This report describes the results of a computational study aimed at analysing the hydrodynamic performance of twisted and untwisted rudders. The analysis is performed by INSEAN in the framework of WP21 of the STREAMLINE Project. The present report is written in fulfilment of Deliverable D21.8. The twisted rudder considered here is the result of a design exercise carried out by Chalmers University in the framework of CFD-based design and optimization studies performed in WP21. Aim of the work is to enhance the hydrodynamic efficiency of the STREAMLINE WP21 Tanker taken as a baseline. Starting from the original straight full-spade rudder, a modified geometry is obtained by adding camber to rudder sections and twisting along the span. The resulting twisted rudder is referred to as the Leading-Edge Twisted rudder. In the report, the hydrodynamic performance of twisted and untwisted rudders is analysed by simulating conditions representative of an incipient turning manoeuver. Specifically, ship travelling in straight ahead motion at low speed (VS = 10 knots) and rudder at constant helm angles between -20 and +20 degrees is the subject of simulations. The computational study is performed by using the hybrid RANSE/BEM model developed by INSEAN in WP34. The methodology generalizes standard actuator disk models like the one used by Chalmers for the design of the twisted rudder. Calculations address the fully appended ship at model scale and, recalling the low speed, by double-model assumptions in which free-surface effects are neglected. The computational methodology is briefly reviewed and the computational set-up described. A focused validation study is presented by comparing bare-hull flow predictions with experimental data available from the STREAMLINE project. A qualitative comparison with computational data obtained by other partners as result of activity under WP21 and WP34 is also presented. Next, simulations of propelled ship in straight course with rudders at helm angle are performed to compare propeller/rudder interactions on the STREAMLINE WP21 Tanker equipped with the original untwisted rudder and the alternative twisted unit. Numerical results highlight that the proposed TR-LE twisted rudder design is robust over a relatively wide range of rotation of the helm angle. Compared to the untwisted geometry, the twisted rudder at manoeuvring ship speed and helm angle from zero to 10 degrees (positive and negative) generally presents a smoother pressure distribution and lower pressure peaks in the leading edge region. However, advantages in terms of pressure distribution over the rudder surface tend rapidly to disappear as the helm angle is set to 20 degrees (positive and negative) with the occurrence of strong negative pressure peaks that are not observed on the original untwisted rudder. Finally, numerical results show that twisted rudder loads (axial, side force and moment) are fully comparable to those of the original untwisted rudder and hence the risk of reducing manoeuvring capabilities by introducing the new rudder design is not identified.
Questo rapporto descrive i risultati di uno studio numerico volto all'analisi delle prestazioni idrodinamiche di timoni svergolati e non. L'analisi è condotta da INSEAN nell'ambito delle attività del WP21 del progetto FP7 STREAMLINE. Il presente rapporto è scritto a completamento della Deliverable D21.8. Il timone svergolato qui considerato è il risultato di una progettazione test condotta dall'Università di Chalmers nell'ambito delle attività di progettazione ed ottimizzazione basate su simulazioni CFD all'interno del WP21. Scopo del lavoro è massimizzare l'efficienza idrodinamica del Tanker di riferimento del WP21 STREAMLINE. Partendo dal timone originale a sviluppo costante lungo l'apertura, una geometria modificata è ottenuta aggiungendo curvatura alle sezioni del timone e svergolamento lungo l'apertura. Il timone risultante svergolato è identificato come Leading-Edge Twisted rudder. Nel rapporto la prestazione idrodinamica dei timoni svergolato e non è analizzata simulando condizioni rappresentative di una manovra incipiente. Specificatamente, la nave che viaggia in direzione rettilinea in avanti a bassa velocità (VS = 10 knots) e timone ad angolo di barra fissato tra -20 e +20 gradi rappresenta il soggetto delle simulazioni. Lo studio computazionale è condotto mediante l'uso di un modello ibrido RANSE/BEM sviluppato da INSEAN nel WP34. La metodologia generalizza i modelli standard di disco attuatore come quello utilizzato da Chalmers per la progettazione del timone svergolato. I calcoli considerano una carena completa di appendici in scala modello e, in virtù della bassa velocità, l'uso di un modello di doppio corpo gli effetti della superficie libera sono trascurati. La metodologia numerica è brevemente esposta ed il set-up computazionale è descritto. Viene presentato uno specifico studio di validazione attraverso confronti delle simulazioni del flusso della carena nuda con dati sperimentali disponibili dal progetto STREAMLINE. Viene presentato anche un confronto qualitativo condati numerici ottenuti da altri partner come risulytati delle attività condotte nei WP21 e WP34. Inoltre sono condotte le simulazioni della nave propulsa in direzione rettilinea con timoni ad angolo di barra fissati per confrontare le interazioni carena/timone sul Tanker del WP21 STREAMLINE equipaggiata con ilo timone originale a sviluppo costante e l'alternativo timone svergolato. I risultati numerici evidenziano che la progettazione del timone svergolato TR-LE è robusta per un'ampia gamma dell'angolo di barra. Rispetto alla geometria del timone non svergolato, il timone svergolato alla velocità nave di manovra ed angolo di barra compreso tra 0 e 10 gradi (positivo e negativo) generalmente presenta una distribuzione di pressioni più regolare con picchi negativi nella regione del bordo di ingresso. Comunque, i vantaggi in termini di distribuzione di pressione sulla superdicie del timone tendono a scomparire rapidamente quando l'angolo di barra è fissato a 20 gradi (positivo and negativo) con l'insorgere di picchi negativi di pressione che non sono visibili nel timone originale non svergolato. Infine, i risulati numerici mostrano che i carichi del timone svergolato (assiale, laterale, momenti) sono completamente compatibili con quelli del timone originale non svergolato e, quindi, non si dentifica il rischio di una diminuzione delle capacità manovriere del nuovo timone progettato.
D21.8 - Analysis of manoeuvring capabilities of optimised rudders
Calcagni Danilo;Salvatore Francesco;Broglia Riccardo
2013
Abstract
This report describes the results of a computational study aimed at analysing the hydrodynamic performance of twisted and untwisted rudders. The analysis is performed by INSEAN in the framework of WP21 of the STREAMLINE Project. The present report is written in fulfilment of Deliverable D21.8. The twisted rudder considered here is the result of a design exercise carried out by Chalmers University in the framework of CFD-based design and optimization studies performed in WP21. Aim of the work is to enhance the hydrodynamic efficiency of the STREAMLINE WP21 Tanker taken as a baseline. Starting from the original straight full-spade rudder, a modified geometry is obtained by adding camber to rudder sections and twisting along the span. The resulting twisted rudder is referred to as the Leading-Edge Twisted rudder. In the report, the hydrodynamic performance of twisted and untwisted rudders is analysed by simulating conditions representative of an incipient turning manoeuver. Specifically, ship travelling in straight ahead motion at low speed (VS = 10 knots) and rudder at constant helm angles between -20 and +20 degrees is the subject of simulations. The computational study is performed by using the hybrid RANSE/BEM model developed by INSEAN in WP34. The methodology generalizes standard actuator disk models like the one used by Chalmers for the design of the twisted rudder. Calculations address the fully appended ship at model scale and, recalling the low speed, by double-model assumptions in which free-surface effects are neglected. The computational methodology is briefly reviewed and the computational set-up described. A focused validation study is presented by comparing bare-hull flow predictions with experimental data available from the STREAMLINE project. A qualitative comparison with computational data obtained by other partners as result of activity under WP21 and WP34 is also presented. Next, simulations of propelled ship in straight course with rudders at helm angle are performed to compare propeller/rudder interactions on the STREAMLINE WP21 Tanker equipped with the original untwisted rudder and the alternative twisted unit. Numerical results highlight that the proposed TR-LE twisted rudder design is robust over a relatively wide range of rotation of the helm angle. Compared to the untwisted geometry, the twisted rudder at manoeuvring ship speed and helm angle from zero to 10 degrees (positive and negative) generally presents a smoother pressure distribution and lower pressure peaks in the leading edge region. However, advantages in terms of pressure distribution over the rudder surface tend rapidly to disappear as the helm angle is set to 20 degrees (positive and negative) with the occurrence of strong negative pressure peaks that are not observed on the original untwisted rudder. Finally, numerical results show that twisted rudder loads (axial, side force and moment) are fully comparable to those of the original untwisted rudder and hence the risk of reducing manoeuvring capabilities by introducing the new rudder design is not identified.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.