We describe an efficient technique for out-of-core construction and accurate view-dependent visualization of very large surface models. The method uses a regular conformal hierarchy of tetrahedra to spatially partition the model. Each tetrahedral cell contains a precomputed simplified version of the original model, represented using cache coherent indexed strips for fast rendering. The representation is constructed during a fine-to-coarse simplification of the surface contained in diamonds (sets of tetrahedral cells sharing their longest edge). The construction preprocess operates out-of-core and parallelizes nicely. Appropriate boundary constraints are introduced in the simplification to ensure that all conforming selective subdivisions of the tetrahedron hierarchy lead to correctly matching surface patches. For each frame at runtime, the hierarchy is traversed coarse-to-fine to select diamonds of the appropriate resolution given the view parameters. The resulting system can interatively render high quality views of out-of-core models of hundreds of millions of triangles at over 40Hz (or 70M triangles/s) on current commodity graphics platforms.

Adaptive TetraPuzzles: Efficient Out-of-Core Construction and Visualization

Cignoni P;Ganovelli F;Ponchio F;Scopigno R
2004

Abstract

We describe an efficient technique for out-of-core construction and accurate view-dependent visualization of very large surface models. The method uses a regular conformal hierarchy of tetrahedra to spatially partition the model. Each tetrahedral cell contains a precomputed simplified version of the original model, represented using cache coherent indexed strips for fast rendering. The representation is constructed during a fine-to-coarse simplification of the surface contained in diamonds (sets of tetrahedral cells sharing their longest edge). The construction preprocess operates out-of-core and parallelizes nicely. Appropriate boundary constraints are introduced in the simplification to ensure that all conforming selective subdivisions of the tetrahedron hierarchy lead to correctly matching surface patches. For each frame at runtime, the hierarchy is traversed coarse-to-fine to select diamonds of the appropriate resolution given the view parameters. The resulting system can interatively render high quality views of out-of-core models of hundreds of millions of triangles at over 40Hz (or 70M triangles/s) on current commodity graphics platforms.
2004
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Out-Of-Core Algorithms
Level of Detail
Computer Graphics
File in questo prodotto:
File Dimensione Formato  
prod_160652-doc_122880.pdf

solo utenti autorizzati

Descrizione: Adaptive tetraPuzzles: efficient out-of-core construction and visualization of gigantic multiresolution polygonal models
Dimensione 8.28 MB
Formato Adobe PDF
8.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/152161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact