In this paper we present new efficient variants of structured preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring preconditioners to the discretization of a degenerate problem in electrocardiology. A polylogarithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.
Substructuring Preconditioners for Mortar Discretization of Parabolic Problems
M Pennacchio
2006
Abstract
In this paper we present new efficient variants of structured preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring preconditioners to the discretization of a degenerate problem in electrocardiology. A polylogarithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.