Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specic distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is dicult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively dierent possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions { spatial, social, and temporal { of human mobility. The way SPoT does it is by mapping the dierent social communities of the network into dierent locations, whose members visit with a congurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process eectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge.

SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

Chiara Boldrini;Marco Conti;Andrea Passarella
2013

Abstract

Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specic distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is dicult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively dierent possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions { spatial, social, and temporal { of human mobility. The way SPoT does it is by mapping the dierent social communities of the network into dierent locations, whose members visit with a congurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process eectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge.
2013
Istituto di informatica e telematica - IIT
Complex Networks
human mobility
Opportunistic Networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact