We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. To improve the flexibility of the model, the compartments of lethally damaged cells and of dead cells were subdivided into different subcompartments. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results.
Response of tumour spheroids to radiation: modelling and parameter estimation
Bertuzzi A;Gandolfi A;Papa F;Sinisgalli C
2010
Abstract
We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. To improve the flexibility of the model, the compartments of lethally damaged cells and of dead cells were subdivided into different subcompartments. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


