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Abstract. In 1861, Becquerel analyzed the time-resolved luminescence and for-
mulated an empirical hyperbolic-type decay function, which was later named Bec-
querel decay law. Since then, studies about hyperbolic decays of luminescence
have been carried on in different physical contexts. In this paper we generalize
the Becquerel decay law by using a Mittag-Leffler function with a logarithmic
argument, and discuss its physical interpretation in light of recently published
results.

1. Introduction

The French physicist Edmond Becquerel not only designed his phosphoroscope
to realize the first pioneering time-resolved photoluminescent experiments, but also
found an empirical function for improving the fit previously obtained with one or
a sum of two exponential functions. Starting from the phosphorescent intensity
measured in inorganic solid samples, Becquerel modeled the following normalized
empirical decay

Iptq “
1

´

1` t
τ0

¯2 ,

which was later generalized in

Iptq “
1

´

1` t
τ0

¯p , (1.1)

after placing other samples between the two rotating disks of his phosporoscope
as the alkaline-earth sulfides. In (1.1) the intensity is normalized (Ip0q “ 1), the
Becquerel parameter varies between 1 ď p ď 2 and τ is a real parameter with
the dimension of time. This equation is also known as Becquerel decay function
[1], and includes both the hyperbolic decay (p “ 1) and the squeezed hyperbola
(1 ă p ď 2), i.e. a function decaying faster than an hyperbola. More recently,
Alvermann et al. [2] showed how many physical systems particularly relevant to
biology and bio-medicine seems to follow hyperbolic more than exponential decay
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laws. Anomalous behaviour in photoluminescence experiments can be observed
only in the very long rung, as the photoluminescent emission is quite satisfactory
described by a bi-exponential model that is valid in the short run (hundreds of
hours). In particular, it should be also noted that sample thermal treatment such as
the annealing influences positively the intensity of the photoluminescent emission,
flattening eventual abrupt dampings and unexpected plateau in photoluminescence,
that becomes really difficult to observe [3; 4; 5; 6; 7].

As can be seen from the genesis of the Becquerel decay function, so far the
research has been lead on the basis of the experimental measurements and results.
In this context, we suggest reversing course and trying to anticipate the experiments
and their consequent modelling requirements by filling a theoretical gap. In fact,
while the hyperbolic decay law and the compressed (or squeezed) hyperbola have
already been taken into consideration, a stretched hyperbolic decay law has not yet
been defined. Our approach, based on the analysis of the fractional differential
equation, generalizes the classical decay equation with a time-dependent rate. Here
we embed the time-variable rate by using the Caputo time-fractional derivative of
a function with respect to another one (see [8] and [9] for further details). From
now on, we call stretched hyperbola or stretched hyperbolic decay the normalized
phosphorescent emission in terms of the Mittag-Leffler function

Eν,βp´λtq “
8
ÿ

k“0

p´λtqνk

Γpνk ` βq
, (1.2)

that is proved to be useful in a large number of applications spanning different
fields of the applied sciences, as illustrated in the recent monograph [10]. More
specifically, the Mittag-Leffler was introduced by Berberan-Santos et al. [1; 11] to
analyze luminescence decay with underlying distribution, and Lemes et al. [12] to
describe non-exponential chemical effects. Moreover, an application of Mittag-Leffler
functions in the field of radiative transfer was recently suggested in [13; 14]. It will
be shown that the approach we propose not only restores a sort of symmetry with
the Kohlrausch-Williams-Watts (KWW) function, another well-known function used
in photoluminescence [3; 4; 7; 15; 16; 17], but also generalizes the Becquerel decay
law in order to improve the agreement with experimental data when anomalous
behaviours emerge.

The paper is organized as follows. In Section 2, we summarize the differential
equations from which the decay law (1.1) is derived, defining the context for the
introduction of the fractional integro-differential equation that allows to bridge the
hyperbolic law (1.1) with its stretched version for the phosphorescence decay. The
main result of the paper is presented in Section 3, where the stretched hyperbola in
terms of the Mittag-Leffler function is introduced. The function and its behaviour
is described in Sect. 4, whereas in Section 5 we discuss our generalized (stretched)
Becquerel decay law from a physical point of view. Finally, concluding comments
and remarks are summarized in Section 6.
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2. The Becquerel function

The intensity degradation decay function Iptq is proportional to the decay of the
number of the emitting centers according to the following relation:

Iptq :“
Nptq

N0

, (2.1)

where Nptq denotes the number of emitting centres at a time t and N0 “ Np0q is
their initial number. In other words, this ratio (2.1) defines the relaxation function
of the luminescent system considered and the time-resolved photoluminescence. The
decay law (1.1) can be derived mathematically by using two different approaches in
modelling the time-evolution decay of the number of luminescent centers Nptq. Both
these approaches are rooted in the physico-chemical reactions, allowing to deepen
the physical meaning of the photoluminescent process.

As illustrated in [15], the first approach is based on a non linear differential
equation

dN

dt
“ ´kN1` 1

p , (2.2)

which is reduced, when p “ 1, to

dN

dt
“ ´kN2. (2.3)

According to the notation introduced in Section 1 k is equal to p
τ0

, leading to

dN

dt
“ ´

p

τ0
N2. (2.4)

Equation (2.4) describes a decay process where two reactants (electrons and holes)
are involved in equal concentration, being a special case of the more general equation

dN1

dt
“ ´kN1N2, (2.5)

where N1 and N2 denote the concentrations of two different species. It’s worth to
note that the parallelism with such a physico-chemical approach turned out to be
very useful in the interpretation of experimental data [3; 7].

The second approach used to retrieve the hyperbolic decay (1.1) considers a first-
order kinetic equation. Here, the reaction rate of decay is time-dependent and it
is proportional to the number of emitting centers at that instant. The first-order
kinetic equation has the form

dN

dt
“ ´wptqN, (2.6)

with a time-dependent rate

wptq “
p{τ0

´

1` t
τ0

¯ , (2.7)
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that can be reduced as follows when p “ 1:

wptq “
1{τ0

´

t
τ0
` 1

¯ . (2.8)

3. An integro-differential equation with logarithmic kernel for
phosphorescence

In the recent paper [8], an integro-differential operator with logarithmic kernel
has been introduced in the context of correlated fractional negative binomial pro-
cesses. This operator can be seen as a particular specialization in the more general
definition of the Caputo fractional derivative of a function with respect to another
function (see, e.g., [9] and the references therein), and plays the role of a fractional
evolution operator.

Using the same notation as in [8], the time-evolution operator pOt
ν is defined as

pOt
νfptq “

1

Γpn´ νq

ż t

1´a
b

lnn´1´ν
ˆ

a` bt

a` bτ

˙

ˆ

ˆ

„ˆ

´a

b
` τ

¯ d

dτ

˙n

fpτq



b

a` bτ
dτ,

for n ´ 1 ă ν ă n. A relevant property of this operator is given by the following
result ([8], p.1057 for further details):

pOt
ν lnβpa` btq “

Γpβ ` 1q

Γpβ ` 1´ νq
lnβ´νpa` btq (3.1)

for ν P p0, 1q and β ą ´1zt0u. It can be proved by simple calculations that the
composed Mittag-Leffler function

Eν,1p´ lnνpa` btqq “
8
ÿ

k“0

p´ lnνpa` btqqk

Γpνk ` 1q
, (3.2)

solves the following integro-differential equation

pOt
νfptq “ ´fptq. (3.3)

This equation can be considered as a generalization of the decay equation (2.6),
where the time-dependence of the rate is involved in the memory kernel. By using
this approach, both (logarithmic) memory effects and a time-dependent rate are
taken into account. As a relevant remark, we observe that in the case ν “ 1, we
have that

pOt
1fptq “

ˆ

´a

b
` t

¯ d

dt

˙

fptq (3.4)

and thus, from the integro-differential equation (3.3), we immediately recover the
first-order kinetic equation

df

dt
“ ´

1
a
b
` t

fptq, (3.5)
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Figure 1. Log-log plot of Eq. (4.1) (full lines) and (1.1) (dashed
lines) as a function of time t for different value of ν and p, respectively.

that coincides with equation (2.6) when a “ 1, b “ 1
τ0

. This result gives a first

validation of the proposed approach, as the integro-differential equation (3.3) is in-
troduced as a generalization of the well-known formula (2.6).

4. Becquerel decay generalization by means of Mittag-Leffler
functions

On the basis of the previous analysis and using a “ 1, b “ 1
τ0

in (3.4), the

solution to the integro-differential equation (3.3) gives the following generalization
of the Becquerel hyperbolic decay:

Nptq

N0

“ Eν,1

´

´ lnν
´ t

τ0
` 1

¯¯

, (4.1)

where

Eν,1

´

´ lnν
´ t

τ0
` 1

¯¯

“

8
ÿ

k“0

´

´ lnν
´

t
τ0
` 1

¯¯k

Γpνk ` 1q
(4.2)

is the composition of the Mittag-Leffler function with the logarithmic function. The
solution (4.1) results to be normalized as required to facilitate the comparison be-
tween data collected under different environmental conditions.

Figure 1 reports in a single log-log plot the time-resolved normalized photolu-
minescent emission as a function of time t for different value of ν and p. The solid
purple line represents the hyperbolic Becquerel decay (1.1) with p “ 1, the dashed
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lines are the squeezed hyperbolas (1.1) defined for 1 ă p ď 2 and the solid lines show
the behaviour of the stretched hyperbola in terms of Mittag-Leffler function with
logarithmic argument (4.1). Here, in this last case ν ranges in p0, 1q. As expected,
while the squeezed hyperbola (1.1) describes phenomena decaying faster than an hy-
perbola, the stretched version (4.1) we presented here applies to the opposite case.
As observed in Section 3 for the integro-differential equation (3.3), the hyperbolic
type decay is recovered when ν is set equal to 1:

Nptq

N0

“
1

e
´ ln

´

t
τ0
`1

¯ “
1

t
τ0
` 1

(4.3)

In principle, it is possible to generalize the Bacquerel decay low by choosing
among a large number of special and empiric functions. Anyway, Figure 1 clearly
shows that the Mittag-Leffler function is able to describe the power-law-type decay
expected when dealing with anomalous (i.e. non-Debye) relaxation and extinction
processes (see, e.g. [10], [18]), and can be considered as a natural choice to describe
the normalized photoluminescent decay for a stretched time-resolved luminescence
(as also highlighted in [11]). It is worth to mention that unlike what reported in [1],
we considered here a Mittag-Leffler function with a logarithmic argument because
it allows for a better physical interpretation.

5. Physical interpretation of the result

In the previous Section the Becquerel decay law was extended to describe a
stretched hyperbolic behaviour, but its physical interpretation still needs to be clar-
ified. A strategic approach to frame the physical meaning of photoluminescent
empirical functions has been designed in [7], where it was applied to the Kohlrausch-
Williams-Watts function. Despite the different function used to model the fluores-
cence, the methodology and the results are quite general and can be applied to other
cases.

Firstly, we need to zoom on the solution describing the time-resolved lumines-
cence through a series expansion. Since the photoluminescence is modeled in the
short run as a bi-exponential model, we can just consider the zero-th and the first
order:

Nptq

N0

“ 1´
lnν

´

t
τ0
` 1

¯

Γpν ` 1q
. (5.1)

For the hyperbolic case ν “ 1, our approximated solution (5.1) is identical to the
time-dependent, non-exponential decay current observed in superconductors when
the induced and resistive voltages are balanced (see, e.g., [19] and [20] p.113). In
this context, the expression for the current can be obtained only after making a
number of approximations in order to integrate exactly the equation governing the
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decay current:

´L
diptq

dt
“ iptqRptq

“ iptqRne
?
piptq{i0´1q3 ,

(5.2)

that coincides with the differential equation (2.6) if the rate wptq is equal to

wptq “
Rne

?
piptq{i0´1q3

L
. (5.3)

Here iptq and i0 are the current at time t and the reference current, respectively,
while L is the inductance and Rn the normal resistance. In order to obtain an
analytical solution of (5.2) we need to perform a couple of approximations, reducing
the current dependence in the exponent of (5.3) from 3

2
to 1 and considering the

prefactor in the right hand side of (5.2) as a constant:

´L
diptq

dt
“ iptqRptq

“ iptqRne
´p1´iptq{i0q,

(5.4)

whose solution is
iptq

i0
“ 1´ ln

´ t

τ0
` 1

¯

. (5.5)

The current decay (5.4) corresponds to our approximated solution (5.1) for ν “ 1.
At the beginning, when ipt “ 0q “ i0, the time-dependent resistance Rptq is equal to
Rn and cause a rapid decay of current; as the current starts to decrease, the function
in the exponent is no longer zero and the resistance decreases, leading to a slower
current decay that follows a (non-exponential) logarithmic behaviour.

It is worth to highlight that while solution (5.5) is retrieved by a number of
phenomenological approximations of the decay rate (5.3) in the description of the
induced current [19; 20], our solution (4.1) and its series approximation (5.1) nat-
urally emerge by generalizing the hyperbolic decay law to be valid in the stretched
range. In other words, our integro-differential equation offers a way to solve the
physical problem of the induced current when it exceeds the critical current density
on the surface without making any approximation [21].

The mathematical and formal analogy between induced current and photolumi-
nescent emission is also to be found in the physical meaning underlying the process
dynamics. The exponent in (5.3) describes a current-dependent barrier height that
is almost zero at the beginning and causes a slower current decay when starts to
increase (i.e., the resistance decreases, as reported in [19; 20]). In photoluminescence
processes, the role of this increasing barrier can be understood in the light of the
reduced (or effective) mass, that can be related to the inertia of the system prevent-
ing the photoluminescent emission [7]. The reduced mass can be associated to the
presence of the cloud of virtual particles around the emitting centers, that deform
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the surrounding environment creating a distribution of relaxation times (that can
be modeled as traps) and leading to a non-hyperbolic, anomalous behaviour. In
particular, it was found that there are two different behaviours associated to the
reduced mass depending on whether the function is complete monotone or simple
monotone.
According to Theorem 2 in [22], the photoluminescence described by (4.1) is a com-
plete monotone function, because the Mittag-Leffler function is a complete mono-
tone function for ν P p0, 1q as proven in [23; 24] and the logarithm is a non-negative
function with a complete monotone derivative. As shown in [7], it implies that the
corresponding reduced mass is increasing and therefore, the barrier is also increasing,
confirming the result obtained in [19; 20]. The increasing barrier implies that the
dynamics is ruled by an exclusive damping mechanism. Assuming that the system
experiences such type of single dynamics, the function (4.1) effectively describes a
phosphorescence emission as explained here below.
After an initial photoexcitation, the atoms responsible for the luminescence are ac-
tivated: the incident radiation, usually in the ultraviolet range, creates excitons
(bound states composed by an electron and an hole) that play the role of the emit-
ting centers; the recombination of these charges produces the observed luminescence.
The photoexcited electron initially populates the singlet state and then it can de-
cay emitting or not radiation to the ground state. This radiation is the so-called
photoluminescence. After the rapid initial decay of photoluminescence, other decay
pathways are activated. A fraction of photoexcited electron follows another decay
path called intersystem crossing and starts to populate the triplet state. According
to this framework, the triplet state is a sort of trap-state where the excited electrons
cannot decay immediately via phosphorescence due to the small value of the decay
rate KT “

1
τT

. Now, the thermally activated processes take place favouring the emis-

sion as a thermally activated delayed fluorescence (TADF) and room-temperature
phosphorescence. However, considering that the function is completely monotone,
only decay pathway should be considered as the non-radiative annihilation via re-
combination with more active species as molecular oxygen O2, or the phosphorescent
emission. And it is perfectly framed in the context in which we derived the normal-
ized photoluminescent decay function (4.1): it describes the phosphorescence.
The de-trapping is generally described by an Arrhenius law of this form

KT » e
´ ∆E
kBT , (5.6)

where ∆E is the energy gap between the metastable and the excited triplet state,
kB is the Boltzmann constant, and T is the temperature of the system which is
time-dependent. This decay rate plays the role of a de-trapping rate, i.e. the rate
at which the electrons are recombined and the phosphorescence arise.
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6. Conclusion and final remarks

The Becquerel function was firstly introduced in the XIX century to describe the
phosphorescence emitted by inorganic solid samples, and includes both the hyper-
bolic and the squeezed hyperbolic decays. In this paper, we generalized the Bec-
querel decay law via a Mittag-Leffler function with logarithmic argument to include
also stretched decays, making an analogy with the well-known Kohlrausch-Williams-
Watts functions. This result was further analyzed considering its series expansion
stopped at the first order, that allowed to make a comparison with recently published
results about the description of photoluminescence in complex systems.
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[24] K. Górska, A. Horzela, A. Lattanzi and T. K. Pogány. On complete monotonic-
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1H. Niewodniczański Institute of Nuclear Physics Polish Academy of Science
IFJ-PAN, Kraków, Poland

2ENEA Research Center of Frascati, Frascati, Rome, Italy

3Institute of Atmospheric Sciences and Climate, ISAC/CNR.

4Department of Statistical Sciences, Sapienza University of Rome.


	1. Introduction
	2. The Becquerel function
	3. An integro-differential equation with logarithmic kernel for phosphorescence
	4. Becquerel decay generalization by means of Mittag-Leffler functions
	5. Physical interpretation of the result
	6. Conclusion and final remarks
	Acknowledgments
	CRediT authorship contribution statement
	References

