Efficient processing of similarity joins is important for a large class of data analysis and data-mining applications. This primitive finds all pairs of records within a predefined distance threshold of each other. However, most of the existing approaches have been based on spatial join techniques designed primarily for data in a vector space. Treating data collections as metric objects brings a great advantage in generality, because a single metric technique can be applied to many specific search problems quite different in nature. In this paper, we concentrate our attention on a special form of join, the Self Similarity Join, which retrieves pairs from the same dataset. In particular, we consider the case in which the dataset is split into subsets that are searched for self similarity join independently (e.g, in a distributed computing environment). To this end, we formalize the abstract concept of epsilon-Cover, prove its correctness, and demonstrate its effectiveness by applying it to two real implementations on a real-life large dataset.

A theoretical approach to the self similarity join in a distributed enviroment

Gennaro C
2009

Abstract

Efficient processing of similarity joins is important for a large class of data analysis and data-mining applications. This primitive finds all pairs of records within a predefined distance threshold of each other. However, most of the existing approaches have been based on spatial join techniques designed primarily for data in a vector space. Treating data collections as metric objects brings a great advantage in generality, because a single metric technique can be applied to many specific search problems quite different in nature. In this paper, we concentrate our attention on a special form of join, the Self Similarity Join, which retrieves pairs from the same dataset. In particular, we consider the case in which the dataset is split into subsets that are searched for self similarity join independently (e.g, in a distributed computing environment). To this end, we formalize the abstract concept of epsilon-Cover, prove its correctness, and demonstrate its effectiveness by applying it to two real implementations on a real-life large dataset.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Information Search and Retrieval
Metric Space
Similartiy self join
Scalability
File in questo prodotto:
File Dimensione Formato  
prod_161063-doc_131349.pdf

accesso aperto

Descrizione: A theoretical approach to the self similarity join in a distributed enviroment
Dimensione 240.22 kB
Formato Adobe PDF
240.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/167610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact