This report describes results of a computational study on the hydrodynamic performance of two enhanced propulsion concepts based on contra-rotating and podded propellers. The activity is performed by partner INSEAN in the framework of WP23, Task 23.1, of the STREAMLINE Project. The present report is written in fulfillment of Deliverable D23.4. The two propulsion systems consist of (i) a single-shaft propeller placed in front of a pod-mounted propeller, acting in contra-rotation with respect to the forward screw (Contra-Rotating Propeller Pod, CRP-Pod, designed by RRHRC), and (ii) two contra-rotating propellers mounted in pulling model on a pod housing (Integrated Contra-rotating Podded propeller, ICP, designed by SSPA). Aim of the present work is to analyse by Computational Fluid Dynamics (CFD) tools the hydrodynamic performance of these two alternative concepts in operating conditions behind hull. To this purpose, the hybrid RANSE/BEM computational model developed by INSEAN in WP34 is applied. In the report, an overview of the computational set-up to study by hybrid RANSE/BEM the interaction between hull and contra-rotating propellers is given, and results of validation studies are discussed. Computational studies documented in the report include open water performance of CRP-Pod and ICP systems by full BEM model and comparison with model test data carried on by SSPA in Task 23.1. Next, bare hull nominal wake flow simulations by RANSE are compared with results of model test data by SSPA. Finally, results of hull/propulsor interaction studies by hybrid RANSE/BEM considering both CRP-Pod and ICP systems are presented and discussed. Simulations are performed at model scale (? = 26). Numerical results confirm trends on propulsive performance of the two systems revealed by model tests. In particular, both CRP-Pod and ICP units have comparable hydrodynamic efficiency when only screw contributions are considered. If pod resistance is also taken into account, the ICP layout is penalised as a consequence of the large resistance generated by the massive housing characterizing the present design. In fact, housing drag of the ICP is almost twice the resistance of the CRP-Pod unit. Strong pressure peaks on the ICP housing surface are also observed from calculations. Nevertheless, CRP-Pod and ICP units exibit an equivalent capability to achieve a quasi complete recovery of energy lost in the swirled flow downstream the forward screw. Numerical results demonstrate that downstream the aft screw the mean tangential velocity in the propeller slipstream is close to zero. Such a flowfield feature is the main reason of the outstanding hydrodynamic efficiency that contra-rotating screw system have as compared to single screw arrangements. It may be concluded that both CRP-Pod and ICP configurations designed in Task 23.1 are very promising as enhanced propulsive systems. However, in the present design the ICP determines a too high pod drag caused by the oversized housing. The possibilty to mitigate this drawback of the ICP layout could be the subject of a dedicated study. Results of validation studies presented in the report demonstrate that the hybrid RANSE/BEM model can represent a sound computational basis for design studies of this type of complex propulsors.
Nel rapporto sono riportati i risultati di uno studio computazionale sulle prestazioni idrodinamiche di due avanzate configurazioni propulsive, basate su eliche contro-rotanti e dotate di pod. L'attività è svolta da INSEAN, partner nell'ambito del WP23, Task23.1, del Progetto FP7 Streamline. Il presente rapporto è scritto a completamento della Deliverable D23.4. I due sistemi propulsivi consistono in: i) un'elica a linea d'asse montata davanti ad un'elica montata su sistema Pod, ruotante in direzione opposta rispetto l'elica a monte (contra-Rotating Propeller Pod, CRP-Pod, progettata da RRHRC), e ii) due eliche contro-riotanti montate in configurazione traente su un alloggiamento Pod (Integrated Contra-rotating Podded propeller, ICP, progettato da SSPA). Obiettivo del presente lavoro è analizzare mediante strumenti per la Fluido-Dinamica Computazionale (CFD) le prestazioni idrodinamiche delle due differenti configurazioni operanti dietro carena. A tal scopo, il modello computazionale ibrido RANSE/BEM sviluppato presso INSEAN nel WP34 è applicato. Nel rapporto viene fornita una descrizione del set-up computazionale mediante ibrido RANSE/BEM per lo studio dell'interazione tra la carena e le eliche contro-rotanti, ed i risultati della fase di validazione sono discussi. Gli studi computazionali documentati nel rapporto comprendono le curve di prestazione in acqua libera dei sistemi CRP-Pod ed ICP ottenute mediante modello BEM e confrontate con risultati sperimentali sul modello ottenuti da SSPA all'interno del Task 23.1. Inoltre, le simulazioni della scia nominale rilasciata dalla carena in assenza di propulsore sono confrontate con dati sperimentali ottenuti da SSPA sul modello. Infine, i risultati degli studi dell'interazione propulsore/carena ottenuti mediante modello ibrido RANSE/BEM di entrambi i sistemi CRP-Pod ed ICP sono presentati e discussi. Le simulazioni sono condotte su modelli in scala (? = 26). I risultati numerici confermano gli andamenti delle prestazioni propulsive dei due sistemi ottenuti sperimentalmente. In particolare, entrambe le unità CRP-Pod ed ICP hanno efficienza idrodinamica comparabile laddove solo i contributi elica sono considerati. Se anche la resistenza del pod viene considerata, la soluzione ICP risulta penalizzata come conseguenza di un'alta resistenza generata dai notevoli ingombri, caratteristici di questa configurazione. Infatti la resistenza della superficie relativa all'alloggiamento dell'ICP è circa doppia di quella relativa all'unità CRP-Pod. Forti picchi di pressione sulla superficie dell'alloggiamento ICP sono confermati dai calcoli. D'altra parte, le unità CRP-Pod ed ICP mostrano una equivalente capacità di ottenere un quasi completo recupero dell'energia di rotazione persa nella scia rilasciata dall'elica a monte. I risultati numerici dimostrano che a valle dell'elica di valle la velocità media tangenziale nel tubo di flusso è circa nulla. Tale caratteristica del risultante campo di velocità rappresenta la ragione principale dell'incremento di efficienza idrodinamica dei sistemi ad eliche contro-rotanti rispetto a configurazioni a singola elica. Si può concludere che entrambi i sistemi CRP-Pod ed ICP progettati all'interno del Task 23.1 rappresentano sistemi propulsivi avanzati molto promettenti. Comunque, nel presente progetto, l'ICP determina una resistenza del pod eccessiva causata dai notevioli ingombri dell'alloggiamento. La possibilità di mitigare tale aspetto negativo proprio della configurazione ICP potrebbe essere oggetto di uno studio dedicato. I risultati di validazione presentati in questo rapporto dimostrano che il modello ibrido RANSE/BEM può essere considerata come piattaforma numerica per studi di progettazione di sistemi propulsivi complessi.
D23.4 - Report on evaluation of contra-rotating solutions
Calcagni Danilo;Salvatore Francesco;Muscari Roberto
2013
Abstract
This report describes results of a computational study on the hydrodynamic performance of two enhanced propulsion concepts based on contra-rotating and podded propellers. The activity is performed by partner INSEAN in the framework of WP23, Task 23.1, of the STREAMLINE Project. The present report is written in fulfillment of Deliverable D23.4. The two propulsion systems consist of (i) a single-shaft propeller placed in front of a pod-mounted propeller, acting in contra-rotation with respect to the forward screw (Contra-Rotating Propeller Pod, CRP-Pod, designed by RRHRC), and (ii) two contra-rotating propellers mounted in pulling model on a pod housing (Integrated Contra-rotating Podded propeller, ICP, designed by SSPA). Aim of the present work is to analyse by Computational Fluid Dynamics (CFD) tools the hydrodynamic performance of these two alternative concepts in operating conditions behind hull. To this purpose, the hybrid RANSE/BEM computational model developed by INSEAN in WP34 is applied. In the report, an overview of the computational set-up to study by hybrid RANSE/BEM the interaction between hull and contra-rotating propellers is given, and results of validation studies are discussed. Computational studies documented in the report include open water performance of CRP-Pod and ICP systems by full BEM model and comparison with model test data carried on by SSPA in Task 23.1. Next, bare hull nominal wake flow simulations by RANSE are compared with results of model test data by SSPA. Finally, results of hull/propulsor interaction studies by hybrid RANSE/BEM considering both CRP-Pod and ICP systems are presented and discussed. Simulations are performed at model scale (? = 26). Numerical results confirm trends on propulsive performance of the two systems revealed by model tests. In particular, both CRP-Pod and ICP units have comparable hydrodynamic efficiency when only screw contributions are considered. If pod resistance is also taken into account, the ICP layout is penalised as a consequence of the large resistance generated by the massive housing characterizing the present design. In fact, housing drag of the ICP is almost twice the resistance of the CRP-Pod unit. Strong pressure peaks on the ICP housing surface are also observed from calculations. Nevertheless, CRP-Pod and ICP units exibit an equivalent capability to achieve a quasi complete recovery of energy lost in the swirled flow downstream the forward screw. Numerical results demonstrate that downstream the aft screw the mean tangential velocity in the propeller slipstream is close to zero. Such a flowfield feature is the main reason of the outstanding hydrodynamic efficiency that contra-rotating screw system have as compared to single screw arrangements. It may be concluded that both CRP-Pod and ICP configurations designed in Task 23.1 are very promising as enhanced propulsive systems. However, in the present design the ICP determines a too high pod drag caused by the oversized housing. The possibilty to mitigate this drawback of the ICP layout could be the subject of a dedicated study. Results of validation studies presented in the report demonstrate that the hybrid RANSE/BEM model can represent a sound computational basis for design studies of this type of complex propulsors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.