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Abstract: The probability distribution of the interevent time between two successive earthquakes
has been the subject of numerous studies for its key role in seismic hazard assessment. In recent
decades, many distributions have been considered, and there has been a long debate about the
possible universality of the shape of this distribution when the interevent times are properly rescaled.
In this work, we aim to discover if there is a link between the different phases of a seismic cycle
and the variations in the distribution that best fits the interevent times. To do this, we consider the
seismic activity related to the Mw 6.1 L’Aquila earthquake that occurred on 6 April 2009 in central
Italy by analyzing the sequence of events recorded from April 2005 to July 2009, and then the seismic
activity linked to the sequence of the Amatrice-Norcia earthquakes of Mw 6 and 6.5, respectively,
and recorded in the period from January 2009 to June 2018. We take into account some of the most
studied distributions in the literature: q-exponential, q-generalized gamma, gamma and exponential
distributions and, according to the Bayesian paradigm, we compare the value of their posterior
marginal likelihood in shifting time windows with a fixed number of data. The results suggest
that the distribution providing the best performance changes over time and its variations may be
associated with different phases of the seismic crisis.

Keywords: interevent time; probability distributions; probabilistic forecasting; seismic cycle; statistical
seismology; statistical methods; Bayesian inference

1. Introduction

The time between two successive earthquakes, referred to as recurrence or waiting
or interevent time, is one of the most studied quantities describing the seismic activity;
it plays an important role in seismic hazard assessment being the main component of
some stochastic processes—such as renewal processes, Markov processes—which model
the temporal evolution of seismic phenomena. Several probability distributions have
been proposed in the literature to model the recurrence time τ, including the gamma,
Weibull, lognormal, and exponential distributions, but the most remarkable result was
that the shape of this distribution appeared to be universal when the times were suitably
scaled by some critical indices, such as the Gutenberg–Richter b value, the α exponent
of the Omori law and the fractal dimension d f of the set of earthquake epicenters [1]. In
other words, the distribution F(τ) would be independent of the spatial scale and of the
magnitude threshold of the observations, which expresses a hierarchical organization in
time, space, and magnitude. Further studies found that scaling by the average rate λ of
seismic activity—number of earthquakes per unit time—was sufficient to get approximately
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the same distribution in many different seismic regions [2]. A similar behavior was also
obtained by Corral by fitting the density function given by

f (τ) =
C δ

aΓ(γ/δ)

(τ

a

)γ−1
e−(τ/a)δ

γ, δ, a > 0 (1)

to some regional data sets [3], where C is the normalizing constant, a is a scale parameter,
and γ and δ control the shape for small and large τ, respectively. This scaling function
shows a power-law behavior for short times, and an exponential decrease for long times.

By simulations of the ETAS model with varying rate µ of independent events, which
can be considered a proxy for regional size, Touati et al. [4] showed that the interevent time
distribution is generally bimodal, and is best described as a mixture of two distributions: a
gamma distribution for short waiting times between correlated events which belong to the
same aftershock sequence, and an exponential distribution for longer waiting times between
uncorrelated events. Completely general forms for the interevent time distribution can be
obtained by resorting to a Bayesian nonparametric estimation method and considering the
unknown distribution as a random measure [5].

Properties such as fractal structures and long-range correlations present in the earth-
quake activity have led to adopt theoretical tools of non-extensive statistical physics in the
analysis of the statistical properties of some quantities describing the seismic activity in the
space–time–magnitude domain. This approach is based on a generalization of the classic
Boltzmann–Gibbs entropy proposed by Tsallis in 1988 [6]; by maximizing the non-extensive
Tsallis entropy, a probability distribution, denoted as q-exponential distribution, was ob-
tained and then successfully applied to investigate the distribution of various seismic
quantities, such as magnitude ([7] and references therein), fault length [8], spatial distribu-
tion of epicenters [9], and interevent time [10]. To improve the fit of the gamma distribution
by exploiting the results obtained through the q-exponential distribution, Michas et al. [11]
used the q-generalized gamma distribution, borrowed from Queirós [12], which behaves as
a power-law function for both short and large interevent times so as to provide a best fit
when the seismicity is correlated at all timescales.

Generally, the aforementioned studies aim to obtain the best probability distribution
for sets of interevent times which cover a large period, where the occurrences may involve
a complex summation of triggered and/or independent events on different time scales.
On the contrary, in this work, we wonder whether the probability distribution changes
over time and whether these variations can be associated with different phases of the
seismic process. To do this, we consider data from time windows with the same number
of observations which shift at each new event; we compare the performance of some
distributions chosen among the most studied ones by evaluating their posterior marginal
likelihood in the Bayesian framework. We apply this procedure to two data sets related to
the severe seismic sequences that hit central Italy in the last decades. The best probability
distribution, i.e., the one that significantly outperforms the others, varies over time; in
particular, we highlight that these changes characterize specific periods in the temporal
evolution of seismic activity and therefore could be used for forecasting purposes.

2. Probability Distributions

Let us consider the sequence of (N + 1) seismic events that occurred at times {t0, t1, . . . , tN},
and let T = {τi}N

i=1 be the set of the interevent times τ between successive events defined
as τi = ti − ti−1, i = 1, 2, . . . , N. We assume that all events have a magnitude larger than,
or equal to, the threshold Mc, which guarantees a sufficient degree of completeness for the
data set. We present the main properties of the most studied probability distributions of the
intervent time random variable.
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2.1. Exponential Distribution

The simplest probability distribution for the interevent time is the exponential distri-
bution with density function given by

f1(τ) = λ e−λ τ . (2)

It describes the time between events in a homogeneous Poisson point process, i.e., a
process in which events occur continuously and independently at a constant average rate;
hence, the exponential distribution indicates uncorrelated behavior. Its key property is that
it is memoryless, that is, the probability that the waiting time τ for an event exceeds a value
(t + s), conditioned on the fact that the time t has already passed, is equal to the original
probability of exceeding s:

Prob(τ > t + s | τ > t) = Prob(τ > s) = e−λ s. (3)

Consequently, the exponential distribution is the only continuous probability distri-
bution that has a constant hazard rate, equal to λ. According to Bayesian inference, the
conjugate prior for the exponential distribution is the gamma distribution; hence, we con-
sider the parameter λ to be a gamma-distributed random variable with hyperparameters a0,
b0 so that its posterior distribution is still a gamma distribution with parameters (a0 + N)
and (b0 + ∑N

i=1 τi).

2.2. Gamma Distribution

The gamma probability density function is given by

f2(τ) =
βα

Γ(α)
τα−1 e−β τ (4)

where α is the shape parameter and β is the scale parameter, both positive. In particular,
the gamma distribution models the sum of exponentially distributed random variables;
that is, if we consider a sequence of events such that each interevent time follows the
exponential distribution with parameter β, then the waiting time of the n-th event is a
gamma-distributed random variable with integer shape α = n. In general, the extensive use
of the gamma distribution is due to its ability to model the intertime between triggered af-
tershocks through its short-term scale power-law factor and the long-term scale Poissonian
background activity through the exponential factor. Regarding parameter inference, since
there is only the conjugate prior distribution of the scale parameter, we prefer to estimate
the posterior distribution of both parameters through the Metropolis–Hastings algorithm, a
stochastic simulation method of the class of Markov chain Monte Carlo (MCMC) methods.
This algorithm generates a Markov chain that converges to the target distribution—in our
case, the posterior distribution—using a proposal density for generating new candidate
values and a method for rejecting some of the proposed values [13]. In this way, we obtain
not only the parameter estimates, typically as their posterior means (average of the sampled,
possibly thinned, values), but also a measure of their uncertainty as expressed through the
simulated posterior distribution of each parameter.

2.3. Q-Exponential Distribution

Nonlinear dynamical systems showing fractal structures and long-range correlations
are successfully studied in the framework of non-extensive statistical physics. The presence
of the same properties also in seismicity [11] suggests analyzing the temporal behavior of
the seismic activity through the q-exponential distribution:

f3(τ) =
1
γ

(
1− (1− q)

(2− q)
τ

γ

)1/(1− q)
, 1 < q < 2 (5)
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obtained by maximizing the non-additive Tsallis entropy Sq:

Sq = kB
1−

∫
pq(x) dx

q− 1
(6)

under suitable constraints [6]; q is called the entropic index, and γ is the generalized
expectation value, that is, the mean with respect to the escort probability distribution [14]:

fq(x) =
f q(x)∫ +∞

0
f q(x) dx

. (7)

Given two independent systems A and B, the Boltzmann–Gibbs entropy SBG satisfies
the additive property SBG(A + B) = SBG(A) + SBG(B), whereas for the Tsallis entropy, we
can verify that

Sq(A + B)
kB

=
Sq(A)

kB
+

Sq(B)
kB

+ (1− q)
Sq(A)

kB

Sq(B)
kB

(8)

i.e., Sq is nonadditive; in particular, the cases q < 1, q = 1, and q > 1 correspond to super-
additivity (or superextensivity), additivity (extensivity), and subadditivity (subextensivity),
respectively, and when q→ 1, Sq recovers SBG. Extensivity and additivity are terms often
used interchangeably even though they are not equivalent because in most cases encoun-
tered in physics, additivity does imply extensivity [15]. In the Supplementary Material, we
show the link between estimates of the q-index and specific states of the system.

For large τ, the q-exponential density function (5) goes to zero as a power τ−1/(q−1),
and it is also always bounded below by the exponential density function; hence, it is a
fat-tailed distribution and, in particular, a heavy-tailed distribution, being

lim
τ→+∞

etτ F̄3(τ) = lim
τ→+∞

etτ
(

1 +
q− 1
2− q

τ

γ

)−(2−q)/(q−1)
= +∞ ∀τ > 0 (9)

where F̄3(τ) = 1− F3(τ).
Since conjugate priors of the q and γ parameters with respect to the q-exponential

function are unavailable, we again resort to Markov chain Monte Carlo methods to sample
from the posterior probability distributions of the parameters after reparameterizing them
as follows: θ = (2− q)/(q− 1) with θ ∈ (0,+∞).

2.4. Q-Generalized Gamma Distribution

Substituting the exponential term in (4) with the q-exponential function defined as

expq(x) = [1 + (1− q) x]1/(1−q)

borrowed from the nonextensive statistical mechanics, one obtains the so-called q-generalized
gamma density function, which is characterized by two power-law regimes indicating cluster-
ing effects at all time scales and both short- and long-term memory in the seismogenic process.
This distribution was proposed for the first time in the financial framework by Queirós [12]; it
is based on local fluctuations of the ω mean value of the gamma distributed τ variable under
study. Hence, scaling the variable by its mean value, we have the conditional density function

f (τ | ω) =
ϕϕ

ω Γ(ϕ)

( τ

ω

)ϕ−1
exp

[
− ϕ

ω
τ
]

(10)
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where E(τ) = ω. Let us assume that ω varies over time and follows the inverse gamma
distribution:

g(ω) =

( ϕ
λ

)δ

Γ(δ)
ω−δ−1 exp

[
− ϕ

ω λ

]
. (11)

Integrating the joint density f (τ | ω) g(ω) with respect to ω, we obtain the marginal
density function:

h(τ) =
λ Γ(ϕ + δ)

Γ(ϕ) Γ(δ)
(λτ)ϕ−1 (1 + λ τ)−ϕ−δ (12)

and carrying out the changes of variables

λ =
ρ− 1

ξ
, δ =

1
ρ− 1

− ϕ, α = ϕ− 1 (13)

we have the q-generalized gamma probability density function

f4(τ) =
(ρ− 1)ϕ Γ

(
1

ρ−1

)
ξ Γ
(

1
ρ−1 − ϕ

)
Γ(ϕ)

(
τ

ξ

)ϕ−1 [
1 +

ρ− 1
ξ

τ

]1/(1−ρ)

. (14)

In the limit ρ→ 1, it recovers the ordinary gamma distribution. Finally, as in the case
of the q-exponential distribution (5), we reparametrize as follows: η = (2−ρ)

(ρ−1) , to simplify
parameter estimation through MCMC methods.

3. Inferential Issues

We briefly give the basic concepts on the Bayesian approach that we followed in esti-
mation and comparison of the four models. Let us assume that the data τ = (τ1, τ2, . . . , τN)
are realizations of a random variable T whose density function belongs to the parametric
family F = { f (τ; ψ) : ψ ∈ Ψ}. Contrary to the frequentist approach, the parameter ψ is
considered a random variable and its prior distribution p0(ψ) collects our initial beliefs
about the phenomenon under study. Through the Bayes’ theorem, the information pro-
vided by the data and expressed by the likelihood L( f (τ |ψ)) = ∏N

i=1 f (τi; ψ) is combined
with that in the prior distribution into the posterior distribution:

p(ψ | τ) = p0(ψ)L( f (τ |ψ))∫
Ψ p0(ψ)L( f (τ |ψ)) dψ

. (15)

From this distribution, we obtain not only the parameter estimate, typically as the
posterior mean Ep(ψ) but also indications on its accuracy through statistical summaries
such as the posterior variance or the quartiles. The computational difficulties due to
the evaluation of the integral in (15), which is often multi-dimensional as in our case,
can be solved by resorting to the application of Markov chain Monte Carlo (MCMC)
methods, which produce a sequence of random samples from the posterior distribution (15)
through which the distribution can be approximated [16]. In particular, we apply the
Metropolis–Hastings (MH) algorithm, which consists of the following steps: (a) generate
an initial value ψ0 from its prior distribution p0(ψ) and set i = 0, (b) for each iteration i,
generate a next candidate sample ψ̃ from an arbitrary probability density q(ψ | ψi), referred
to as proposal or jumping density, (c) calculate the acceptance probability

αi = min
(

1,
L( f (τ | ψ̃)) p0(ψ̃) q(ψi | ψ̃)

L( f (τ | ψi)) p0(ψi) q(ψ̃ | ψi)

)
,

and accept ψ̃ as ψi+1 with probability αi, or set ψi+1 = ψi with probability (1− αi).
The initial values of the chain may be highly dependent on the starting value; for this,

we neglect the first k samples and use the sequence {ψi}M+k
i=k+1, for large enough values of
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k and M, to estimate the posterior distribution p(ψ | τ) and to approximate the posterior
marginal log-likelihood:

logL( f (τ)) =
∫

Ψ
logL( f (τ | ψ)) p (ψ | τ) d ψ ≈ 1/M

M+k

∑
j=k+1

logL( f (τ | ψj)) (16)

which enables us to verify how well the fitted model f (·) is able to describe the observed
data. In general, given two statistical models f j(·|φ) and fk(·|η), we can compare them using
the difference of their posterior marginal log-likelihoods ∆jk = log L ( fj(τ)) − log L ( fk(τ)),
and then, similar to the Bayes factor, we establish the degree of evidence in favor of the
first model according to the value K of the Jeffreys scale [17,18].

Considering our four probability models in detail, we note that only the λ parameter
of the exponential distribution has the gamma distribution as a conjugate prior. For each
of the parameters of the other models, we choose a lognormal distribution both as a prior
and as a proposal distribution in the Metropolis–Hastings algorithm. Let us consider, for
instance, the parameter θ of the q-exponential distribution; we express our initial beliefs
about it by specifying its prior distribution Lognormal(meanθ , varθ), where mean and var
indicate the mean and variance of the random variable θ and not the mean and variance of
its logarithm, as in the common representation of the lognormal distribution. Moreover,
regarding the generation of the Markov chain converging to the posterior distribution of θ,
at the (i + 1)-th iteration, we adopt a Lognormal (θi, (θi/κ1)

2) as a proposal distribution
for the next candidate value, where θi is the current value of the Markov chain and the
value of κ1 is calibrated through pilot runs so that the acceptance rate of the MH algorithm
is approximately from 25% to 40%. The same applies for the other parameters.

4. Case Studies

To evaluate the performance of the four probability distributions of the interevent
time presented in Section 2, we examine two sequences of earthquakes related to two
strong seismic crises that occurred in central Italy in the last decades: the L’Aquila
(Mw 6.1) earthquake in 2009 and the Amatrice (Mw 6)–Norcia (Mw 6.5) earthquakes in
2016. These earthquakes have been associated with two composite seismogenic sources
of the Database of Individual Seismogenic Sources (DISS, version 3.2.1) [19] that can
have the potential for earthquakes up to Mmax 6.5. Both data sequences analyzed in this
study are taken from the Italian National Institute of Geophysics and Volcanology (Istituto
Nazionale di Geofisica e Vulcanologia; INGV) web services: Italian Seismological Instru-
mental and Parametric Database (ISIDe) working group (2016), version 1.0, accessible at
http://cnt.rm.ingv.it/en/iside accessed on 6 September 2023 [20], in which the size of the
events is expressed in different magnitude units, as local magnitude ML, duration mag-
nitude MD, and moment magnitude Mw. We therefore applied the orthogonal regression
relationships: Mw = 1.066 ML − 0.164 and Mw = 1.718 MD − 1.897 [21] to convert ML and
MD to Mw in order to construct the homogeneous data sets. The spatial extension of the
areas under examination is established by taking into account the empirical relationship
between the magnitude and rupture length RL—log10(RL) = −3.22+ 0.69 Mmax—by Wells
and Coppersmith [22].

For each of the two sequences, we calculate the time between pairs of successive
earthquakes in order to obtain a set of N observed interevent times; then, we consider time
windows that consist of n = 100 observations and that shift at each new event through
the seismic sequence under examination. In this way, we obtain (N − n + 1) data sets
on which to evaluate the fitting of the probability distributions listed in Section 2 and to
investigate whether the best distribution is unique or varies over time with the change of
the seismic phases.

http://cnt.rm.ingv.it/en/iside
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4.1. L’Aquila Sequence

On April 6, 2009 (01:13:40 UTC), a Mw 6.1 shock was recorded with an epicenter at
latitude 42.342 and longitude 13.380 near L’Aquila, the capital of the Abruzzo region in
Central Italy. Consistent with the above criteria, we choose the rectangular area centered
on the epicenter, of latitude size (41.8, 43.0) degrees and longitude size (12.8, 13.8) degrees
as the study area, and we analyze the temporal period from 7 April 2005 to the end of July
2009, taking m0 = 2 as the magnitude threshold to ensure the completeness of the data set,
except, at most, a few hours after the main shock when temporary partial incompleteness
can be observed due to the well-known difficulty in recording all the events at the beginning
of the aftershock sequence, and especially those of low magnitude [23]. The main shock was
preceded by a Mw 4 foreshock on 30 March 2009 [24], and was followed by an aftershock
sequence, which lasted more than a year, of which the strongest was of Mw 5.4 occurred on
7 April 2009 [25].

Overall, we have 2725 events, that is, N = 2724 interevent times through which we
construct m = 2625 temporal windows, each of 100 consecutive observations, shifting
at each new event. To observe how the temporal distribution changes, we fit the four
probability models (Section 2) to the data set associated with each time window, and then
compare the pairwise differences of their posterior marginal log-likelihoods with the value
K = 2.3026 on the Jeffreys scale, indicating strong evidence in favor of the first model.
In the case of the exponential probability density, f1(τ) = λ exp{−λ τ}, we adopt the
conjugate Gamma(2,1) distribution as a prior distribution of the λ parameter so that the
expected seismic rate is approximately 2 (time in days). For the other three probability
models under examination, Table 1 reports the parameters of the prior distributions and
the κ coefficients used in the proposal distributions of the MH algorithm to obtain suitable
acceptance rates.

Table 1. Parameters of the prior distributions and κ coefficients used in the proposal distributions in
the MH algorithm.

L’Aquila Case Amatrice-Norcia Case

Model Parameters Mean0 Var0 κ Mean0 Var0 κ

Gamma α 0.04 0.01 3.0 0.8 0.15 3.0
β 0.1 0.01 2.0 10.0 50.0 1.5

Q-exponential θ 3.0 9.0 0.8 7.0 9.0 2.5
γ 3.0 9.0 2.1 0.3 4.0 1.3

Q-generalized gamma
ξ 5.5 12.25 2.2 3.5 2.0 1.3
η 6.5 6.25 2 9.0 2.5 1.6
ϕ 0.7 0.04 4.0 0.7 0.02 3.5

Figure 1 shows the estimated density functions and the histogram of the interevent
times belonging to the time window in which each density function, represented by a solid
line, provides, respectively, the best fit to the data. In particular, (a) the window in the left
top panel refers to the events that occurred from 1 April 2009 up to two hours after the main
shock, 90% of which are aftershocks; the q-exponential density function has both its largest
posterior marginal likelihood and the maximum difference from the second best density
function (q-generalized gamma). (b) Right top panel: the window contains the events from
30 January 2009 to 1 h after the main shock; the q-generalized gamma density function is
the best model but it is not worth more than a mere mention for the evidence shown by
its fit to the data with respect to the second-best density (gamma). (c) Left bottom panel:
the window is all made up of aftershocks that occurred in the first three hours after the
main shock; the gamma density function is the best model, and it has a decisive strength
of the evidence against the second best model (q-exponential). (d) Right bottom panel:
the window covers the period from 24 April to 30 April 2009; there is nothing more than
evidence barely worthy of note in favor of the exponential density against the q-exponential
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and gamma density functions. We note that the heavy-tailed q-exponential distribution best
describes the data set with the mass most concentrated on the left and skewed to the right,
while the gamma density fits well the unimodal histogram associated with the aftershock
set immediately following the main shock. The relative lack of very short interevent times
is probably related to the temporary incompleteness of the catalog in that period.

Figure 2 shows the largest value among the posterior marginal likelihoods of the four
probability models at each time window; different colors highlight how the probability
distribution that fits best the observations varies over time. To understand the motivations
of these changes, we analyze the characteristics of each data set by showing some of their
statistical summaries, such as first and third quartiles, median, mean and skewness. We
remind that skewness is a measure of the asymmetry of the probability distribution. When
it is positive, as in our cases, the right tail is longer, and the mean is greater than the median;
more precisely, the greater the skewness, the more the distribution is left-leaning, that is,
the more the observed intertimes are concentrated around short values; viceversa smaller
skewness corresponds to more homogeneously distributed data where the median is closer
to (to the left of) the mean.

Figure 1. L’Aquila case—time window in which the q-exponential (left top panel), the q-generalized
gamma (right top panel), the gamma (left bottom panel), and the exponential (right bottom panel)
distribution provides the best fit to the data in terms of posterior marginal likelihood.

The time windows are divided as follows: in 1745 (66%), the q-exponential distribution
represents the best model; in 68 (2.6%), the q-generalized gamma distribution; in 760 (29%),
the gamma distribution; and in 52 (2%), the exponential distribution. We point out that the
strength of the evidence in favor of the best distribution over the second-best model is strong
in only about half of the time windows, particularly for the q-exponential and the gamma
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distribution in 828 and 334 windows, respectively, concentrated in the hours after the
main shock, whereas for the q-generalized gamma and the exponential distribution, in no
window. Moreover, we note that the difference between all four models is not particularly
significant in 143 (∼5%, approximately from the 2300-th to 2450-th window) time windows
mainly concentrated between May and June 2009; we address this issue in more detail
in the Supplementary Material. For brevity, we will say hereinafter that the models are
interchangeable when the difference between their posterior marginal log-likelihoods does
not exceed the threshold K = 2.3026.

Figure 2. L’Aquila case—value of the posterior marginal log-likelihood of the probability distribution
which provides the best fit to the data in each time window of the period (7 April 2005–31 July
2009) versus the number of the time window. Statistical summaries of the data set in each window:
first and third quartile (gray dotted lines), median (violet dotted line), mean (black dotted line),
skewness (orange points and line). Vertical bars indicate the occurrence time of the 30 March
2009 Mw 4 earthquake (red dashed line), L’Aquila Mw 6.1 earthquake (red solid line), and events of
5.0 ≤ Mw < 5.5 (blue line) respectively.

We examine the characteristic features of each probability model; the q-exponential
distribution shows very strong evidence with respect to the other distributions (the q-
generalized gamma is the second best model) in the time windows over the main shock,
that is, which include some pre-main shock event and some aftershock and during the
aftershock sequence, particularly since the end of June. The gamma distribution exceeds
the other distributions on the day of the main shock—6 April 2009—and is the second-best
model early in the aftershock sequence, often interchangeable with the best q-exponential
model. Substantially, the exponential distribution outperforms the other distributions with
slight evidence only in a few time windows in May–June 2009.

To better understand what happens before the main shock, in Figure 3, we zoom
in on the first 350 time windows covering the period from 7 April 2005 to 6 April 2009
h. 4. The q-generalized gamma distribution is the best model in the period from 12 March
2009 to 6 April 2009, one hour after the main shock; that is, the period that we can denote
as the preparatory phase in the seismic crisis because it includes the foreshock occurred
on 30 March 2009 and is denoted by a red dotted line in Figure 3. In this period, the
q-generalized gamma distribution is interchangeable with the gamma distribution but
exceeds the other distributions with strong evidence. The role exchanges in the preceding
period of background activity between April 2005 and March 2009, in which the gamma
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distribution is the best model, is interchangeable with the q-generalized gamma distribution
and exceeds the other distributions with strong evidence (see the Supplementary Material).

As regards the statistical summaries, we note that the preparatory phase is character-
ized by a constant decrease in the mean and in the median of the data sets approximately
from the beginning of 2009, while overall, the skewness increases up to 2 April 2009 and
then decreases. This means that the interevent times get shorter between January and
March 2009; obviously, the minimum values of the mean and median are observed during
the aftershock sequence.

Figure 3. L’Aquila case—value of the posterior marginal likelihood of the probability distribution
which provides the best fit to the data in the first 350 time windows covering the period (7 April
2005–6 April 2009 h. 4) versus the number of the time window. Statistical summaries of the data set
in each window: first and third quartile (gray dotted lines), median (violet dotted line), mean (black
dotted line), and skewness (orange points and line). Vertical red bars indicate the occurrence time
of the 30 March 2009 Mw 4 earthquake (red dashed line) and L’Aquila Mw 6.1 earthquake (red solid
line), respectively.

4.2. Amatrice-Norcia Sequence

In 2016–2017, the junction area of the three regions Lazio, Marche, and Umbria in
Central Italy was hit by a complex sequence of destructive seismic events; on 24 August
2016 (01:36:32 UTC, latitude 42.698, longitude 13.234), an earthquake of Mw 6 shook the
city of Amatrice and caused about 300 fatalities. This shock, initially considered the main
shock, later proved to be the foreshock of the Mw 6.5 strongest shock that struck the city of
Norcia on 30 October 2016 (06:40:17 UTC, latitude 42.830, longitude 13.109). The aftershock
sequence lasted roughly up to July 2017 [25] and recorded four Mw 5+ earthquakes on
18 January 2017. We consider 5062 events (N = 5061 interevent times), which fall in the
rectangular area of latitude size (42.3, 43.2) degrees and longitude size (12.7, 13.5) degrees
and span the temporal period from January 2014 to June 2018, taking m0 = 2.5 as the
magnitude threshold in order to guarantee the completeness of the data set apart from the
first hours following the main shock on 30 October 2016.

We investigate the behavior of the four probability distributions, given in Section 2, in
m = 4962 data sets, each of which obtained, by shifting at each new event, a time window
constituted of 100 consecutive waiting times. First, we evaluate the posterior marginal
log-likelihood of each distribution in every time window by applying the MH algorithm to
estimate the posterior distribution of the model parameters; Table 1 shows the parameters
of the prior distributions and the κ coefficients used in the proposal distributions of the MH
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algorithm to obtain suitable acceptance rates. Comparing the pairwise differences between
the four posterior marginal log-likelihoods with the value K = 2.3026 of the Jeffreys scale,
we obtain the probability distribution with the best performance in each time window and
the strength of its evidence with respect to the other distributions.

Figure 4 shows the estimated density functions and the histogram of the interevent
times belonging to the time window in which each density function, represented by a
solid line, provides, respectively, the best fit to the data, that is, it has its largest posterior
marginal likelihood and the maximum difference from the likelihood of the second-best
density function. In particular, (a) the left top panel refers to the time window which
includes the first 98 aftershocks covering the two hours following the Amatrice shock,
which was preceded by two waiting times of approximately 28 and 63 days; the data
set is therefore very right skewed with a long right tail, and it is best described by the
q-exponential density function, which outperforms the other distributions with decisive
evidence. (b) Right top panel: the q-generalized gamma distribution is the best model
in the time window from 26 June 2009 to 15 January 2010, which includes the final part
of the L’Aquila aftershock sequence. (c) Left bottom panel: the time window includes
the aftershocks that occurred between h. 8 and h. 10 of the occurrence day of the Norcia
main shock (30 October 2016, 06:40:17 UTC); the gamma density function shows a decisive
strength of evidence against the other probability distributions by adapting very well to
the unimodal histogram of the interevent times, which are probably missing the shorter
ones due to the temporary incompleteness of the catalog after the strongest event. (d) Right
bottom panel: the exponential distribution is interchangeable with the gamma and q-
exponential distribution in the time window from 25 December 2016 to 18 January 2017,
when the first of the four Mw 5+ events occurred at Capitignano.

Figure 5 shows the value of the largest posterior marginal log-likelihood at each time
window, and the different colors indicate which probability model this value corresponds
to; the x axis represents the window number in the left panel and the time in the right
panel. The first and third quartiles, median, mean and skewness of each data set are shown
to highlight how the distribution of the observations changes over time. The time windows
are divided as follows: in 1825 (36.8%), the q-exponential distribution represents the best
model; in 360 (7.3%), the q-generalized gamma distribution; in 2748 (55.4%), the gamma
distribution; and in 29 (0.6%), the exponential distribution. The strength of the evidence in
favor of the best distribution with respect to the second-best model is strong or decisive
in only about a third of the time windows, in which the outperforming distribution is
especially q-exponential or gamma; in particular, as for the q-exponential, the q-generalized
gamma and the gamma distribution in 613, 12 and 1025 windows, respectively, are essen-
tially concentrated in the hours after the strongest shocks, whereas for the exponential
distribution, in no window. The Supplementary Material provides a detailed visualization
of the time windows in which the strength of the evidence in favor of a probability model
is particularly significant and those in which it is not.

Let us take a more thorough look at the behavior of the various distributions. The
q-exponential distribution is significantly the best model essentially in the first hours
following the strongest earthquakes: from h. 5 to h. 8 of the day of occurrence of the
L’Aquila earthquake (6 April 2009), from h. 2 to h. 3 of the day of occurrence of the
Amatrice earthquake (24 August 2016), in the time windows including the first aftershocks
of the Norcia earthquake (30 October 2016), and in the days of occurrence of the Mw 5+
shocks on 18 and 19 January 2017; in the other time windows in which it has the largest log-
likelihood, always during the aftershock sequences, it is interchangeable with the gamma
distribution (see the Supplementary Material). The q-generalized gamma distribution
characterizes the periods from January 2010 to November 2012 and from September 2017
to the end of our study; the difference from the other distributions has strong evidence
only in January 2010, while in the other time windows, the q-generalized gamma density is
interchangeable with the gamma density (see the Supplementary Material).
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Figure 4. Amatrice-Norcia case—time window in which the q-exponential (left top panel), the q-
generalized gamma (right top panel), the gamma (left bottom panel), and the exponential (right
bottom panel) distribution provide the best fit to the data in terms of posterior marginal likelihood.

Figure 5. Amatrice-Norcia case—value of the posterior marginal log-likelihood of the proba-
bility distribution which provides the best fit to the data in each time window of the period
(1 January 2009–31 June 2018) vs. (left) the number of the time window and (right) the time. Statisti-
cal summaries of the data set in each window: first and third quartiles (gray dotted lines), mean (black
dotted line), median (violet dotted line), skewness (orange points and line). Vertical bars indicate the
occurrence time of Amatrice 24 August 2016 Mw 6.0 earthquake (magenta line), Norcia 30 October
2016 Mw 6.5 earthquake (red line), events of 5.0 ≤ Mw < 5.5 (blue line) and of 5.5 ≤ Mw < 6.0 (violet
line) respectively.
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The gamma distribution has the largest value of the posterior marginal log-likelihood
in most time windows—in almost half of them with strong or decisive evidence—and
precisely in those covering both part of the aftershock sequences (in particular, the windows,
including the first forty aftershocks following the Amatrice shock and the first hours after
the main shock in Norcia) and the quiescence period from December 2012 to August 2016;
in some of the first ones, the gamma model is interchangeable with the q-exponential model,
while in the second ones, it is interchangeable with the q-generalized gamma model (see
the Supplementary Material).

In Figure 6, we distinguish the results obtained before the start of the Amatrice-
Norcia seismic crisis (left panels) from those produced by the sequence of earthquakes
following the Amatrice shock (right panels); the value of the largest posterior marginal
log-likelihood is plotted versus the time window number in the top panels and versus
time in the bottom panels. We note that the average interevent time and the likelihood
are inversely correlated, i.e., the more the observed recurrence times are concentrated
in short times, the greater the likelihood, or, in other words, the likelihood decreases as
the seismic activity decreases. Furthermore, the gamma distribution is the best model in
correspondence with the minimum values of likelihood: local minima before the shocks
of greater magnitude and the absolute minimum reached on 11 February 2015. The years
leading up to the onset of the Amatrice-Norcia seismic crisis are characterized by decreasing
values of the log-likelihood and by the gamma distribution as the best model but with
barely noteworthy evidence with respect to the q-generalized gamma distribution, which is
the second-best model; vice versa, the q-generalized gamma distribution is the best model,
and it is interchangeable with the gamma distribution in the years between the end of the
L’Aquila aftershock sequence and the beginning of 2013. Since 2009, the average interevent
time has a constantly increasing trend, which becomes almost flat starting from 2015 at the
same time that the value of the median approaches that of the average.

Figure 6. Amatrice-Norcia case—value of the posterior marginal log-likelihood of the probability
distribution which provides the best fit to the data in the first 1000 time windows covering the pe-
riod (1 January 2009–24 August 2016 h. 3) (left panels) and in the remaining time windows up to
31 June 2018 (right panels), versus the number of the time window (top panels) and versus the time
(bottom panels). Statistical summaries of the data set in each window: mean (black dotted line), median
(violet dotted line), skewness (orange points and line). Vertical bars indicate the occurrence time of
Amatrice 24 August 2016 Mw 6.0 earthquake (magenta line), Norcia 30 October 2016 Mw 6.5 earthquake
(red line), events of 5.0 ≤ Mw < 5.5 (blue line) and of 5.5 ≤ Mw < 6.0 (violet line), respectively.
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5. Discussion

We investigated the probability distributions of the time between two successive
earthquakes with the aim of finding out if there are links between the seismic phases and
variations of the probabilistic model that best fits the data in those phases. To this end, we
examined two seismic crises that hit central Italy and are related to the L’Aquila earthquake
in 2009 and the Amatrice-Norcia shocks in 2016. Their retrospective analysis showed that
the first crisis had a foreshock of Mw 4 on 30 March 2009, while the second had one so
strong—Mw 6—that it was initially mistaken for the main shock. Overall, the Amatrice-
Norcia sequence turned out to be more complex with greater energy release. As for the
relationships between seismic phases and variations of the best probability distribution of
the recurrence time, the two events share some features:

• Most of the probability densities estimated in the various time windows have a
decreasing shape as an inverse power law.

• The time windows with many very short interevent times—like those in the after-
shock sequences—are associated with great likelihood, while the data sets which
are less concentrated around short times, typical of the quiescence period, have
smaller likelihood.

• The q-exponential distribution outperforms the other distributions in the initial part of
the aftershock sequence, and it becomes interchangeable with the gamma distribution.

• The q-generalized gamma distribution is associated with time intervals following
aftershock sequences, such as, for example, the years from 2010 to 2012 following the
aftershock sequence of L’Aquila earthquake and from September 2017 after the Mw 5+
Capitignano shocks; in these periods, it slightly exceeds the gamma distribution.
Only in the case of the L’Aquila earthquake, the q-generalized gamma distribution
characterizes the initial phase of the activation between the fore- and the main shock.

• The gamma distribution is interchangeable with the q-generalized gamma distribution
in the periods of low seismic activity and with the q-exponential distribution in part
of the aftershock sequences.

Similar results have also been found in other studies, in which the phases of a seismic
cycle are related to changes in the probability distribution of the magnitude [26] and of the
spatial location of the epicenters [9].

Another remark can be made on the value of the log-likelihood in the case of the
Amatrice-Norcia crisis. As we expect, it decreases during the aftershock sequences; how-
ever, we note that it becomes even negative just over two months after the Capitignano
Mw 5+ earthquakes, while it remains high when the same time has elapsed after the Ama-
trice and Norcia shocks. This could suggest that we should expect further energy releases
after the Amatrice and Norcia events.

As regards the effects on the results of the possible partial incompleteness of the
catalog in the few hours following a strong shock, we recall that a sensitivity analysis for
the q-exponential distribution of the magnitude was carried out in [26] and highlighted
a substantial similarity in the behavior of the entropy and of the q-index curves obtained
from the different completeness magnitudes.

6. Conclusions

If, upon repeating the same analyses on different cases and in different seismotectonic
contexts, the connection between changes in the probability distributions and seismic
phases were confirmed, it could be hypothesized that these observations have the value of
precursors of the activation level in a seismic region. The existence of the seismic precursors
is still a widely open problem; but, already in 1999, Evison claimed that “despite the
difficulties confronting experimentation in this field, there is growing empirical evidence
that precursors exist.” [27]. Just as it is true that the most informative way to convey an
earthquake prediction, including the uncertainties, is by means of probability distributions
in the space–time–magnitude domain [28], it could be the same probability distributions
that play the role of precursors.
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We conclude by adopting Evison’s statement [27]: “Prediction is ubiquitous in science
as a test of understanding: to the extent that a phenomenon is understood, it can be
predicted, and vice-versa. If earthquakes were unpredictable, seismogenesis would be a
closed book, research would be futile, and the earthquake would remain, in the words of
Alexander McKay [29] ‘a visitation and a mistery’”.
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