We develop a Markov Chain Monte Carlo (MCMC) version of the Fourier domain Correlated Component Analysis (CCA) method. The MCMC version allow us to calculate the estimation error. However, an adaptive temperature and random walk step size parameter update rules are proposed for Metropolis scheme. The algorithm tested on astrophysical component separation problem.

MCMC correlated component analysis in Fourier domain

Salerno E;Kuruoglu E E
2009

Abstract

We develop a Markov Chain Monte Carlo (MCMC) version of the Fourier domain Correlated Component Analysis (CCA) method. The MCMC version allow us to calculate the estimation error. However, an adaptive temperature and random walk step size parameter update rules are proposed for Metropolis scheme. The algorithm tested on astrophysical component separation problem.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
J.2 Physical sciences and engineering
I.4 Image Processing and Computer Vision
65Cxx Probabilistic methods
simulation and stochastic differential equations
Blind source separation
Correlated component analysis
Markov Chain Monte Carlo
File in questo prodotto:
File Dimensione Formato  
prod_161099-doc_133646.pdf

solo utenti autorizzati

Descrizione: MCMC Correlated Component Analysis in Fourier Domain
Dimensione 209.28 kB
Formato Adobe PDF
209.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/167645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact