In the near future, transportation media are likely to become "smart spaces", where sophisticated services are offered to the passengers. Among such services, we concentrate on video streaming provided on buses that move in urban, suburban, or highway environments. A contents' source utilizes a satellite DVB-S2 link for transmitting video streams to a bus, which, in its turn, relays it to its passengers' devices. A bus works in a smart mode taking advantage of the knowledge of the exact points where it will not receive the satellite signal for a certain time period, due to fixed obstacles. This information is sent to the hub via a return channel. The hub, in its turn, suspends the transmissions to that specific bus for the given time interval, thus avoiding information losses and unnecessary bandwidth occupation. Buffering video packets, without any quality of service degradation, seamlessly compensates channel blockages up to a given duration. In this paper, we determine the most appropriate transmission parameters for video streaming with good video quality of service (QoS) in a mobile satellite environment; moreover, we evaluate how "smart" the system can be in terms of bandwidth saving, by comparing it with the situation where the bus does not exploit the description of its route, still maintaining the same QoS requirements.

Video streaming transfer in a smart satellite mobile environment

Celandroni N;Ferro E;Gotta A
2009

Abstract

In the near future, transportation media are likely to become "smart spaces", where sophisticated services are offered to the passengers. Among such services, we concentrate on video streaming provided on buses that move in urban, suburban, or highway environments. A contents' source utilizes a satellite DVB-S2 link for transmitting video streams to a bus, which, in its turn, relays it to its passengers' devices. A bus works in a smart mode taking advantage of the knowledge of the exact points where it will not receive the satellite signal for a certain time period, due to fixed obstacles. This information is sent to the hub via a return channel. The hub, in its turn, suspends the transmissions to that specific bus for the given time interval, thus avoiding information losses and unnecessary bandwidth occupation. Buffering video packets, without any quality of service degradation, seamlessly compensates channel blockages up to a given duration. In this paper, we determine the most appropriate transmission parameters for video streaming with good video quality of service (QoS) in a mobile satellite environment; moreover, we evaluate how "smart" the system can be in terms of bandwidth saving, by comparing it with the situation where the bus does not exploit the description of its route, still maintaining the same QoS requirements.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Computer-Communication Networks
Video streaming transmission
DVB-S2
Satellite mobile channel
Smart buffering techniques
File in questo prodotto:
File Dimensione Formato  
prod_168082-doc_131478.pdf

solo utenti autorizzati

Descrizione: Video streaming transfer in a smart satellite mobile environment
Dimensione 499.16 kB
Formato Adobe PDF
499.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/145875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact