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Abstract: The purpose of this work was to evaluate the potential of Singular Spectrum Analysis (SSA)
and the Fisher–Shannon method to analyse NDVI MODIS time series and to capture and estimate
inner vegetation anomalies in forest covers. In particular, the Fisher–Shannon method allows to
calculate two quantities, the Fisher Information Measure (FIM) and the Shannon entropy power
(SEP), which are used to characterise the complexity of a time series in terms of organisation/disorder.
Pilot sites located both in urban (Milano, Torino, and Roma) and peri-urban areas (Appia Park, Castel
Porziano, and Castel Volturno) were selected. Among the six sites, Roma, Castel Porziano, and Castel
Volturno are affected by the parasite Toumeyella parvicornis. The time series was analysed using the
products available in Google Earth Engine. To explore and characterise long-term vegetation dynam-
ics, the time series was analysed using a multistep processing chain based on the (i) normalisation
of the satellite time series, (ii) removal of seasonality and any other periodical cycles using SSA,
(iii) analysis of the de-trended data using the Fisher–Shannon statistical method, and (iv) validation
through comparison with independent data and ancillary information. Our findings point out to
a clear discrimination between healthy and unhealthy sites, being the first (Milano, Torino, Appia)
characterised by a larger FIM (lower SEP) and the second (Roma, Castel Porziano, Castel Volturno)
by a lower FIM (larger SEP). The results of the investigations showed that the use of the SSA and
Fisher–Shannon statistical methods coupled with the NDVI time series of the MODIS satellite made
it possible to effectively identify and characterise subtle but physically significant signals veiled by
seasonality and annual cycles.

Keywords: earth observation; urban and peri-urban park; parasite monitoring; MODIS NDVI
time series

1. Introduction

Preserving the natural capital (CN) requires constant analysis and systematic moni-
toring, especially for the most critical environments, as those relating to forests in urban
and peri-urban areas, useful in countering the effects of climate change and in improving
the quality of the environment and life [1–4]. Any form of vegetation cover (e.g., cropland,
grassland, and forest) provides numerous services to the ecosystems and humanity, but
urban forests are of primary importance because they do improve life quality (strengthen
social connections as well as physical and mental health) reduce air and water pollution,
as well as heating and cooling costs, increase real estate values, and mitigate climate
change impacts [5–10].
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Therefore, considering the extremely important role played by “urban forests”, their
management, monitoring, and preservation is mandatory [11–15].

Recently, ESA (https://eo4ea-2022.esa.int/agenda/, accessed on 6 June 2023) national
and international institutions and agencies, such as, for example, the European Environ-
mental Agency (EEA), emphasised the importance of earth observation (EO) and remote
sensing (RS) data for monitoring and accounting for natural capital to support development
and management policies. Undoubtedly, since the 1980s, EO and RS technologies have
been gaining special attention in the monitoring of vegetation changes and dynamics and
in the detection of plant diseases and pests [16–20]. Invasive pests and alien plant bacteria
are considered as major threats worldwide because they can induce serious plant diseases
with devastating impacts on both natural ecosystems and agriculture production with huge
environmental (loss of biodiversity) and economic damage [21]. Remote sensing methods
can capture the degradation signs induced by many pathogen infections [22]; nevertheless,
reliable methodological approaches have to be devised and assessed, not only to identify
and map damage but also, and above all, to devise effective systems for early warning.

Changing trends can be quantified using NDVI time series, but this estimation can
significantly differ on the base of the (1) analysed satellite dataset, (2) the spatiotemporal
resolution of the used satellite products, and (3) the applied statistical method [23–27].

The analysis is based on NDVI because it is regarded as one of the most significant
parameters useful for the assessment of the vegetation conditions at multiple temporal and
spatial scales [28–34]. NDVI has been widely adopted as a proxy indicator of vegetation
status and degradation induced by fires, drought, desertification, soil erosion, and soil
salinisation, for assessing soil organic carbon, and more recently for the identification of
pest attacks, whose detection and monitoring has, therefore, been representing a much
more recent issue compared to other forms of land degradation [33–35]. Thus, assessing the
feasibility and effectiveness of MODIS satellite NDVI time series to provide early warning
for mitigating the impact of parasites and contrasting their spread is truly challenging.

In fact, pathogens and parasites are alien species that, due to a lack of predators, are
capable of spreading very fast-provoking and devastating effects [36,37]. This phenomenon
has led the European community to adopt laws and regulations to prevent, or at least
mitigate, the risk of spreading non-native pests [38]. The recording of early warnings in
vegetation changes can be crucial for timely intervention and it is, therefore, necessary to
consider a long time series, free of seasonal trends, in order to observe even the smallest
changes in trends. Several methods exist in the literature for conducting multi-temporal
satellite analyses, such as: (i) temporal segmentation algorithms, such as Continuous
Change Detection and Classification (CCDC), Vegetation Regeneration and Disturbance
Estimates through Time (VERDeT), and LandTrend [39–44]; and (ii) trend analyses that
analyse changes in pixel values over time [45–49].

In this paper, the approach developed by Telesca et al. [22], based on the use of the
Fisher–Shannon statistical method to analyse and characterise the temporal behaviour of
healthy and unhealthy vegetation (trend analyses), was adopted. This approach was also
used by Telesca et al. [50] to identify and map the Xylella fastidiosa in the Puglia region
and the Toumayella in the Campania and Lazio test sites using the evapotranspiration (ET)
products available in Google Earth Engine (GEE).

The aim of this paper was to assess the potential of SSA and the Fisher–Shannon
statistical method applied to time series of NDVI data extracted from MODIS satellite
to observe anomalies in peri-urban and urban forests, which generally refer to all trees
within a densely populated area, including trees in parks, on street-ways, and on private
property” (see, for example, https://www.fs.usda.gov/ccrc/topics/urban-forests, accessed
on 6 June 2023). Pilot sites located both in urban (Milano, Torino, and Roma) and peri-
urban areas (Appia Park, Castel Porziano, and Castel Volturno) were selected in North,
Middle and South Italy.

These case studies were chosen because they provide an excellent model for assessing
the possibility of understanding changes that have taken place in vegetation or are taking

https://eo4ea-2022.esa.int/agenda/
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place in vegetation, over time, in case studies with different characteristics that may be
subject to (i) sudden changes in the amount of greenery, as in the case of urban greenery,
and (ii) gradual changes over time related to plague and pest contamination. In both cases,
these are phenomena of great interest to the global scientific community. The choice was
made for (i) Turin (Torino) and Milan (Milano), because they are two cities with urban
green areas, whose change is mainly due to urban works activities as well as reforestation;
(ii) Rome (Roma), because it is a city with a large urban natural heritage composed of pine
trees that are more than one hundred years old and are now affected by pests, as frequently
reported in newspaper articles and popular websites [51]; (iii) Appia Antica Park, Castel
Porziano, and Castel Volturno because they represent three peri-urban parks, which in the
cases of Castel Porziano and Castel Volturno present the same parasitic problems as Roma
(see Section 2).

For the purposes of the investigation, the NDVI MODIS time series was used by
exploiting the products available in Google Earth Engine (GEE) that, in recent years, has
been widely used in many disciplines of RS and EO techniques, including the environmental
monitoring and risk assessment studies [52].

GEE is widely recognised for its robust computing capabilities and efficient handling
of large-scale datasets, making it an invaluable tool in the realms of remote sensing and big
data analysis [53–56]. Over the years, GEE has gained substantial popularity across various
disciplines, evident in the significant growth in the number of scientific papers focused on
utilising GEE. Researchers have leveraged GEE’s capabilities in diverse fields, including for-
est and vegetation analysis [9,57,58], land use and land cover studies [59,60], hydrology [61],
and ecosystems and climate research [62,63], as well as cultural heritage studies [64–66].
GEE’s accessibility has facilitated the development and sharing of numerous free tools,
which can be readily accessed on the GEE website.

Some of the most renowned satellite imageries are available on the GEE including
the archives of MODIS, Sentinels, and Landsat series. which are complemented by other
ancillary data, such as DEMs (Digital Elevation Models), meteorological data, shape-files,
and Land Cover maps [30,53,54,67].

2. Materials and Methods
2.1. Dataset and Study Areas

Investigations were conducted on six study areas selected as a combination of urban
areas with natural parks in Italy (Figure 1). The study areas were (i) Milano, (ii) Torino,
(iii) Roma, (iv) Appia Antica Park, (v) Castel Porziano, and (vi) Castel Volturno. They are
situated in the north (i–ii), in the centre (iii–v), and in southern Italy (vi).

Table 1 and Figure 2 show the characteristics of the study areas.

Table 1. Study areas: area, annual precipitation (average), annual temperature (average), and climate
system.

Study Area Area (Km2) Annual Precipitation (mm) Annual Mean Temp. (◦C) Climate System by the
Köppen-Geiger [68,69]

Torino 130 1002 12 Csa
Milano 190 1162 13 Csa
Roma 1187 878 15.8 Csa

Appia Park 47 878 15.8 Csa
Castel Porziano 69 878 15.8 Csa
Castel Volturno 12 1078 15.5 Csa
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Figure 1. Study areas with the combination of urban area and natural parks in northern, central, and
southern Italy.

1. Torino is the Italian city richest in public green areas, with 320 km of tree-lined avenues
and about 50 parks. Public parks are in the historic centre, as well as in each district
where there is at least one “lung” with lawns, areas equipped for children, and spaces
for running and playing. Torino’s green heritage is not only extensive, but also varied,
complex, sometimes precious, and delicate (http://www.comune.torino.it/verdepu
bblico/il-verde-a-torino/, accessed on 6 June 2023).

2. Milano has only 17 square metres of greenery per inhabitant well below the na-
tional average of 31 square metres as for other cities in the Lombardy Region where
the availability of public urban green is 28.6 square metres per inhabitant (with
significant variations from city-to-city). For this reason, recently a plan of urban
reforestation, named the Forestami project, has been launched and promoted by
the Metropolitan City of Milano, the Municipality of Milano, the Lombardy Region,
Parco Nord Milano, Parco Agricolo Sud Milano, ERSAF, and the Milano Commu-
nity Foundation. Born from research by the Milano Polytechnic, thanks to the sup-
port of the Falck Foundation and FS Sistemi Urbani. The aim of Forestami is the
planting of 3 million new trees in the Metropolitan City by 2030. Moreover, in the
framework of the PNRR, additional efforts for the urban reforestation have been
planned (https://www.cittametropolitana.mi.it/export/sites/default/ambiente/new
s/2022/ALLEGATO_1_Piano_forestazione.pdf, accessed on 6 June 2023).

3. Roma has been selected because, herein, the green areas are often part of the archaeo-
logical site (including Villa Ada, Villa Pamphilj, Villa Chigi, Villa Torlonia, Villa Borgh-

http://www.comune.torino.it/verdepubblico/il-verde-a-torino/
http://www.comune.torino.it/verdepubblico/il-verde-a-torino/
https://www.cittametropolitana.mi.it/export/sites/default/ambiente/news/2022/ALLEGATO_1_Piano_forestazione.pdf
https://www.cittametropolitana.mi.it/export/sites/default/ambiente/news/2022/ALLEGATO_1_Piano_forestazione.pdf
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ese, Villa Glori, Nemorense Park, Castel Sant’Angelo, the Pincio, Colle Oppio, Villa
Sciarra, the Gardens of Piazza Vittorio). As a whole, the public green areas within the
urban fabric are made up of urban parks, historic villas, public gardens, flowerbeds,
and green areas for a total of 3932 hectares (https://www.ansa.it/sito/notizie/magaz
ine/numeri/2017/03/02/roma-la-citta-piu-verde-deuropa_80a6cd96-5ae7-4b3f-974
2-c039cb38dfc6.html, accessed on 6 June 2023). Moreover, Roma has been selected
because, in the last years, the urban green areas have been strongly affected by
pests and parasite attacks, mainly Toumeylla Parvicornis (https://www.comune.r
oma.it/web/it/informazione-di-servizio.page?contentId=IDS908082, accessed on
6 June 2023), which has strongly devasted the urban areas generally made up of
Pinus trees, which are an integral part of the historical landscape of Roma as for the
whole peninsula (https://www.italianostra.org/news-nazionali/salviamo-il-pinu
s-pinea-salviamo-il-paesaggio-italiano/, accessed on 6 June 2023). The Toumeyella
parvicornis is an alien parasite (therefore, without a phytosanitary protocol to draw on
for its treatment) that arrived in the capital in 2018, probably from the Campania. The
extreme prolificity of Toumeyella determined the rapid spread of the insect causing the
pine trees to die within a few years [38].

4. The Appia Antica Regional Park, with its 4580 hectares, is the largest urban protected
area in Europe. A green wedge runs from the city centre towards the Castelli Romani.
Here, history, archeology, and nature blend in a landscape and environment of ex-
ceptional interest that offers even the most intransigent visitors unexpected surprises
(https://www.parcoappiaantica.it/wp-content/uploads/2021/04/13.LaFlora.pdf, ac-
cessed on 16 May 2023). At the centre is the Regina Viarum, an open-air museum
that winds for over 16 kilometres, and is always accessible. On its sides extend the
historic agricultural estates, interrupted by the spectacular remains of imperial villas
and aqueducts.

5. Castel Porziano is a Presidential Estate. It is 25 km approx. from Roma and covers an area
of 69 km2 approx., including some historic hunting estates such as “Trafusa, Trafusina,
Riserve Nuove and Capocotta”. The land cover is: forest (2300 hectares), Mediterranean
scrub (500 hectares), ilex grove (261 hectares), cork oak forest (460 hectares), and stone
pine forests (750 hectares). The latter have been artificially grafted and are intended to
protect the coast from erosion while simultaneously sheltering inland areas from sea
winds. Although artificially introduced, stone pine is now a fundamental element of
the Italian landscape, introduced by the ancient Romans.

6. The Castel Volturno nature reserve covers about 268 hectares on the coast of the
municipality of the same name. It occupies an area between the mouth of the Regi
Lagni and the mouth of Lago Patria (Figure 1). Within it are the protected areas ZSC
IT8010021 “Pineta di Patria” and the Regional Nature Reserve “Foce Volturno-Costa di
Licola”, consisting of pine trees. Castel Volturno is a typical example of Mediterranean
maquis, where the tree layer is mainly represented by umbrella pine (Pinus pinea),
maritime pine (Pinus pinaster), holm oak (Quercus ilex); the shrubby one from Juniper
(Juniperus sp.), Phillyrea (Phillyrea angustifoglia), Myrtle (Myrtus comunis), and lianas
such as Asparagus (Asparago acutifolius). In the last years Castel Volturno has been
severely affected by Toumeyella parvicornis [38].

https://www.ansa.it/sito/notizie/magazine/numeri/2017/03/02/roma-la-citta-piu-verde-deuropa_80a6cd96-5ae7-4b3f-9742-c039cb38dfc6.html
https://www.ansa.it/sito/notizie/magazine/numeri/2017/03/02/roma-la-citta-piu-verde-deuropa_80a6cd96-5ae7-4b3f-9742-c039cb38dfc6.html
https://www.ansa.it/sito/notizie/magazine/numeri/2017/03/02/roma-la-citta-piu-verde-deuropa_80a6cd96-5ae7-4b3f-9742-c039cb38dfc6.html
https://www.comune.roma.it/web/it/informazione-di-servizio.page?contentId=IDS908082
https://www.comune.roma.it/web/it/informazione-di-servizio.page?contentId=IDS908082
https://www.italianostra.org/news-nazionali/salviamo-il-pinus-pinea-salviamo-il-paesaggio-italiano/
https://www.italianostra.org/news-nazionali/salviamo-il-pinus-pinea-salviamo-il-paesaggio-italiano/
https://www.parcoappiaantica.it/wp-content/uploads/2021/04/13.LaFlora.pdf
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2.2. Methodological Approach

The designed procedure has been based on two steps, which is to account for both the
variability of the seasonal variations in the signal and to identify subtle multi-year trends
or changes: (i) the first step is based on the removal of the annual/seasonal/sub-seasonal
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(or other potential) periodical cycle; (ii) the second step is based on the processing of de-
trended signals, in order to identify the presence of subtle (but significant) changes. MODIS
NDVI products were used because data from more than 20 years are available (Table 2).

Table 2. Details of the MODIS MOD13Q1.006 data used, from [70].

Dataset MOD13Q1.006

Platform Terra

Sensor Moderate Resolution Imaging Spectroradiometer (MODIS)

Spatial Resolution 250 m

Temporal Resolution 16 days

Coverage Global

Bands

Band 1: Red (620–670 nm); Band 2: NIR (841–876 nm); Band 3:
Blue (459–479 nm); Band 4: Green (545–565 nm); Band 5: MIR
(1230–1250 nm); Band 6: MIR (1628–1652 nm); Band 7: SWIR

(2105–2155 nm)

Data Period 2000–Present

For the purpose of this study, the MODIS product, referred to as MOD13Q1.006, Terra
vegetation indices were used. The MODIS NDVI vegetation index is derived from the
normalised difference of the atmospherically corrected reflectance of near-infrared (858 nm)
and red bands (645 nm) [28], according to the Formula (1):

NDVI =
(ρNIR − ρred)

(ρNIR + ρred)
(1)

where ρNIR, ρred are the surface reflectance over the near-infrared (NIR) and red bands
of MODIS. The NDVI is well correlated with vegetation cover, vegetation canopy, veg-
etation dynamics, biomass, and leaf area index, and often considered as the vegetation
proxy [35,67,71–74].

The choice to use MODIS data was virtually a mandatory one. In fact, the MOD13Q1.006
data, as shown in Table 2, has:

(i) Freely available data in GEE;
(ii) A spatial resolution of 250 m/pixel attested to be useful in this type of analysis in

other studies [50,73];
(iii) A temporal resolution or revisit time of 16 days, the result of which is an inter-

polation of multi-day acquisitions for which the best pixels are then selected as reported
in [75–77];

(iv) A temporal coverage of more than twenty years.
In particular, points (ii)–(iv) were relevant in the choice of sensor, and in preferring

MODIS to higher resolution sensors such as Landsat. Since the analyses conducted need a
large and continuous (without null values) time series of observations in order to work at
their best.

The spatially averaged NDVI series were collected for the study regions (Figure 1)
using the GEE for the period of 2001–2020.

As a whole, the data processing can be summarised as follows (Figure 3):

1. Computation of spatial average of NDVI time series for each investigated site;
2. Normalisation of the satellite time series. The data are processed to have zero mean

and unitary standard deviation;
3. Application of SSA after normalisation of NDVI. First, the phase shift value M is

selected. Taking into account the sampling time of the series (16 days), to identify at
least the annual cycle, M was set equal to 24; this value is also in agreement with the
criterion of Khan and Poskitt [78], considering that the size of each series is 503. The
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decomposition of a time series into independent components can be performed by
using several methods; among these the Singular Spectrum Analysis (SSA) [79], based
on phase-lagged copies of the series, is well known for its efficiency, even in case of
noisy and short time series. The independent components that are derived by the
application of the SSA behave generally as slowly changing trends, cyclic components
and purely random noise [80]. This step will allow to identify trend and anomalies;

4. Characterisation of the informational properties of NDVI time series through the
Fisher Information Measure (FIM) and the Shannon entropy (SE), which in theory
of are applied to measure the local and global smoothness of the distribution of a
series, respectively. FIM and SE can be used to describe complex, nonstationary time
series which are described in order and organisation (FIM) [81], and uncertainty or
disorder (SE) [82];

5. Validation step conducted by comparing the results with independent data sets and
ancillary information. All of the test site results from the Fisher–Shannon statistical
method were compared with: (i) imagery available in Google Earth; (ii) forest watch
(https://www.globalforestwatch.org/, accessed on 17 May 2023), for which products
are freely available on a global scale and well-documented. The forest watch products
are obtained from Landast at 30 m and provide analyses and quantification on forest
cover loss and forest gain, herein the TM 2000–2020 time series were processed using
the Hansen et al. [83,84] Global Forest Change dataset; (iii) ancillary information
including results and outputs from other projects; (iv) field survey.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Flowchart. 

1. Computation of spatial average of NDVI time series for each investigated site; 
2. Normalisation of the satellite time series. The data are processed to have zero mean 

and unitary standard deviation; 
3. Application of SSA after normalisation of NDVI. First, the phase shift value M is se-

lected. Taking into account the sampling time of the series (16 days), to identify at 
least the annual cycle, M was set equal to 24; this value is also in agreement with the 
criterion of Khan and Poskitt [78], considering that the size of each series is 503. The 
decomposition of a time series into independent components can be performed by 
using several methods; among these the Singular Spectrum Analysis (SSA) [79], 
based on phase-lagged copies of the series, is well known for its efficiency, even in 
case of noisy and short time series. The independent components that are derived by 
the application of the SSA behave generally as slowly changing trends, cyclic com-
ponents and purely random noise [80]. This step will allow to identify trend and 
anomalies; 

4. Characterisation of the informational properties of NDVI time series through the 
Fisher Information Measure (FIM) and the Shannon entropy (SE), which in theory of 
are applied to measure the local and global smoothness of the distribution of a series, 
respectively. FIM and SE can be used to describe complex, nonstationary time series 
which are described in order and organisation (FIM) [81], and uncertainty or disorder 
(SE) [82]; 

5. Validation step conducted by comparing the results with independent data sets and 
ancillary information. All of the test site results from the Fisher–Shannon statistical 
method were compared with: (i) imagery available in Google Earth; (ii) forest watch 
(https://www.globalforestwatch.org/, accessed on 17 May 2023), for which products 
are freely available on a global scale and well-documented. The forest watch products 
are obtained from Landast at 30 m and provide analyses and quantification on forest 
cover loss and forest gain, herein the TM 2000–2020 time series were processed using 
the Hansen et al. [83,84] Global Forest Change dataset; (iii) ancillary information in-
cluding results and outputs from other projects; (iv) field survey. 

SSA and FS Method 
The time series decomposition into independent components can be performed by 

using several methods; among these the Singular Spectrum Analysis (SSA) [79], based on 
phase-lagged copies of the series, is well known for its efficiency, even in the case of noisy 
and short time series. The independent components that are derived by the application of 
the SSA behave generally as slowly changing trends, cyclic components and purely ran-
dom noise [80]. 

Given the time series yi (i = 1, …, N) its Toeplitz M-lagged correlation matrix is given 
by: 

Figure 3. Flowchart.

SSA and FS Method

The time series decomposition into independent components can be performed by
using several methods; among these the Singular Spectrum Analysis (SSA) [79], based on
phase-lagged copies of the series, is well known for its efficiency, even in the case of noisy
and short time series. The independent components that are derived by the application
of the SSA behave generally as slowly changing trends, cyclic components and purely
random noise [80].

Given the time series yi (i = 1, . . . , N) its Toeplitz M-lagged correlation matrix is given by:

Cj =
1

N − j

N−j

∑
i=1

yiyi+j, 0 ≤ j ≤ M (2)

From the eigenvalues λk, sorted in decreasing order, and eigenvectors Ek,j, where j
and k vary from 1 to M, of the Toeplitz M-lagged correlation matrix, the k-th principal
component aik are calculated:

aik =
M

∑
j=1

yi+jEjk, 0 ≤ i ≤ N −M (3)

https://www.globalforestwatch.org/
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The k-th is obtained as follow:

Rk =
1
M

M

∑
j=1

ai−j,kEjk, M ≤ i ≤ N −M + 1 (4)

The decreasing order of the eigenvalues λk corresponds to a decreasing order of
the fraction of the total variance of the original series explicated by the reconstructed
component Rk [85]. The only requirement of the SSA is the proper selection of the lag M.
The maximum M = (log N)c, 1.5 ≤ c ≤ 2.5 was calculated in [78].

The MDL (minimum description length) criterion is given by:

MDL(k) = −log

 ∏
p
i=k+1 λ

1
p−k
i

1
p−k ∑

p
i=k+1 λi

(p−k)N+
1
2

k(2p− k)logN (5)

where λk are the eigenvalues, p is the number of eigenvalues, identical to M, and N is the
length of the original series. This criterion is used to separate the series into a trend and
a detrended series. Calculating the value of k ∈ {0, 1, 2, . . . , p – 1} for which the MDL is
minimised (kmin), the trend is given by summing up all of the reconstructed components
up to kmin, while the detrended series is obtained by subtracting the trends from the
original values.

Using the Fisher–Shannon method, it is possible to study the information content
of a time series. In particular this method is based on the joint calculation of the Fisher
Information Measure (FIM) and the Shannon entropy (SE), used to measure the local
and global smoothness of the distribution of a series, respectively. FIM and SE can be
used to describe complex and non-stationary time series as (i) order and organisation and
(ii) uncertainty and disorder, respectively [73,81]. The FIM and SE are defined as follows:

FIM =

+∞∫
−∞

(
∂

∂x
f (x)

)2 dx
f (x)

(6)

SE =

+∞∫
−∞

fx(x)log fx(x)dx (7)

where f (x) is the distribution of the series x. Alternatively to SE, generally used is the
Shannon entropy power NX (8):

Nx =
1

2πe
e2Hx (8)

to avoid dealing with negative quantities. FIM and NX depend on each other by the
isoperimetric inequality FIM·NX ≥ D [50], where D is the dimension of the space (D = 1 for
time series).

FIM and NX depend on f (x), which has to be accurately estimated for obtaining reliable
values. For the calculation of FIM and NX, the kernel-based approach was employed [86]
as shown in the following formula:

ˆfM(x) =
1

Mb

M

∑
i=1

K
(

x− xi
b

)
(9)

where M and b denote the length of the series and the bandwidth respectively, while K(u) is
the kernel that is a continuous, symmetric, and non-negative function, satisfying the two
following constrains:

k(u) ≥ 0 and
+∞∫
−∞

k(u)du = 1 (10)
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f (x) is estimated by means of an optimised integrated procedure [87] with a Gaus-
sian kernel:

ˆfM(x) =
1

M
√

2πb2

M

∑
i=1

e−
(x−xi)

2

2b2 (11)

Due to the isoperimetric inequality, the time series can be represented in the so-called
Fisher–Shannon (FS) information plane [88], whose x-axis and y-axis are NX and FIM,
respectively. The curve INX = 1 separates the FS information plane into two half-spaces,
and a time series can be represented by a point located just in the half-space INX > 1.

3. Results and Discussion

NDVI values were extracted as the average value for the areas of interest (Figure 1)
using the GEE for the period of 2001–2020.

Figure 4 shows, as an example, the application of the SSA to the normalised NDVI
time series of Torino. Figure 4a shows the results of the eigenvalues of the SSA, where
each equals a reconstructed component and represents the fraction of the total variance
of the original series explained by that component. Figure 4b represents all reconstructed
components, which have a signal ranging from oscillatory with amplitude modulation to
apparently noisy.

Each time series was separated into a trend series and a detrending series by applying
the MDL criterion (Figure 5). The minimum of the MDL curve is at kmin = 10. This value
was used to extract the trend and obtain the detrended series.

The trend is the sum of the first 10 reconstructed components, while the detrended
series is obtained by subtracting the trend from the normalised series (Figure 6).

The trend has an oscillatory behaviour that can be explained by the seasonal cyclicality
of the series, probably due to climate variations. The detrended series would represent
the internal temporal dynamics of the series unaffected by exogenous phenomena that,
instead, are explained by the trend. Table 3 shows, for all investigated sites, the value of
the minimum MDL criterion.
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Table 3. Characteristics of the study areas.

Roma Torino Castel Volturno Castel Porziano Appia Park Milano

kmin 8 10 5 9 10 8

The Fisher–Shannon method was applied to each site to explore the information prop-
erties of the de-trended series, as the aim was to characterise the complexity of the temporal
dynamics of vegetation within the study sites. Using the Fisher–Shannon information plane
(FSIP), which has the Shannon entropy power (SEP) as the x-coordinate and the FIM as the
y-coordinate, an overall representation of the six studied sites was obtained (Figure 7).
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Figure 8 shows the quantification of forest loss and gain as available in Forest watch
for all of the investigated areas (Torino, Milano, Roma, Appia park, Castel Porziano, and
Castel Volturno) and re-computed by the author using the same algorithm.
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Global Forest Change dataset for the years 2000 to 2021: (a) Torino; (b) Milano; (c) Roma; (d) Appia
Park; (e) Castel Porziano; (f) Castel Volturno.
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The results obtained from the Fisher–Shannon statistical method applied to the MODIS
times series were validated by comparison with the results from the TM time series
2000–2020 processed using the Hansen et al. [83,84] Global Forest Change dataset.

These comparisons confirmed the reliability of the Fisher–Shannon statistical method
and its capability to assess and evaluate the net loss and gain for each study area. This is
well-visible for the Torino area, where, up to 2020, there is a full compensation between
forest loss and gain.

In particular, for Roma, Castel Porziano, Castel Volturno, and Appia park, the Fisher–
Shannon results were also compared with the results available from other projects/ investi-
gations and field surveys. Concerning Roma, analyses based on Sentinel 2 (obtained by
S23 project, https://www.digimat.it/case_study/space-to-tree/, accessed on 6 June 2023)
confirmed the ongoing degradation of urban and peri-urban green areas. Detailed inves-
tigations based on satellite, close range survey (drone equipped with visible and Ther-
mocamera), and ancillary information were made on the Pinus trees in the Coloseum, as
shown in Figure 9. In particular, Figure 9 shows the location of the investigated healthy
and unhealthy Pinus trees and clearly highlights the different spectral behaviour of the
healthy and unhealthy trees.

For the Appia Park, a visual analysis and comparison of Figures 2d and 8d clearly
highlighted two important aspects: (i) there is a prevailing agricultural use, and from the
updated Corine Land Cover maps (https://land.copernicus.eu/pan-european/corine-l
and-cover, accessed on 6 June 2023), no significant changes occurred (as expected, also
considering that it is a park); and (ii) the proposed method is capable of suitably removing
the NDVI significant seasonal variations, while identifying subtle multi-year trends and
changes, that in the case of Appia Park can be mainly related to the anthropogenic activities
linked to the prevailing agricultural use of this site.

In the FSIP, Torino and Milano are the sites characterised by higher FIM and lower
SEP; a factor indicating that these two sites are characterised by a high level of order
and organisation, compared to the other three sites Roma, Castel Porziano and Castel
Volturno. The data freely available from forest watch (https://www.globalforestwatch.or
g/, accessed on 6 June 2023) highlighted that in the analysed time period (2001 to 2020),
Torino experienced a net gain of 277 hectares in tree cover gain (315 ha forest gain equal
to 2.4% of its total extent, and 38 ha in forest loss equal to 1.7% of its total extent), and in
the same time period Milano experienced a net gain of 654 hectares in tree cover gain (664
ha forest gain equal to 3.7% of its total extent, and 10 ha in forest loss equal to 1.7% of its
total extent). This clearly fits well with the results obtained from the MODIS NDVI time
series analyses based on Singular Spectrum Analysis and the Fisher–Shannon statistical
method, from which Torino is relatively more stable, compared to Milano. It is important to
remember that, for each study area, the behaviour, and therefore, according to forest watch
analyses, the net loss and gain, are related to the averaged time series of NDVIs extracted
for each polygon representing each study area (Figure 1). Therefore, the final information
is related to a spatial average; namely, an aggregate view (see Section 3) of each site.

As a whole, the proposed approach enabled the identification of subtle signals totally
veiled by the seasonality and annual cycle behaviour and could be a tool for early diagnosis
of these phenomena.

The NDVI, as any satellite vegetation index, is a superposition of different signal
behaviours (seasonal, gradual, and/or abrupt) that are, in part, induced by external driving
meteo-climatic mechanisms, and, in part, due to the inner variability of the vegetation
time dynamics. To focus on the last, it is necessary to remove the seasonalities (or any
periodical cycles). To take into account the great variability exhibited by seasonal variations
in NDVI, while identifying subtle multi-year trends and changes, a procedure based on two
phases has been devised: (i) the first step is based on SSA applied to the NDVI time series,
to detect and remove the annual/seasonal/sub-seasonal (or other potential) periodical
cycles; (ii) the second step is based on the processing of the detrended series by using the

https://www.digimat.it/case_study/space-to-tree/
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://www.globalforestwatch.org/
https://www.globalforestwatch.org/
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Fisher–Shannon statistical method to characterise the complexity of the series in terms of
their informational properties.
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Among the investigated sites, Castel Volturno, Castel Porziano, and Roma were
characterised by an inverse proportion between SE and FIM. The pattern shown by these
three sites indicates a low level of order and organisation of the NDVI, which could be
correlated with ongoing degradation trends. In fact, independent analyses and field surveys
highlighted that all these three sites are strongly affected by a vegetation degradation
process, due to the parasitic beetle Toumeyella parvicornis that has attacked pine trees in
these areas in the last years, dramatically damaging the Pinus trees, as confirmed by the
multiple reports in Italian newspapers, by the funds allocated to buffer the problem, and
by scientific publications on the subject [51,89].

The capability of this statistical method to characterise the informational status of
the NDVI series, and to correlate it to the health status of vegetation, is reinforced by the
Fisher–Shannon analysis performed on the other three sites (Torino, Milano, and the Appia
park) that show higher FIM and lower Shannon entropy power, in comparison with the first
three sites. Torino, Milano, and Appia Park are characterised by a more stable behaviour
characterised (up to 2020) by a full compensation of the forest loss and gain, and, thus, by
the absence of “pathologic” trends of vegetation deterioration.

Data freely available from forest watch (https://www.globalforestwatch.org/, ac-
cessed on 6 June 2023) highlighted that in the analysed time period (2001 to 2020), Milano
experienced a net change of 2% compared to its total surface area, and in the same time
period Torino experienced a net change of 0.7% compared to its total surface area. This
clearly fits well with the results obtained from the MODIS NDVI time series process based
on Singular Spectrum Analysis and the Fisher–Shannon statistical method, from which
Torino is relatively more stable compared to Milano.

As a whole, the investigations herein conducted highlighted the capability of the
method to:

(i) Identify significant ongoing degradation trends regardless the land cover and land
use as evident by the fact that the six investigated pilot areas are characterised by
different land use (Figure 2). This is thanks to the first step of data processing which
enabled the identification and removal of seasonal and periodical cycles.

(ii) Provide, for each study area, a net evaluation of the forest loss and gain. This is due
to the fact that the area-averaged time series of NDVIs is extracted and processed for
each polygon (Figure 1) representing each study area (using GEE).

Therefore, the effective removal of both phenological and seasonal/sub-seasonal/cyclical
behaviours enabled the identification of the anomalies linked to degradation, which is
the prevailing phenomenon in the case of Castel Volturno, Castel Porziano, and Roma.
Whereas, Torino, Milano, and the Appia park show a more stable behaviour characterised
(up to 2020) by a full compensation of the forest loss and gain.

4. Conclusions

In this study, a methodological approach, based on the combination of a decomposi-
tional method (SSA) and an information method (Fisher–Shannon analysis) for monitoring
urban and peri-urban forests using MODIS NDVI satellite products, selected for their long
global coverage, was proposed and discussed.

The 2001–2020 temporal variation of the MODIS NDVI for six study areas located
from the northern to the southern part of the Italian peninsula was analysed. The pilot
sites are urban parks in Milano, Torino, Roma, Appia Ancient park, Castel Porziano, and
Castel Volturno. The study areas were specifically selected where there is a combination
of urban areas with natural parks. For each site, the focus was on the internal temporal
variability of the vegetation given by the detrend series that is not influenced by seasonal
or external factors.

The results clearly pointed out by the approach based on the SSA and Fisher Shannon
statistical method suitably can (i) provide, for each study area, a net evaluation of the forest
loss and gain; and (ii) identify significant ongoing prevailing degradation trends regardless
of the land cover and land use.

https://www.globalforestwatch.org/
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The results could contribute to the definition of methodologies capable of developing
metric and diagnostic tools for monitoring vegetation, in order to assess its status using a
synthetic indicator. The importance of this objective laid in the fact that NDVI is one of the
most important vegetation key parameters which is extremely important in climate change
investigations (hydrological modelling, carbon balance), environmental monitoring (pollu-
tion detection, nutrient flows), risk estimation (wild-fire, desert locust), land management,
agricultural practices, food security, monitoring of vegetation stress, and disease.

The proposed methodological approach can provide a contribution to the creation of
useful tools for:

(i) Early detection of deterioration trends;
(ii) Defining metrics for estimating the recovery/restoration capacity and the effective-

ness of the contrast measures adopted to mitigate the phenomena of degradation;
(iii) Creating operational tools for multi-scale, multi-sensor, multi-temporal monitoring

of bio-physical parameters relating to the state of vegetation;
(iv) Contributing to the definition of effective indicators for monitoring the natural

capital (CN).
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