Let $n, a_1, a_2, \dots , a_k$ be distinct positive integers. A finite Toeplitz graph $T_n(a_1, a_2, \dots , a_k) = (V, E)$ is a graph where $V = \{v_0, v_1, \dots , v_{n?1}\}$ and $E =\{(v_i, v_j), \mbox{for}\ |i-j| \in \{a_1, a_2, \dots , a_k\}\}$. In this paper, we first refine some previous results on the connectivity of finite Toeplitz graphs with $k = 2$, and then focus on Toeplitz graphs with k = 3, proving some results about their chromatic number.

On the chromatic number of Toeplitz graphs

Nicoloso S;
2010

Abstract

Let $n, a_1, a_2, \dots , a_k$ be distinct positive integers. A finite Toeplitz graph $T_n(a_1, a_2, \dots , a_k) = (V, E)$ is a graph where $V = \{v_0, v_1, \dots , v_{n?1}\}$ and $E =\{(v_i, v_j), \mbox{for}\ |i-j| \in \{a_1, a_2, \dots , a_k\}\}$. In this paper, we first refine some previous results on the connectivity of finite Toeplitz graphs with $k = 2$, and then focus on Toeplitz graphs with k = 3, proving some results about their chromatic number.
2010
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Toeplitz graphs
connectivity
coloring
chromatic number.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/186585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact