In this paper we present new efficient variants of structured preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring preconditioners to the discretization of a degenerate problem in electrocardiology. A polylogarithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.

Substructuring Preconditioners for Mortar Discretization of Parabolic Problems

M Pennacchio
2006

Abstract

In this paper we present new efficient variants of structured preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring preconditioners to the discretization of a degenerate problem in electrocardiology. A polylogarithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.
2006
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
N/A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/153990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact