1− γ

β
. For SIRmodels, the ratio β

γ
corresponds to

the basic reproduction numberR0 [56], hence the threshold on
α, interestingly, is equivalent to the herd immunity threshold
1− 1

R0
. Note that instantaneous tracing alone is not sufficient

to control the epidemic: αmust be high enough for tracking to
cover a large fraction of the population. A superfast tracking
that only follows just a tiny fraction of the population is
basically useless. In the second case (perfect app uptake, i.e.
α = 1), condition C1 reduces to γ + θ + ψ > β. Therefore,
θ + ψ must be large enough to compensate for a high β
(effective contact rate). This means that even under the ideal
situation where everyone has the app (α = 1), control of the
epidemic may not be attainable if the tracing process is slow.
The efficiency of contact tracing is captured by θ and ψ and,
in Section IV-A, we discuss how to derive them.

A. ESTIMATING PARAMETER θ AND ψ FROM CONTACT
HISTORY
Now, we step back and discuss how to model θ and ψ ,
which are the rates at which exposed and infectious people
are removed, respectively. As discussed above, they capture
the effectiveness of testing. To derive them, we have to
reconstruct the process from contagion (encounter with an
infectious person that yields to infection) until removal.

Exposure notifications are triggered by tracked people
becoming symptomatic and, therefore, being tested.We know
that, since SEIR models assume homogeneity in encounters
(which boils down to a single β describing the entire contact
process, with no distinction between high vs. low social
interactions), the contact rate at which the newly symptomatic
tracked person met with tracked susceptibles is αβ (i.e., the
baseline rate scaled by the fraction of tracked people). This
rate must be split across the different states in which the
previous contact might currently be in. Specifically, a past
contact can be still exposed, already infectious, or removed.
We neglect the removal of susceptibles because the popula-
tion of susceptibles is very large (by assumption, S ∼ N ),
hence removing them would not impact the epidemic. Thus,
Definition 1 below follows.
Definition 1 (Alertable Contacts): The alertable contacts

of a positive person i can be a) in state ET (no symptoms, not
contagious), b) in state IT (contagious, no symptoms), c) in
state R (symptomatic or recovered, hence already ‘‘removed’’
from the epidemic). We denote the probabilities associated
with each of these conditions as pE , pI , and pR, respectively
(note that they add up to 1).

Intuitively, health authorities should strive to increase as
much as possible pE , because people in the exposed state have
yet to infect someone. Of course, this might not be possible
(e.g., due to testing delays) so the next best thing is to increase
pI . Instead, notifying people who are already in the removed
state is completely useless from the point of view of epidemic
containment.

As illustrated in Figure 2, we can model the conversion to
symptomatic of a previous contact considering: the length of
the latent period L (which, as discussed in Section II, goes
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FIGURE 2. The timeline of the conversion to symptomatic.

from the time of infection to the time a person becomes con-
tagious), the length of the infectious but asymptomatic period
C , and the testing delay T (the time it takes for a test result
to be available after the person has developed symptoms).
Note that L and C are only determined by the properties of
the specific disease. On the contrary, T is totally dependent
on the efficacy of the testing system in place, hence it can
be shortened by human interventions (e.g., using rapid tests
rather than molecular ones or by scaling up testing facilities).
The probability distribution of L, C , and T can be obtained
from real data, when available (at the end of the section,
we will discuss an example based on a realistic duration of
the latent and infectious windows). Using their distribution,
we can characterize the onlymissing time interval in Figure 2:
A, which represented the time it takes for the app notification
to pop up after contact. In Lemma 1 we derive interval A’s
distribution.
Lemma 1: The random variable A describing the time

interval between the at-risk contact and the time when the
notification from the contact tracing app arrives is distributed
as C ′ + T , i.e., as the sum (between random variables) of
the residual infectious-but-asymptomatic period C ′ and the
testing delay T .

Proof: As illustrated in Figure 2, A describes the time
at which the contact tracing app notification arrives. This
time corresponds to the interval between contact with an
infectious person and the notification time, hence it includes
a residual contagious period (which we denote with C ′)
and the testing delay T. Thus, A is distributed as C ′ + T
(hence its PDF is given by the convolution of the PDF of C ′

and T [57]). Mathematically, C ′ can be obtained assuming
that the contact between the susceptible and the contagious
individuals appears during C as a random observer: as a
result, C ′ can be derived as the residual duration [58] of
C for the infectious person i (i.e, the time left before the
person becomes symptomatic, hence they are discovered to
be positive). Denoting by FX the CCDF of a generic random
variable X , the formula to calculate the residual time C ′ is the
following [58]:

FC ′ (t) =
1

E[C]

∫
∞

t
FC (u)du. (2)

Since C can be derived from real epidemic data, C ′ can also
be calculated. �

Now that A is fully characterized, by deriving its interplay
with L and C we obtain pE , pI , and pR in Lemma 2 below.
Lemma 2: The probabilities pE , pI , and pR (associated,

respectively, with catching a person in state ET , IT , and R)
are given by the following:

pE = P(W < 0)

pI =
∫
∞

0
P(W = w)P(C > w)dw

pR = P(W − C > 0),

where we denote by W the difference A− L.
Proof: From Figure 2, we can see that pE is equivalent

to the probability of the notification arriving within the latent
period (corresponding to P(A < L)). The probability that the
notification arrives during the contagious and asymptomatic
period (P(L < A < L + C)) yields pI . The value of
pR can then be obtained complementing to 1 (or computing
P(A > L+C), i.e., the probability that the notification arrives
when the individual is already symptomatic). Operatively,
this results in the thesis. �

Not for all distributions the above algebra of random vari-
ables yields closed-form solutions, but for some significant
ones, it does, at least approximately. This happens, e.g., in the
Normal case discussed in the next section (Sec. IV-A1).
Closed-form solutions can also be obtained with exponen-
tial random variables. Once the probabilities pE and pI are
derived, it is straightforward to obtain rates θ and ψ .
Theorem 2: The rates at which exposed and contagious

people are removed (θ and ψ , respectively) are given by the
following:

θ = pEαβ, (3)

ψ = pIαβ, (4)

where pE and pI are obtained as in Lemma 2.
Proof: The thesis simply follows from scaling the

overall tracked contact rate αβ by the probability that the
exposed person is notified when still in the exposed state or
in the infectious state. �

1) EXAMPLE WITH NORMALLY DISTRIBUTED
CHARACTERISTIC TIMES
For the sake of example, we can now obtain pE , pI , and
pR leveraging the typical average duration of the latent and
contagious periods for the original COVID-19 epidemic.
From [59], we obtain the average duration of the latent period
(E[L] = ε−1 = 3 days) and that of the period before
an infected becomes contagious (E[C] = γ−1 = 2 days).
Note that the expectations of L and C correspond to the
inverse of ε and γ in the SEIR model of Section IV. For
example, assume that L and C are normally distributed, each
with a standard deviation 0.5 (the occurrence of negative
values with this configuration is negligible). We also assume
that T is normally distributed, with rate µT and standard
deviation σT . It is easy to verify that A = C ′ + T can be
approximated as normally distributed as well, specifically
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TABLE 1. Summary of notation.

A ∼ N (E[C ′] + µT ,Var(C ′) + σ 2
T ). Since we are dealing

with normally distributed variables, it is easy to obtain their
difference and sum using the algebra of normally distributed
random variables.

Leveraging the formulas we have obtained, we can now
better understand the impact of testing delays on the ability to
intercept infected people in each stage using contact tracing.
In the following, we focus on a tagged pair of people (one
tracked infectious i and one tracked susceptible j infected
by i, analogously to Figure 3) and we study the probability
that j is notified when in the exposed, infectious, or removed
state, respectively, as we vary the testing delay. Note that,
since we focus on a tagged pair of tracked people, this
result does not depend on α, which is a population-level
parameter. As Figure 3 shows, as long as the test turnaround
is less than 2 days, the infected person is most likely caught
while they are still not contagious. Vice versa, beyond a
4-day turnaround, we basically intercept only people that are
already contagious or even symptomatic. As discussed above,
the earlier we intercept infected people, the better. Small
testing delays are thus a key ingredient of a containment plan.

V. CAN DIGITAL CONTACT TRACING TAME
AN EPIDEMIC?
Now we use the model defined in the previous section and
apply it to study the effectiveness of digital contact tracing
in controlling the COVID-19 epidemic. To this end, we need
COVID-19-specific estimates for β (effective contact rate),
γ (transition rate to symptomatic), and ε (transition rate to
contagious), which are the baseline (i.e., not depending on

FIGURE 3. pE , pI , and pR as the average testing delay increases.

FIGURE 4. Controllability when the average latent period increases
(corresponding to the decrease of ε). We consider ε−1 = {1,3,5} days.
Control is attained in the shadowed regions.

the contact tracing process) transition rates in Figure 1. Then,
θ and ψ (which instead are also determined by the contact
tracing and the testing process) can be derived as discussed
in Section IV-A. Note that the digital contact tracing process
itself can be describedwith two parameters:α, the app uptake,
and the test delay µT . In the following, we will assess their
impact on the control condition C1 (Theorem 1) for different
epidemic scenarios. Specifically, we consider three cases.
First, we test the effect of an increasing latent period. Then,
we study the effect of a longer infectious period with constant
transmissibility (see below for details). Finally, we consider
what happens when transmissibility increases.

Regarding the baseline epidemic parameters, generally γ
and the ratio β

γ
, corresponding to the basic reproduction

number R0, are estimated early in an epidemic. Hence, in the
following, β will be set to the value yielding the COVID-19
R0 for the chosen γ . Intuitively, the basic reproduction num-
ber R0 captures the transmissibility of a disease, i.e., the
average number of cases directly generated by one infectious
person in a population with a very large number of suscep-
tibles. As we also see in the following, the larger R0, the
more difficult it is to contain the epidemic with digital contact
tracing (and in general).

We start (Figure 4) with a scenario with an average con-
tagious but asymptomatic window length (γ−1) equal to
2 days (typical of COVID-19) and fixed R0 = 2 (this
value correspond to the initial 2020 estimate for COVID-19
in [9]). We test the effect of an increasing latent period length
(ε−1 ∈ {1, 3, 5} days) on the controllability. Specifically,
we plot condition C1 in Equation 1 as a function of app
uptake α and testing delay (the two directions along which
digital contact tracing can be improved): C1 holds true in the
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FIGURE 5. Controllability when the average length of the contagious
period increases (corresponding to γ decreasing). We consider
γ−1 = {2,5,8} days. Control is attained in the shadowed regions.

shadowed areas of the plot (therefore, the epidemic is under
control). Intuitively, the longer the latent period, the easier
is the control of the epidemic because we have more time
to intercept tracked people before they become contagious.
Figure 4 confirms this: as ε−1 (the latent window) increases,
the importance of small testing delays is reduced, and an app
uptake above 80% may be sufficient to control the outbreak.
Looking again at Figure 4, we also note that an increase in
ε−1 induces a temporal shift on the controllability boundary
(the curves delimiting the shadowed areas in the figure): in
other words, the controllability boundary is affected by a shift
along the x-axis as the latent window increases.

Next, we consider the effect of the infectious period when
the transmissibility is kept constant. Without contact trac-
ing, two epidemics with the same transmissibility evolve in
the same way (since the controllability condition reduces
to R0 < 1). However, the length of the infectious period
affects the effectiveness of contact tracing. Therefore, the
digital controllability of epidemics with the same R0 is dif-
ferent if their infectious periods are different. In Figure 5,
we set the latent window ε−1 at 3 days (its average value
for COVID-19) and vary γ (the duration of the infectious
period) in {2, 5, 8} days. Note that we want R0 to remain fixed
(no change in transmissibility), so we vary β accordingly.
This implies that each person, on average, infects the same
number of people in all three cases captured by Figure 5.
We observe that the longer the contagious period, the easier
the containment (since the shadowed area expands). This was
expected because a longer contagious period increases the
probability of catching infected people before they become
symptomatic. With respect to the controllability boundary
(the curves delimiting the shadowed areas in the figure),
a change in γ induces a change in the convexity of the
boundary but no horizontal shift.

Finally, in Figure 6 we fix the latent period ε−1 and the
contagious period γ−1 to their typical COVID-19 values of
3 and 2 days, respectively, and we change the R0 of the
epidemic by varying β. Note that this analysis is especially
important, given the rise of new variants with increased
transmissibility (and therefore greater R0). We study
R0 ∈ {2, 3, 4, 5, 6}. R0 = 2 is the initial estimate for
COVID-19 (original strain), then revised to be much higher
in some areas (e.g., the estimate in [60] is R0 ∼ 4).

FIGURE 6. Controllability when the R0 =
β
γ increases (we fix γ and we

increase β). We study R0 ∈ {2,3,4,5,6}. Control is attained in the
shadowed regions.

The Alpha variant (B.1.1.7 lineage) is estimated to feature
at least 40% higher R [61] with respect to the original
strain, while the Delta variant (B.1.617.2) has transmissibility
estimated between 6 and 7 [62], [63]. Note that the apparent
even higher transmissibility of the recent Omicron variant
(B.1.1.529) seems to be due to immune evasion (e.g., vaccines
not as effective as for previous variants) rather than to
an actual increase in basic transmissibility [64]. Figure 6
shows that, as expected, the impact of increasing R0 is
much more disruptive than that of different latent/contagious
windows. Specifically, even with instantaneous testing, the
minimum uptake α needed to control the epidemic increases
as R0 increases. This means that even a small fraction
of untracked people can wreak havoc on the containment
measures. In practice, however, with R0 = 4, the control
of the epidemic through digital contact tracing becomes
impossible: an uptake above 95% is unrealistic for all the
reasons discussed in Section I (e.g., technical problems with
old smartphones, distrust by a fraction of the population).
In this case, R0 must also be reduced by exploiting mitigation
measures (social distancing, masks), in order to reduce the
probability of infection upon contact, hence β.

VI. CONCLUSION
In this work, we have discussed the modeling efforts for
COVID-19 and we have proposed a SEIR model that fac-
tors in digital contact tracing and is capable of producing a
closed-form condition on the controllability of the epidemic.
Leveraging this model, we have studied how the penetration
of digital contact tracing apps within the population impacts
the control of the epidemic. We have found that the pene-
tration must be in general high, hence digital contact tracing
may not be sufficient to contain an epidemic, even with
a fast turnaround of tests. Additional mitigation strategies
must be implemented, such as social distancing and mask
wearing. Additionally, the impact of digital contact tracing
is highest when the testing delay is low. If the test turnaround
is greater than 4 days, digital contact tracing has zero impact
on containment. In future work, we plan to extend the model
to account for more variability among nodes, e.g., in terms of
contact patterns, (along the lines of [65]), while still striving
for closed-form controllability conditions.
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APPENDIX
PROOF OF THEOREM 1

Proof: We start by writing the ODE system correspond-
ing to Figure 1:

dSU
dt
= −β(1− α)(IU + IT )

dEU
dt
= β(1− α)(IU + IT )− εEU

dIU
dt
= εEU − γ IU

dST
dt
= −βα(IU + IT )

dET
dt
= βαIU + (βα − θ )IT − εET

dIT
dt
= εET − (γ + ψ)IT

dR
dt
= γ IU + (γ + θ + ψ)IT . (5)

The corresponding system of ODE can be rewritten in matrix
form as y′ = Ay, where y = [EU , IU ,ET , IT ]T andA is given
by the following:

A =

−ε β(1− α) 0 β(1− α)
ε −γ 0 0
0 βα −ε βα − θ

0 0 ε −γ − ψ

 . (6)

The system in (5) describes a dynamic system. Its stability
(corresponding to the epidemic being under control or not) is
assessed by studying its eigenvalues (see, e.g., [60]), which
correspond to the roots of the characteristic polynomial pA(x)
of matrix A. In fact, since the solutions to a system of linear
ODE y′ = Ay are of the form y(t) =

∑
i ci ∗ e

rit [66] (where
ci’s are constants and ri’s the eigenvalues/roots), it is clear that
a positive root introduces instability into the system, because
there would be an exponential function with a positive argu-
ment, hence an exponential growth in the epidemic. There-
fore, we can study the roots of the characteristic polynomial
pA(x) to assess under which conditions only negative roots
exist. In order to avoid a trivial case, we assume β > γ (i.e.,
the epidemic is not under control without contact tracing).
Using Descartes’ rule of signs, we can derive the number of
positive and negative roots of pA(x) without actually having
to solve the polynomial (finding a closed form for the roots
would not be feasible in this case). Starting with positive
roots, we observe the following signs:

{+,+, sgn(k2), sgn(k1), sgn(k0)}, (7)

where we have expressed pA(x) as
∑

i kix
i, sgn is the

sign function (where sgn(·) = 1 corresponds to sign +,
sgn(·) = −1 corresponds to −), and k2, k1, k0 are given by
the following:

k2 = −βε + ε2 + γ (γ + ψ)+ ε(4γ + 2ψ + θ ),

k1 = ε(2γ + ψ + θ )

+ γ [2(γ + ψ)+ θ )− β(ε + γ + ψ − ψα],

k0 = −[(β − γ )(γ + ψ + θ )]+ β(ψ + θ )α. (8)

TABLE 2. All possible sign permutations for the coefficients of the
characteristic polynomial of A. The shadowed areas correspond to
unfeasible permutations.

By studying the functions sgn(k2), sgn(k1), sgn(k0), we obtain
the following relationships between the coefficients’ signs:

sgn(k0) = 1⇒ sgn(k1) = 1⇒ sgn(k2) = 1. (9)

In other words, since the rates must be all positive and
α ∈ [0, 1], when coefficient k0 is positive, k2 and k1 must
also be positive. This implies that not all possible sign permu-
tations in Equation 7 are attainable, as illustrated in Table 2.
Discarding unattainable permutations, we can have at most
one sign change across the coefficients of the polynomial,
which implies at most one positive root. It thus follows that
the condition under which we observe no sign changes is also
the condition under which the epidemic can be controlled
(zero positive roots). Thanks to Equation 9, we know that
sgn(k0) = 1 is a sufficient condition for this to happen. Then,
solving for k0 > 0 (with k0 defined Equation 8), we obtain
condition C1 in Equation 1.

To conclude the proof, we only need to verify that there
are no complex roots. This is easy to do by applying again
Descartes’ rule, this time to pA(−x). To this aim, we need to
change the coefficient sign of odd-power terms (i.e., k3, k1)
in Table 2 and count the sign changes. By summing the
sign changes for positive and negative roots corresponding
to the same permutation (equivalently, by summing the sign
changes per corresponding row in Table 2 and Table 2 with
the sign of odd-power terms changed), we obtain the total
number of real roots. If we do the math, we discover that the
total sign changes are at most 4, hence pA(x) features four
real roots. Then, the number of complex roots is given by
the difference between the degree of the polynomial and the
maximum number of real roots. Since pA(x) is a polynomial
of degree 4, we know that there are no complex roots.

�
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